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Non-IID Federated Learning with Sharper Risk
Bound

Bojian Wei, Jian Li∗, Yong Liu, Weiping Wang

Abstract—In federated learning, the non-IID (not indepen-
dently or identically distributed) data partitioning impairs the
performance of the global model, which is a severe problem to be
solved. Despite the extensive literature related to the algorithmic
novelties and optimization analysis of federated learning, there
has been relatively little theoretical research devoted to studying
the generalization performance of non-IID federated learning.
The generalization research of non-IID federated learning is
still lack of effective tools and analytical approach. In this
paper, we propose weighted local Rademacher complexity to
pertinently analyze the generalization properties of non-IID
federated learning and derive a sharper excess risk bound based
on weighted local Rademacher complexity, where the convergence
rate is much faster than the existing bounds. Based on the
theoretical results, we present a general framework FedALRC
to lower the excess risk without additional communication costs
compared to some famous methods, such as FedAvg. Through
extensive experiments, we show that FedALRC outperforms
FedAvg, FedProx and FedNova, and those experimental results
coincide with our theoretical findings.

Index Terms—Federated learning, non-IID, excess risk bound,
generalization analysis.

I. INTRODUCTION

FEDERATED learning (FL) [1] is a new machine learning
paradigm where a large number of clients collaboratively

train a model under the coordination of a central server. In
FL, the raw data of each client is stored locally, other clients
and the central server have no access to it. Instead, the global
model is updated by alternately performing local training and
server aggregating. One main characteristic of FL is non-IID
data partitioning across clients, such heterogeneity leads to the
performance degradation and convergence slowdown.

To solve the problem, researchers have studied FL under
non-IID setting through different approaches [2]–[6]. FedAvg
[1] is the most common algorithm used to reduce communi-
cation costs by running multi-step SGD (Stochastic Gradient
Descent) locally, and many works [7], [8] have proved its
convergence by assuming the local iterations are the same.
However, the performance of FedAvg drops to some extent in
non-IID setting with different local iterations for the objective
inconsistency [9]. FedProx [10] adds a proximal term to
local objectives to constrain the gap between local models
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and the global model. Adaptive learning rates [11] have been
extended to FL, which generalizes server momentum [12]
without increasing communication costs. FedNova [9] is
proposed to tackle the objective inconsistency problem and it
could be combined with some acceleration techniques, while
it only focus on the heterogeneity of local iterations. Other
algorithms [13]–[16] are proposed to further reduce the impact
of non-IID or accelerate the convergence, but they either
require additional communication and memory [14] or only
adapts to neural networks [13] according to the conclusions
in [9].

Lack of Generalization Analysis. Although many related
work has put forward different methods to solve the non-IID
problem in FL, they are designed to improve the performance
of FL from a specific aspect [17], [18], or to transfer some clas-
sic algorithms to FL, such as local momentum [19], variance
reduction [14], [20], normalization [9] and adaptivity [11].
The relevant theoretical research is not suffcient, especially
the generalization analysis. Most theoretical studies pay more
attention to the convergence analysis of FL algorithm from
the perspective of optimization [21], [22], where many works
have analyzed federated optimization under homogeneity [23]
or heterogeneity [23], [24] setting and tried to explore the
convergence under milder assumptions. Only a few work give
the generalization bound for FL. Agnostic federated learning
[25], [26] provides a new point on classical FL, but the
target is to optimize the worst case in the hypothesis space,
where the theoretical analyses are overly pessimistic and the
algorithm often performs not well in practice. And, they give a
generalization bound with the convergence rate of O(

√
logn
n )

for binary-classification, where n is the total number of
samples among all the clients. Considering the distribution
discrepancy, three approaches [27] are introduced to improve
the performance of personalized FL, including hypothesis-
based clustering, data interpolation and model interpolation.
However, the convergence rate of their generalization bound is
O( K√

n
), where K is the number of clients. Thus, it is necessary

to study how to reduce the generalization error of FL with
faster convergence rate.

In this paper, we present a novel generalization analysis
for non-IID FL and derive a sharper excess risk bound based
on weighted local Rademacher complexity, where the conver-
gence rate meets the current results in centralized learning
and the theory is a non-trivial extension of the existing
bounds. Based on the theoretical analysis, we devise an
effective algorithm to improve the performance of non-IID
FL, which introduces a regularization scheme to constrain the
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local Rademacher complexity. Experimental results validate
the effectiveness of our theory and proposed algorithm.

Contributions:
• To the best of our knowledge, we propose weighted local

Rademacher complexity to tackle the non-IID problem in
FL for the first time and present the first generalization
analysis of non-IID FL based on it. We derive a novel
excess risk bound for non-IID FL with generalized linear
models, including linear models, kernel methods, and
so on, which is much sharper than the existing results
(O( K√

n
)) with the convergence rate of O(Kn ) for shallow

models.
• Motivated by our theory, we propose FedALRC, a general

framework for non-IID FL to improve the generalization
performance by constraining weighted local Rademacher
complexity. Moreover, FedALRC also preserves fast con-
vergence and low communication costs.

• Through extensive numerical experiments on various
datasets, FedALRC outperforms other FL algorithms
under the same non-IID setting. The effectiveness of
weighted local Rademacher complexity is also valided
by combining FedALRC with adaptive optimization.

A. Related Work

Recently, several work studies the generalization perfor-
mance of FL under non-IID setting. Agnostic federated learn-
ing [25] regards the global distribution on the server as the
mixture of local distributions, and ensures the fairness with
minimax framework. SCAFFOLD [14] reduces the generaliza-
tion error of non-IID FL by constraining the variance among
local models. Based on sketch and differential privacy [28], an
efficient approach for cross-silo federated learning to rank [29]
provides a privacy-preserving strategy for frequency query and
bounds the related estimation error. FedGen [30] is a data-free
FL algorithm based on knowledge distillation, which trains a
generator on the server to gather the information from clients.
The authors also give a generalization bound for FedGen,
where the convergence rate is O(

√
K
n ). Motivated by the

margin-based generalization bound, DMFL [31] introduces a
dynamic constraint on the local objective to allocate bigger
margin to the class with less samples.

Excess risk bounds for non-IID FL. As mentioned above,
the existing bounds still have much room for improvement.
The existing generalization bounds for non-IID FL are mainly
based on Rademacher complexity [25], [30], [32], where they
only consider the worst case in hypothesis space and the
convergence rate can not be better than O( K√

n
) or O(

√
K
n ).

According to [33], the excess risk of a learning algorithm
is twice the generalization error, so the present excess risk
bounds are of the same order as the corresponding general-
ization bounds. Thus, improving the excess risk bound can
provide a stronger guarantee for non-IID FL, which is of great
significance to improve its generalization performance.

Local Rademacher complexity. In recent years, many
researchers have applied local Rademacher complexity [34]
in centralized learning to obtain better generalization bounds
[35]–[39]. However, how to use local Rademacher complexity

TABLE I
CRITICAL NOTATIONS.

Notation Interpretation

X , Y input space, label space
L, H loss space, hypothesis space
f , `f (x, y) labeling function, loss function
Hr , L∗ localized hypothesis space, excess loss space
P`f , Pn`f expected loss of FL, empirical loss of FL
(xk, yk) training samples on the k-th client
R̂(L, p) empirical weighted Rademacher complexity of L
R(Lr, p) expected weighted local Rademacher complexity of L
R̂(Hr, p) empirical weighted local Rademacher complexity of Hr
R(L∗r , p) expected weighted local Rademacher complexity of L∗
r∗ fixed point of R(L∗r , p)
W, φ(x) classifier, feature mapping
{λkj }, {εki } singular values, Rademacher variables

to non-IID FL to derive a sharper bound is still an open
problem. A naive way is to directly convert the excess risk into
the weighted sum of the local excess risk, but this will lead to
a loose bound and does not conform to the mechanism of FL.
Specifically, the former is the weighted sum of the optimal
solutions for local objectives, while the latter is the optimal
solution for the weighted sum of local objectives (global
optima). To this end, we introduce a weighted counterpart
of local Rademacher complexity to analyze non-IID FL and
derive a sharper excess risk bound, which is consistent with
the global objective of non-IID FL.

The rest of this paper is organized as follows. In Section II,
we give the general notations and definitions used in this paper.
We present the theoretical results and some critical discussions
in Section III. In Section IV, we propose the two counterparts
of FedALRC and the extension to adaptive learning rates, we
also demonstrate the local computation and communication
cost. Extensive experiments are illustrated with explanations
in Section V. We conclude in Section VI and give the proofs
in Appendix.

II. PRELIMINARIES AND NOTATIONS

We mainly focus on the cross-silo non-IID FL setting, where
all the clients participate in the training process per round.
There are some general notations used in this paper and the
critical symbols are listed in TABLE I.

Let X ⊆ Rd denote the input space, Y ⊆ RC denote
the label space, and H be the hypothesis space consisting of
labeling functions f : X → Y . In FL, there are K clients and
a central server, where samples (xk, yk) on the k-th client is
drawn i.i.d. from local distribution ρk with size of nk, and
data on different clients may not have the same distribution
(ρi 6= ρj).

Let L be the family of loss functions associated to H.
Without loss of generality, we assume that the loss function
`f (x, y) = `(f(x), y) on each client is bounded by B (B > 0).
We denote by P`f the expected loss of FL:

P`f =

K∑
k=1

pkP
k`f =

K∑
k=1

pkE(xk,yk)∼ρk [`f (xk, yk)],
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and Pn`f the corresponding empirical loss:

Pn`f =

K∑
k=1

pkP
k
n `f =

K∑
k=1

pk
1

nk

nk∑
i=1

`f (xki , y
k
i ),

where pk = nk
n (n =

∑K
k=1 nk) is the aggregation weight.

Note that the global objective is the weigted sum of local
objectives, and each local objective is unique related to non-
IID setting. Thus, the traditional Rademacher complexity
will no longer apply to this situation. We use the weighted
counterpart to deal with the non-IID problem contrapuntally.

Definition 1 (Weighted Rademacher Complexity): Let L
be the family of loss functions defined above, the empirical
weighted Rademacher complexity of L is

R̂(L, p) = Eε

[
sup
`f∈L

K∑
k=1

pk
nk

nk∑
i=1

εki `f (xki , y
k
i )

]
,

where {(xki , yki ), ..., (xki , y
k
i )} is a sample of size nk on the k-

th client, εki s are independent Rademacher variables, which are
uniformly sampled from {−1,+1}. The weighted Rademacher
complexity of L is R(L, p) = E[R̂(L, p)].

Though weighted Rademacher complexity is already ap-
plicable to non-IID FL setting, it ignores the fact that, the
hypotheses selected by a learning algorithm belong to a sub-
family in the hypothesis space with good performance. Thus,
we will use weighted local Rademacher complexity to obtain
a sharper bound.

Definition 2 (Weighted Local Rademacher Complexity):
For any r > 0, the weighted local Rademacher complexity of
L is defined as

R(Lr, p) = R
{
`f |`f ∈ L, P `2f ≤ r

}
.

Then, we get the corresponding localized hypothesis space:

Hr := {f |f ∈ H, P `2f ≤ r},

and we define the empirical weighted local Rademacher com-
plexity of Hr as

R̂(Hr, p) = Eε

[
sup
f∈Hr

K∑
k=1

pk
nk

nk∑
i=1

C∑
c=1

εkicfc(x
k
i )

]
,

where fc(xki ) is the c-th value of f(xki ) w.r.t. the c-th class
and εkics are independent Rademacher variables, which are
uniformly sampled from {−1,+1}.

In the following, we assume that `f is L-lipschitz for RC
equipped with the 2-norm, that is |`f (x, y) − `f ′(x, y)| ≤
L‖f(x)− f ′(x)‖2, where many loss functions meet this con-
dition, such as hinge loss, margin loss and their variants. And,
this is also a commonly used assumption in generalization
analysis for vector-valued labeling functions.

III. SHARPER RISK BOUND

In this section, we present a sharper excess risk bound for
non-IID FL. All the proofs can be found in the appendix.

We introduce the following excess loss space:

L∗ := {`f − `f∗ |`f ∈ L},

where f∗ denotes the labeling function which satisfies `f∗ =
inff∈H P`f , Then, we define the weighted local Rademacher
complexity of L∗ as

R(L∗r , p) = R{`f − `f∗ |`f ∈ L, P (`f − `f∗)2 ≤ r}.

Theorem 1 (Excess Risk Bound): Let f̂ be the labeling
function satisfying `f̂ = inff∈H Pn`f . Then, for any δ ∈
(0, 1), ∀f ∈ Hr and ∀G > 1, with probability at least 1− δ,
the following bound holds:

P (`f̂ − `f∗) ≤
800G

B
r∗ +

(16G+ 12)B log(1/δ)

n
, (1)

where r∗ is the fixed point of R(L∗r , p), which denotes the
unique positive solution of R(L∗r , p) = r.

Discussion. By weighted local Rademacher complexity
R(L∗r , p), a smaller class L∗r ⊆ L∗ with small variance around
the optimal hypothesis is selected, measuring by a fixed radius
r. Since Rademacher complexity only considers the worst case
of the hypothesis space, the previous bounds can not converge
faster than O(1/

√
n), while our excess risk bound mainly

depends on the fixed point r∗. Note that the rate of r∗ can not
be worse than the rate obtained by Rademacher complexity,
which means that our bound is at least on the same level as
[27]. For instance, in centralized kernel learning, the rate of r∗

can achieve up to O( 1
n ) for linear kernels, polynomial kernels

and Gaussian kernels. Thus, our bound can be much better
and we give a specific demonstration as follows.

Consider that H := {f |f = WTφ(x), ‖W‖ ≤ 1}, where
φ(·) ⊆ RD denotes a fixed feature mapping, we denote by Wk

the learnable parameters on the k-th client. In the following
theorem, we give an estimate of weighted local Rademacher
complexity and a sharper risk bound.

Theorem 2: Assume that E[φ(xk)Tφ(xk)] ≤ 1 and
‖Wk‖ ≤ 1 for client k. Let Wk = UkΣkV

T
k be the SVD

decomposition of Wk, where Uk ∈ RD×D and Vk ∈ RC×C
are unitary matrices, and Σk ∈ RD×C is diagonal with
singular values {λkj } in descending order. Then, for any r > 0,
we have

R(L∗r , p) ≤ inf
ϑ≥0

K∑
k=1

pk

(√
2ϑr

nk
+ 2
√

2L

∑
j>ϑ λ

k
j√

nk

)
,

where ϑ ∈ N is the truncated threshold. For any δ ∈ (0, 1)
and ϑ ≥ 0, ∀f ∈ H, with probability at least 1− δ, we have

P (`f̂ − `f∗)

≤O

(
Kϑ+

∑K
k=1

√
nk
∑
j>ϑ λ

k
j

n
+

log(1/δ)

n

)
,

where O swallows all constants (including G, L and B).
The above theorems demonstrate that the excess risk of

non-IID FL is determined by the weighted local Rademacher
complexity R(L∗r , p), and R(L∗r , p) is determined by the sum
of the tail sum of Wk’s singular values. This inspires us to
reduce the excess risk by constraining the sum of the tail sum
of Wk’s singular values, so as to improve the generalization
performance of non-IID FL. We make the following discus-
sions:
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• In the worst case (ϑ = 0), weighted local Rademacher
complexity degrades into weighted Rademacher complex-
ity, and we get a convergence rate of O(

∑K
k=1

√
nk

n ). If
data on each client has the same size, then the con-
vergence rate is O(

√
K
n ), which is already better than

O( K√
n

) [27].
• When Wk has a finite rank ϑ such that its singular values

satisfy λkj = 0 for all j > ϑ, which means that the tail
sum of singular values is zero. Thus, the rate of the fixed
point is inversely proportional to the number of samples
nk: r∗ = O(Kϑn ). Then, the convergence rate of the
excess risk bound is O(Kϑn ), which is much sharper than
the previous results.

• When the singular values of Wk decay exponentially, that
is
∑
j>ϑ λj = O(e−ϑ), then it holds r∗ = O(K logn

n ),
and we also obtain a faster convergence rate O(Kn ).

Remark 1 (Beyond horizontal federated learning): In this
paper, by restricting the complexity of hypothesis space, we
derive sharper excess risk bounds for the horizontal federated
learning scenarios where the local clients share the same
feature space but differ in samples [40]. Nevertheless, the
techniques presented here can be extended to vertical federated
learning methods that share the same sample ID space but
with different feature spaces across local clients. Specifically,
one should carefully define the (local) Rademacher complexity
for vertical FL settings and then impose a constraint on local
Rademacher complexity to guarantee a smaller hypothesis
space around the target function [34]. This also motivates an
improved algorithm for the vertical FL methods that minimize
the training loss and reduces the empirical local Rademacher
complexity at the same time.

Remark 2 (Novelty): Both Wk with finite rank and Wk

with exponentially decaying singular values have a fixed
point r∗ that mainly depends on O(Kn ). In these cases, the
excess risk bound for FL achieves a linear dependence on
the total sample size and is independent of the number of
classes C. Compared to the existing results based on weighted
Rademacher complexity [25], [27], where the related bounds
can not converge faster than O(K/

√
n), we obtain a sharper

risk bound based on weighted local Rademacher complexity,
which provides a stronger generalization guarantee for FL with
non-IID data.

Remark 3 (Generality): Note that the form of WTφ(x)
contains various learning algorithms. When φ(x) = x, then
H becomes a linear space, and we can always obtain a
sharper risk bound for all linear models. When φ(·) is non-
linear, H can represent many different hypotheses, including
generalized linear models, kernel methods, random fourier
features, shallow neural networks and pre-trained models with
fine-tuning. Moreover, Theorem 2 can be applied to other
learning tasks, such as multi-objective learning and distributed
learning. Thus, our excess risk bound has a wide range of
applicability, which can provide better theoretical guarantee
for lots of mainstream algorithms.

Remark 4 (Proof Novelty): According to the definition of
weighted local Rademacher complexity, it is consistent with
the global objective of non-IID FL, where the sup operation is

Algorithm 1 FedALRC for shallow models. ν is the fraction
of participation, w is the model parameters, $k is the local
iterations and B is the mini-batch size.
Server Aggregating:

Initialize w0

for each communication round t = 1, 2, ..., T do
mν = max(νm, 1)
St := random set of mν clients
for client k ∈ St in parallel do

∆t−1
k ← Local Training(k,wt−1)

end for
∆t−1 =

∑K
k=1 pk∆t−1

k

wt = wt−1 − η∆t−1

end for
Local Training(k,wt−1):

wt−1
k = wt−1

for epoch= 1, ..., E do
for each batch (xki , y

k
i )i=1,...,B do

UkΣkV
T
k = wt−1

k − ηl∇wt−1
k

1
B
∑B
i=1 `f (xki , y

k
i )

wt−1
k = UkΣ

ϑ,αηl
k VT

k

end for
end for
∆t−1
k =

wt−1−wt−1
k

$k

outside the weighted sum operation, and there is no existing
method that can be directly used to derive the excess risk
bound for non-IID FL based on weighted local Rademacher
complexity. To get the sharper risk bound, we first propose
two propositions for weighted local Rademacher complexity
and give the related proofs, then we derive an error bound for
a generalized loss space with the propositions and Talagrand’s
inequality, and finally extend it to the excess loss space to get
the final result. Thus, our theoretical finding is a non-trivial
extension of the existing results.

IV. ALGORITHM

In this section, we present a general framework FedALRC
to minimize weighted local Rademacher complexity during FL
training based on our sharper excess risk bound.

A. Federated Averaging with Local Rademacher Complexity

According to Theorem 1, the excess risk can be lowered
by reducing weighted local Rademacher complexity. Thus,
a simple approach is to add weighted local Rademacher
complexity to the global objective function as a regularization
term. However, we can not estimate R(L∗r , p) directly on
the server side, because it is data-dependent and data is not
interactive under FL setting.

Note that R(L∗r , p) ≤
∑K
k=1 pkRk(L∗r), where Rk(L∗r)

denotes the local Rademacher complexity of L∗r on the k-th
client, we know that R(L∗r , p) will decrease with the decrease
of Rk(L∗r). Therefore, we impose the constraint of R(L∗r , p)
to the local objective function on each client to improve
generalization performance.

For shallow models: According to Theorem 2, weighted
local Rademacher complexity is bounded by the sum of the
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tail sum of Wk’s singular values. Thus, the local objective
function on the k-th client is formed as

arg min
f∈H∗r

1

nk

nk∑
i=1

`f (xki , y
k
i ) + α

∑
j>ϑ

λkj ,

where α is a tunable parameter.
The minimization of the sum of partial singular values can

be difficult to implement, and thus we change it into a two-
step optimization [37] in Algorithm 1. First, the local model
Wk is updated through SGD w.r.t. the empirical loss except
for the tail sum of singular values. Second, Wk is updated
by singular value thresholding Wk = UkΣ

ϑ,αηl
k VT

k , where
Σϑ,αηl
k is diagonal with

[Σϑ,αηl
k ]jj =

{
max(0, [Σk]jj − αηl) j ≤ ϑ,
[Σk]jj j > ϑ.

For deep models: The updating process in deep models
can be very complex, and the related characteristics will
be lost by directly applying Theorem 2. Thus, we propose
an empirical method to minimize the empirical weighted
local Rademacher complexity R̂(L∗r , p). For the k-th client,
we sample Q times Rademacher variables {εkic}

c=1,...,C
i=1,...,nk

and
then calculate the empirical local Rademacher complexity by
<k = 1

nkC

∑nk
i=1

∑C
c=1 ε

k
icfc(x

k
i ) such that P (`f − `f∗)2 ≤ r.

Taking the average across Q times, we add the average <k
to the local objective function as a regularization term, so the
k-th local objective function is formed as

arg min
f∈H∗r

1

nk

nk∑
i=1

`f (xki , y
k
i ) + α<k. (2)

Note that the server aggregating process is the same, so we
give the pseudo-code of local training in Algorithm 2.

As for the optimization in non-IID FL, the objective incon-
sistency [9] has been proposed, which shows that FedAvg can
not converge to the global objective Pn`f . To this end, we
correct each local update ∆k by dividing the corresponding
local iterations $k when SGD is applied to local training.
Further, FedAvg can be accelerated by two-sided learning
rates [41]. Thus, we introduce a server-side learning rate η in
server aggregating to reduce the convergence slowdown.

Combination with adaptive optimization. The server ag-
gregating algorithm used in the above experiments is pseudo-
gradient descent, while some techniques [11], [19] have been
proposed to improve the performances of FL algorithms on the
server side. Thus, we combine adaptive learning rates (general
server momentum) in Algorithm 3, named Ada-FedALRC,
where the local training process is the same as Algorithm 1
for shallow models and Algorithm 2 for deep models.

Computation of local training. FedALRC only introduces
an additional regularization term in the local objective, which
is not much more complicated compared to FedAvg. For
shallow models, the additional complexity of local training
is the SVD decomposition. If the dimension of W is very
high, FedALRC will bring extra computing costs that can not
be ingored. But, the additional costs can be accepted when
the dimension of W is mild. For deep models, the additional
computation comes from the estimation of local Rademacher

Algorithm 2 FedALRC for deep models. w is the model
parameters, $k is the local iterations and B is the mini-batch
size. The procedure of server aggregating is the same as that
in Algorithm 1.

Local Training(k,wt−1):
1: wt−1

k = wt−1

2: for epoch= 1, ..., E do
3: for each batch (xki , y

k
i )i=1,...,B do

4: <k = 0
5: if P (`f − `f∗)2 ≤ r then
6: for q = 1, ..., Q do
7: Sample Rademacher variables {εkic}

c=1,...,C
i=1,...,B

8: <k ← <k + | 1
BC
∑B
i=1

∑C
c=1 ε

k
icfc(x

k
i )|

9: end for
10: <k = <k/Q
11: end if
12: L = 1

B
∑B
i=1 `f (xki , y

k
i ) + α<k

13: wt−1
k = wt−1

k − ηl∇wt−1
k

L
14: end for
15: end for
16: ∆t−1

k =
wt−1−wt−1

k

$k

Algorithm 3 Server aggregating of Ada-FedALRC.
1: Initialize w0 and v0 = eps
2: for each communication round t = 1, 2, ..., T do
3: mν = max(νm, 1)
4: St := random set of mν clients
5: for client k ∈ St in parallel do
6: ∆t−1

k ← Local Training(k,wt−1)
7: end for
8: ∆t−1 = η

∑K
k=1 pk∆t−1

k

9: vt = vt−1 + (∆t−1)2

10: wt = wt−1 − βη ∆t−1
√
vt+eps

11: end for

complexity, where we sample a group of Rademacher variables
{εkic}

c=1,...,C
i=1,...,B , which can be treated as a B × C matrix.

The Q-times average for <k is an inplace operation, so the
extra memory remains the B × C matrix. Note that the
regularization term in FedProx is ‖w − wglobal‖2, so our
computing costs may not greater than FedProx’s. Above all,
although FedALRC does introduce additional computation in
local training, the magnitude is not very large compared with
other algorithms, so it can be widely used in current devices.

Communication cost. The communication cost of FL is
mainly caused by the interaction of model parameters (or
gradients) between clients and server during training pro-
cess. FedALRC and Ada-FedALRC leave the optimization
of local Rademacher complexity on client-side, which in-
teract the same objects (model parameters) pre round as
FedAvg and FedProx. Besides, we show that FedALRC
and Ada-FedALRC converge faster than other algorithms in
next section. Thus, our proposed algorithms have no additional
communication cost compared with FedAvg and FedProx.

Remark 5 (Applications): According to Remark 3, our
theory fits many kinds of models. And, we propose two
counterparts of FedALRC related to the type of models.
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TABLE II
STATISTICAL INFORMATION OF DATASETS.

Datasets Traing Testing Feature Number
Size Size Dimension of Classes

usps 7291 2007 256 10
pendigits 7494 3498 16 10
satimage 4435 2000 36 6
letter 15000 5000 16 26
vowel 528 462 10 11
MNIST 60000 10000 28×28 10
CIFAR-10 50000 10000 3×32×32 10

Based on the definition of local Rademacher complexities, our
theoretical finding aims at the supervised federated learning
scenario, especially the multi-classification with vector-value
outputs. Therefore, our proposed scheme can be applied to
non-IID FL with vector-value classification tasks.

V. EXPERIMENTS

In this section, we evaluate all algorithms on various real-
world datasets1 with non-IID partitioning.

A. Experimental Setup

We train a linear model on several LIBSVM [42] datasets,
a LeNet network on MNIST and a VGG-11 network on
CIFAR-10, where all the train sets are partitioned across 20
clients (16 clients for CIFAR-10) using a Dirichlet distribution
DirK(0.1) [13] and the original test set of each dataset is used
to evaluate the performance of the global model. The statistical
information of LIBSVM datasets is listed in TABLE II. The
client-side learning rate ηl is decayed in the same way as [9].
To ensure the fairness of comparison, we tune ηl for FedAvg
and apply the same value to the other algorithms. We run each
experiment with 3 random seeds and record the average and
standard deviation. All clients perform E = 2 local epochs in
the following experiments. All the experiments are conducted
on a Linux server equipped with one NVIDIA GeForce 2080ti,
and all the algorithms are implemented by Pytorch.

B. Experiments with Non-IID Partitioning

In TABLE III, we compare the performance of FedALRC
and three mainstream algorithms (FedAvg, FedProx and
FedNova) on various datasets with non-IID data partition-
ing. The characteristics of these algorithms are summarized
in TABLE IV. We run each experiment for 100 rounds
and apply SGD to local training. We fix the mini-batch
size per client as 64 for MNIST, 32 for CIFAR-10 and
16 for the rest of datasets. The client-side learning rate ηl
is tuned from {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7}
for FedAvg, the scale parameter γ of server-side learning
rate η is tuned from {0.9, 1.0, 1.2, 1.5, 2.0, 2.5} for FedALRC
and the proximal parameter µpx for FedProx is tuned from
{0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}.

1https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

Fig. 1. Results on Satimage under Non-IID Setting.

For linear model, we manually tune the SVD threshold
ϑ from {1, ...,min(D,C)} and the regularization parameter
α from {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100} × 10−3. For DNN
(Deep Neural Network), we set r = 1 to constrain H∗r , where
the minimum loss `∗f can be reguarded as 0 for simplicity,
and we introduce weight decay (×10−4) into local training to
avoid over-fitting of deep network.

According to the results in TABLE III, we can know that
FedALRC is significantly better than other algorithms with
confidence at level 95% on most datasets. By modifying
server-side learning rate and constraining local Rademacher
complexity, FedALRC yields a significant improvement up to
8% compared to FedAvg and FedProx, and outperforms
FedNova with a clear margin. In Fig. 1, we observe that
FedALRC not only achieves the best performance under non-
IID setting, but also converges faster than the other algorithms,
which is consistent with our theory. There is an interesting
phenonmenon that the hovering amplitude of FedALRC is
larger than other methods. This indicates that FedALRC may
be sensitive to the server-side learning rate.

The reason why the improvements of FedALRC on some
datasets is not significant compared with other algorithms is
that our algorithm aims to reduce the excess risk, in other
words, the generalization error. And, the excess risk is mea-
sured by the weighted local Rademacher complexity, which is
data-dependent. Thus, the performance may be different when
we train different models with different datasets, especially
when models or datasets do not fit the assumptions perfectly.

We also compare the performance of Ada-FedALRC
with FedAdagrad [11]. The local training process
of FedAdagrad is the same as FedAvg. The
threshold eps is set as 10−3 and βη is tuned from
{0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5}.

From the right side of TABLE III, we can know that
Ada-FedALRC generally outperforms FedAdagrad, which
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TABLE III
TEST ACCURACY (%) OF DIFFERENT FL ALGORITHMS ON DIFFERENT DATASETS WITH NON-IID DATA PARTITIONING. WE BOLD THE NUMBERS OF

THE BEST METHOD AND UNDERLINE THE NUMBERS OF OTHER METHODS WHICH ARE NOT SIGNIFICANTLY WORSE THAN THE BEST ONE.

Datasets FL Algorithms Adaptive FL Algorithms
FedAvg FedProx FedNova FedALRC FedAdagrad Ada-FedALRC

usps 82.41±0.07 82.36±0.12 82.93±0.08 83.03±0.12 82.63±0.02 82.98±0.02
pendigits 77.47±0.75 77.98±0.60 78.74±0.49 79.20±0.14 77.78±0.63 77.90±0.37
satimage 81.27±0.06 81.52±0.05 81.30±0.15 82.30±0.18 82.12±0.26 82.78±0.31
letter 29.90±0.03 29.98±0.00 29.69±0.05 30.04±0.02 30.01±0.06 30.26±0.03
vowel 35.43±0.37 35.57±0.27 37.81±0.10 38.24±0.10 36.80±0.47 37.45±0.61
MNIST 97.49±0.04 97.42±0.05 97.24±0.14 98.15±0.13 97.97±0.08 98.15±0.13
CIFAR-10 63.70±1.02 63.55±1.05 71.85±0.33 72.28±0.23 68.46±1.22 71.63±0.97

TABLE IV
CHARACTERISTICS OF FL ALGORITHMS.

Algorithms Proximal Local Server-Side
Term Update Learning Rate

FedAvg % wt −wt
k 1

FedProx ! wt −wt
k 1

FedNova %
wt−wtk
$k

∑K
k=1 pk$k

FedALRC %
wt−wtk
$k

γ
∑K
k=1 pk$k

means that our method combined with adaptive algorithm can
also improve the generalization capacity. Moreover, it should
be noted that the test accuracy of Ada-FedALRC is lower than
that of FedALRC on some datasets. The reason for this also
refers to the Rademacher complexity-style bound, we think
that the Adagrad-style algorithm may not be able to guarantee
a lower generalization error on these datasets, which affects
the improvement of the related generalization performance.

C. Comparison with Weighted Rademacher Complexity

The key point of FedALRC is introducing a regularization
term based on weighted local Rademacher complexity to
reduce the excess risk. According to [32], a regularization term
based global Rademacher complexity is designed to reduce the
excess risk of non-IID FL. The empirical global Rademacher
complexity for k-th device <k can be formed as

<k =

{
Tr(Wk), shallow models,

1
nkC

∑nk
i=1

∑C
c=1 ε

k
icfc(x

k
i ), deep models.

Here, the global Rademacher complexity summarizes the
singular values of the local model weight Wk for shallow
linear models, while for deep models it removes the restriction
P (`f − `f∗)

2 ≤ r from local Rademacher complexity in
(2). Thus, it is reasonable to compare the generalization
performance of these two regularization terms from the local
and global Rademacher complexities, respectively.

In TABLE V, we show the results of FedALRC
with weighted local Rademacher complexity regularization
(FedALRC-l) and weighted Rademacher complexity regu-
larization (FedALRC-g). We observe that FedALRC with

TABLE V
TEST ACCURACY (%) OF FEDALRC WITH DIFFERENT REGULARIZERS.

Algorithms Datasets
usps pendigits satimage letter

FedALRC-g 82.36±0.16 78.33±0.39 81.38±0.19 29.94±0.03
FedALRC-l 83.03±0.12 79.20±0.14 82.30±0.18 30.04±0.02

weighted local Rademacher complexity regularization per-
forms better, which indicates that our local Rademacher com-
plexity based algorithm has better effect on reducing the excess
risk than global Rademacher complexity based methods. This
also shows that our generalization theory is practical.

D. Ablation Study

To analyze the influence of weighted local Rademacher
complexity and the modified server-side learning rate, we
conduct an ablation experiment on non-IID MNIST dataset.

In Fig. 2, we compare the performance of FedALRC’s
counterparts in 100 communication rounds. Compared to
FedNova (γ = 1, α = 0), when α 6= 0, we get a higher test
accuracy by simply constraining local Rademacher complexity
(γ = 1, α = 0.1), which conincides with our theory that
the generalization performance can be improved by reducing
the excess risk. By modifying the server-side learning rate
(γ = 1.5, α = 0), the algorithm also performs better than
FedNova, where the test accuracy matches the algorithm
only with local Rademacher complexity but converges faster.
This conincides with the acceleration theory [41] related to the
server-side learning rate. FedALRC, not surprisingly, performs
the best in both convergence rate and test accuracy. Therefore,
we can conclude that a better generalization performance
can be obtained by reducing the excess risk, and we can
further accelerate the convergence by modifying the server-
side learning rate. Furthermore, we can observe that FedALRC
seems to be sensitive to the server-side learning rate again.
Fortunately, the sensitivity of FedALRC does not impair the
performances and we will study the underlying properties in
the future work.
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Fig. 2. Results of Ablation Experiments on MNIST under Non-IID Setting.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel generalization analysis for
FL with non-IID data partitioning and derive a sharper risk
bound based on weighted local Rademacher complexity. Our
theoretical results improve the existing generalization bounds
for federated learning, which converges much faster. Motivated
by the theoretical findings, we devise effective algorithms to
lower the excess risk by constraining local Rademacher com-
plexity, which leads to significant improvements in practice
through extensive experiments. Specifically, the convergence
rates of the existing risk bounds for horizontal FL methods
are usually O(1/

√
n), while this work achieves a faster rate

O(1/n) by restricting the hypothesis space around the target
function. This implies that the proposed learning algorithms
can lead to smaller losses with the same number of samples,
which is essential to the FL scenarios. The presented proof
techniques and algorithmic techniques to control the capacity
of the hypothesis are flexible that pave the way to study sharper
generalization properties of other FL methods, including verti-
cal FL, domain adaption, multi objectives learning [43] and so
on. In the future, we hope to study the underlying properties
of the sensitivity of FedALRC, and transfer the theoretical
findings and improved algorithms in this paper to vertical FL
and domain adaption.
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APPENDIX

We present useful propositions for weighted local
Rademacher complexity and detailed proofs of the theorems.

PROPOSITIONS FOR LOCAL RADEMACHER COMPLEXITY

Proposition 1: Let ψ be a sub-root function and r∗ be
the fixed point of ψ, we assume that for any r > r∗, ψ

satisfies ψ(r) ≥
√

2LBR(Hr, p) ≥ BR(Lr, p). We define
L′ as follows:

L′ = {`′f |`′f =
r`f

max(r, P `2f )
, `f ∈ L}. (3)

Then, we have L′ ⊆ Lr.
Proof 1 (Proof of Proposition 1): We consider the following

two cases: 1) P`2f ≤ r and 2) P`2f > r.
In 1), we have `′f = `f related to (3), so it holds that

P`′
2
f = P`2f ≤ r.

In 2), we have `′f =
r`f
P`2f

, so the following inequality holds:

P`′
2
f =

r2

(P`2f )2
P`2f ≤

r

P`2f
P`2f = r.

The proof is completed.
Proposition 2: Suppose that ∀G > 1, we have

Ψ(L′) = sup
`′f∈L′

[
P`′f − Pn`′f

]
≤ r

BG
.

Then, ∀f ∈ H, we have

P`f ≤ max{ G

G− 1
Pn`f , Pn`f +

r

BG
}.

Proof 2 (Proof of Proposition 2): We consider the following
two cases:

1) P`2f ≤ r and 2) P`2f > r.
In 1), we have `′f = `f , so it holds that

P`f = P`′f ≤ Pn`′f + Ψ(L′) = Pn`f +
r

BG
.

In 2), we have `′f =
r`f
P`2f

, so the following inequalities hold:

P`f − Pn`f ≤ Ψ(L) =
P`2f
r

Ψ(L′) ≤ BP`f
r

r

BG
=
P`f
G

.

The proof is completed.

PROOF OF THEOREM 1
In the following Lemma, we derive a sharper generalization

bound for non-IID FL based on Talagrand’s inequality.
Lemma 1: For any δ ∈ (0, 1), ∀f ∈ Hr and ∀G > 1, with

probability at least 1− δ, the following bound holds:

P`f ≤ max{ G

G− 1
Pn`f , Pn`f + a1r

∗ +
a2

n
}, (4)

where a1 = 800G/B and a2 = (16BG+ 12B) log(1/δ).
Proof 3 (Proof of Lemma 1): Let Z = (xki , y

k
i )k=1...K
i=1...nk

be
the training samples. We define

V = sup
`f∈L

[
K∑
k=1

pk
nk

nk∑
i=1

(
EZ [`f (xki , y

k
i )]− `f (xki , y

k
i )
)]
,

and V ′ by replacing (xsj , y
s
j ) in V with (x′

s
j , y
′s
j). Then,

V ′ = sup
`f∈L

[
ps
ns

(
EZ′ [`f (x′

s
j , y
′s
j)]− `f (x′

s
j , y
′s
j)
)

− ps
ns

(
EZ [`f (xsj , y

s
j )]− `f (xsj , y

s
j )
)

+

K∑
k=1

pk
nk

nk∑
i=1

(
EZ [`f (xki , y

k
i )]− `f (xki , y

k
i )
)]
,
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We introduce f̄ as the labeling function that makes Z get
the supremum, and it can be shown that, ∀j, s,

V − V ′ ≤ ps
ns

(
EZ [`f̄ (xsj , y

s
j )]− `f̄ (xsj , y

s
j )
)

− ps
ns

(
EZ′ [`f̄ (x′

s
j , y
′s
j)]− `f̄ (x′

s
j , y
′s
j)
)
.

Moreover, we define (V − V ′)+ = max{V − V ′, 0}, so

(V − V ′)2
+ ≤

p2
s

n2
s

[(
EZ [`f̄ (xsj , y

s
j )]− `f̄ (xsj , y

s
j )
)

−
(
EZ′ [`f̄ (x′

s
j , y
′s
j)]− `f̄ (x′

s
j , y
′s
j)
)]2

.

Combined with EZ′ [EZ′ [`f̄ (x′
s
j , y
′s
j)]− `f̄ (x′

s
j , y
′s
j)] = 0, it

holds that
K∑
s=1

ns∑
j=1

EZ′ [(V − V ′)2
+]

≤
K∑
s=1

ns∑
j=1

p2
s

n2
s

EZ′
[[

(EZ [`f̄ (xsj , y
s
j )]− `f̄ (xsj , y

s
j ))

−(EZ′ [`f̄ (x′
s
j , y
′s
j)]− `f̄ (x′

s
j , y
′s
j))
]
2
]

≤
K∑
s=1

p2
s

n2
s

ns∑
j=1

(
EZ [`f̄ (xsj , y

s
j )]− `f̄ (xsj , y

s
j )
)2

+

K∑
s=1

p2
s

n2
s

ns∑
j=1

EZ′
[(
EZ′ [`f̄ (x′

s
j , y
′s
j)]− `f̄ (x′

s
j , y
′s
j)
)2]

≤ sup
`f∈L

 K∑
s=1

p2
s

n2
s

ns∑
j=1

(
EZ [`f (xsj , y

s
j )]− `f (xsj , y

s
j )
)2

︸ ︷︷ ︸
V1

+ sup
`f∈L

 K∑
s=1

p2
s

n2
s

ns∑
j=1

EZ
[(
EZ [`f (xsj , y

s
j )]− `f (xsj , y

s
j )
)2]

︸ ︷︷ ︸
V2

.

According to [38], ∀ξ ∈ (0, 1
θ ) (θ > 0), we have the

following inequality:

logE
[
eξ(V−E[V ])

]
≤ ξθ

1− ξθ
logE

[
e
ξ
θ (V1+V2)

]
. (5)

We define V′1 as

V′1 = sup
`f∈L

[
K∑
k=1

p2
k

n2
k

nk∑
i=1

(
EZ [`f (xki , y

k
i )]− `f (xki , y

k
i )
)2−

p2
s

n2
s

(
EZ [`f (xsj , y

s
j )]− `f (xsj , y

s
j )
)2]

.

Let f̃ be the labeling function achieving the supremum of
V1, we have

V1 −V′1 ≤
p2
s

n2
s

(
EZ [`f̃ (xsj , y

s
j )]− `f̃ (xsj , y

s
j )
)2

≤ B2

n2
= b2.

Similarly, we introduce f̃ ′ as the labeling function achieving
the supremum of V′1, we have

V1 −V′1 ≥
p2
s

n2
s

(
EZ [`f̃ ′(x

s
j , y

s
j )]− `f̃ ′(x

s
j , y

s
j )
)2

≥ 0.

Moreover, it can be shown that

K∑
s=1

ns∑
j=1

(V1 −V′1)

≤
K∑
s=1

p2
s

n2
s

ns∑
j=1

(
EZ [`f̃ (xsj , y

s
j )]− `f̃ (xsj , y

s
j )
)2

= sup
`f∈L

 K∑
s=1

p2
s

n2
s

ns∑
j=1

(
EZ [`f (xsj , y

s
j )]− `f (xsj , y

s
j )
)2 = V1.

Therefore, V1

b is a b-self bounding function. According to
[38], the following inequality holds ∀ξ ∈ (0, 1

b ):

logE
[
eξ

V1
b

]
≤ eξb−1

b2
E[V1] ≤ ξ

b(1− ξb)
E[V1]. (6)

We further bound E[V1]−V2 as follows:

E[V1]−V2

≤E

[
sup
`f∈L

[
K∑
k=1

p2
k

n2
k

nk∑
i=1

(
EZ [`f (xki , y

k
i )]− `f (xki , y

k
i )
)2

−
K∑
k=1

p2
k

n2
k

nk∑
i=1

EZ
[(
EZ [`f (xki , y

k
i )]− `f (xki , y

k
i )
)2]]]

≤2E

[
sup
f∈H

K∑
k=1

p2
k

n2
k

nk∑
i=1

εki
(
EZ [`f (xki , y

k
i )]− `f (xki , y

k
i )
)2]

≤4BE

[
sup
f∈H

K∑
k=1

p2
k

n2
k

nk∑
i=1

εki
(
EZ [`f (xki , y

k
i )]− `f (xki , y

k
i )
)]

≤8B

n
R(L, p).

Substituting the above inequality into (6), we have

logE
[
eξ

V1
b

]
≤ ξ

b(1− ξb)

[
8B

n
R(L, p) + V2

]
. (7)

V2 can be bounded as

V2 ≤ sup
`f∈L

[
K∑
s=1

p2
s

ns
E
[
(E[`f (xsm, y

s
m)]− `f (xsm, y

s
m))

2
]]

≤ sup
`f∈L

[
K∑
s=1

p2
s

ns
E
[
(`f (xsm, y

s
m))

2
]]
≤

K∑
s=1

p2
s

ns
r ≤ r

n
,

where `f (xsm, y
s
m) denotes the maximum `f among all clients.

Combined with the above inequality with (5) and (6), ∀ξ ∈
(0, 1

2b ), we have

logE
[
eξ(V−E[V ])

]
≤ ξb

1− ξb

[
ξ

b(1− ξb)

[
8B

n
R(L, p) + V2

]
+
ξV2

b

]
≤ ξb

1− ξb
ξ

b(1− ξb)

[
8B

n
R(L, p) + 2V2

]
≤ ξ2

1− 2ξb

[
8B

n
R(L, p) +

2r

n

]
.
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According to [38], the following inequality holds with
probability at least 1− δ (δ ∈ (0, 1)):

V − E[V ] ≤

√
4

[
8B

n
R(L, p) +

2r

n

]
log

1

δ
+ 2b log

1

δ

≤ 4

√
2BR(L, p)

n
log

1

δ
+ 2

√
2r

n
log

1

δ
+ 2b log

1

δ

≤ 2R(L,p) +
6B

n
log

1

δ
+ 2

√
2r

n
log

1

δ
.

Due to the symmetrization, we have

E[V ]

=EZ

[
sup
`f∈L

EZ′
[
K∑
k=1

pk
nk

nk∑
i=1

(
`f (x′

k
i , y
′k
i )− `f (xki , y

k
i )
)]]

≤EZ,Z′
[

sup
`f∈L

K∑
k=1

pk
nk

nk∑
i=1

(
`f (x′

k
i , y
′k
i )− `f (xki , y

k
i )
)]

=EZ,Z′,ε

[
sup
`f∈L

K∑
k=1

pk
nk

nk∑
i=1

εki

(
`f (x′

k
i , y
′k
i )− `f (xki , y

k
i )
)]

≤2R(L, p).

Therefore, with probability at least 1 − δ (δ ∈ (0, 1)), the
bound for V holds as follows:

V ≤ 4R(L, p) + 2

√
2r

n
log

1

δ
+

6B

n
log

1

δ
. (8)

Applying (8) to L′, we have

sup
`′f∈L′

[
P`′f − Pn`′f

]
≤ 4R(L′, p) + 2

√
2r

n
log

1

δ
+

6B

n
log

1

δ
.

(9)
Then, we define τ as the smallest integer satisfies rµτ+1 ≥

B2 (µ > 1). Combined with the property of Rademacher
complexity, we obtain

R(L′, p) = E

[
Eε

[
sup
`′f∈L′

K∑
k=1

pk
nk

nk∑
i=1

εki `
′
f (xki , y

k
i )

]]

=E

[
Eε

[
sup
`f∈L

K∑
k=1

pk
nk

nk∑
i=1

r

max(r, P `2f )
εki `f (xki , y

k
i )

]]

≤E

[
Eε

[
sup

`f∈L(0,r)

K∑
k=1

pk
nk

nk∑
i=1

εki `f (xki , y
k
i )

]]
+

E

[
Eε

[
sup

`f∈L(r,B2)

K∑
k=1

pk
nk

nk∑
i=1

r

P`2f
εki `f (xki , y

k
i )

]]

≤E

[
Eε

[
sup

`f∈L(0,r)

K∑
k=1

pk
nk

nk∑
i=1

εki `f (xki , y
k
i )

]]
+

τ∑
j=0

µ−jE

[
Eε

[
sup

`f∈L(rµj ,rµj+1)

K∑
k=1

pk
nk

nk∑
i=1

εki `f (xki , y
k
i )

]]

≤R(Lr, p) +

τ∑
j=0

µ−jR(Lrµj+1 , p)

≤ψ(r)

B
+

1

B

τ∑
j=0

µ−jψ(rµj+1).

As a sub-root function, ψ satisfies ψ(ar) ≤
√
aψ(r) for any

a > 1, thus,

R(L′, p) ≤ ψ(r)

B

1 +
√
µ

τ∑
j=0

µ−
j
2

 ≤ ψ(r)

B

[
1 +

µ
√
µ− 1

]
.

Also, we have ψ(r)√
r
≤ ψ(r∗)√

r∗
, so

ψ(r) ≤
√

r

r∗
ψ(r∗) =

√
rr∗,

By setting µ = 4, then, ∀r ≥ r∗, we have

R(L′, p) ≤ 5ψ(r)

B
≤ 5
√
rr∗

B
. (10)

Combined the above inequality with (9), ∀r ≥ r∗, with
probability at least 1− δ (0 < δ < 1), we have

sup
`′f∈L′

[
P`′f − Pn`′f

]
≤ 20

√
rr∗

B
+ 2

√
2r

n
log

1

δ
+

6B

n
log

1

δ
.

(11)
We set A = 20

√
r∗

B + 2
√

2
n log 1

δ and D = 6B
n log 1

δ , so r

is upper bounded by the solution of A
√
r +D = r

BG .
According to [38], we have r ≤ (ABG)2 + 2BGD. Thus,

r

BG
≤ 800Gr∗

B
+

(16BG+ 12B) log(1/δ)

n
.

This completes the proof.
Based on the definition of L∗, the corresponding localized

excess hypothesis space can be defined as

H∗ := {f − f∗|f ∈ H}.

Then, we define the weighted local Rademacher complexity
of H∗r as

R(H∗r , p) = R{f − f∗|f ∈ H, P (`f − `f∗)2 ≤ r}.

According to [44], if `f is L-lipschitz for RC equipped with
the 2-norm, then for any r > r∗, it holds that

BR(L∗r , p) ≤
√

2LBR(H∗r , p) ≤ ψ(r). (12)

Thus, we can apply (4) to L∗r , which leads to a sharper
excess risk bound for FL, and this completes the proof.

PROOF OF THEOREM 2

Let P‖f − f∗‖22 ≤ BP (`f − `f∗), ∀f ∈ H∗r , where B > 1
is some constant. Thus, we have

P (`f − `f∗)2 ≤ L2P‖f − f∗‖22 ≤ BL2P (`f − `f∗).

Due to the convexity of H and the symmetry of the
Rademacher variables, we have

R(H∗r , p) = R{f − f∗|f ∈ H, P (`f − `f∗)2 ≤ r}

≤ R{f − f∗|f ∈ H, P‖f − f∗‖22 ≤
r

L2
}

≤ R{f − g|f, g ∈ H, P‖f − g‖22 ≤
r

L2
}

= 2R{f |f ∈ H, P‖f‖22 ≤
r

4L2
} = 2R(H′r, p).
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We can rewrite the local weighted Rademacher complexity
of Hr as follows:

R(H′r, p) = E

[
sup
f∈H′r

K∑
k=1

pk
nk

nk∑
i=1

C∑
c=1

εkicfc(x
k
i )

]

=E

[
sup
f∈H′r

K∑
k=1

pk
nk

nk∑
i=1

C∑
c=1

εkicW
k
·c
T
φ(xki )

]

=E

[
sup
f∈H′r

K∑
k=1

pk

(
C∑
c=1

Wk
·c
T 1

nk

nk∑
i=1

εkicφ(xki )

)]

=E

[
sup
f∈H′r

K∑
k=1

pk
〈
Wk,Xk

〉]
,

(13)

where Wk
·c is the c-th column of Wk, Wk,Xk ∈ RD×C , and

Xk is defined as Xk = [ 1
nk

nk∑
i=1

εkicφ(xki ), ..., 1
nk

nk∑
i=1

εkiCφ(xki )].

Based on the SVD decomposition, we have:

Wk =
∑
j

ukjv
k
j

T
λkj ,

where ukj and vkj are the column vectors of Uk and Vk.
Moreover, we have the following inequalities:

〈Wk,Xk〉

=

〈
ϑ∑
j=1

ukjv
k
j

T
(λkj )2,

ϑ∑
j=1

Xkukju
k
j

T
(λkj )−1

〉

+

〈
Wk,

∑
j>ϑ

Xkukju
k
j

T

〉

≤

∥∥∥∥∥∥
ϑ∑
j=1

ukjv
k
j

T
(λkj )2

∥∥∥∥∥∥
∥∥∥∥∥∥
ϑ∑
j=1

Xkukju
k
j

T
(λkj )−1

∥∥∥∥∥∥
+ ‖Wk‖

∥∥∥∥∥∥
∑
j>ϑ

Xkukju
k
j

T

∥∥∥∥∥∥ .
Note that E[φ(xk)Tφ(xk)] ≤ 1, let

P‖f‖22 = E
[∥∥∥WkTφ(xk)

∥∥∥2

2

]
= E

[
φ(xk)TWkWkTφ(xk)

]
≤ E

[
‖WkWkT ‖2

]
≤ r

4L2
.

Thus, we have E[‖WkWkT ‖] ≤
√
r

2L .
Note that ‖E[WkWkT ]‖ ≤ E[‖WkWkT ‖], according to

[37], it holds that:∥∥∥∥∥∥
ϑ∑
j=1

ukjv
k
j

T
(λkj )2

∥∥∥∥∥∥ ≤ ‖E[WkWkT ]‖ ≤
√
r

2L
. (14)

Combined with the properties of SVD decomposition, we get

E

∥∥∥∥∥∥
ϑ∑
j=1

Xkukju
k
j

T
(λkj )−1

∥∥∥∥∥∥
 = E

√√√√ ϑ∑
j=1

(λkj )−2
〈
Xk,ukj

〉2
≤

√√√√ ϑ∑
j=1

(λkj )−2E
[〈

Xk,ukj
〉2]

=

√
ϑ

nk
.

(15)

We also have

E

∥∥∥∥∥∥
∑
j>ϑ

Xkukju
k
j

T

∥∥∥∥∥∥
 ≤

√∑
j>ϑ(λkj )2

nk
≤
∑
j>ϑ λ

k
j√

nk
. (16)

Substituting (14), (15) and (16) into (13), we have

R(H′r, p) ≤ inf
ϑ≥0

K∑
k=1

pk

(
1

2L

√
ϑr

nk
+

∑
j>ϑ λ

k
j√

nk

)
.

Thus, the following bound holds:

R(L∗r , p) ≤ inf
ϑ≥0

K∑
k=1

pk

(√
2ϑr

nk
+ 2
√

2L

∑
j>ϑ λ

k
j√

nk

)
.

According to [34], local Rademacher complexity is a sub-
root function, so the same argument holds for R(L∗r , p).
Therefore, the fixed point r∗ of R(L∗r ,p) is unique. We set

A =
∑K
k=1 pk

√
2ϑ
nk

and D = 2
√

2L
∑K
k=1 pk

∑
j>ϑ λ

k
j√

nk
, r∗ is

upper bounded by the solution of A
√
r +D = r, so

r∗ ≤ inf
ϑ≥0

K∑
k=1

pk

(
2ϑ

nk
+

4
√

2L
∑
j>ϑ λ

k
j√

nk

)
, (17)

where the last inequality is derived by Jensen’s inequality.
Substituting (17) into (1) completes the proof.
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