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Abstract. In a typical few-shot action classification scenario, a learner needs
to recognize unseen video classes with only few labeled videos. It is critical to
learn effective representations of video samples and distinguish their difference
when they are sampled from different action classes. In this work, we propose a
novel supervised contrastive learning framework for few-shot video action clas-
sification based on spatial-temporal augmentations over video samples. Specif-
ically, for each meta-training episode, we first obtain multiple spatial-temporal
augmentations for each video sample, and then define the contrastive loss over
the augmented support samples by extracting positive and negative sample pairs
according to their class labels. This supervised contrastive loss is further com-
bined with the few-shot classification loss defined over a similarity score regres-
sion network for end-to-end episodic meta-training. Due to its high flexibility,
the proposed framework can deploy the latest contrastive learning approaches for
few-shot video action classification. The extensive experiments on several action
classification benchmarks show that the proposed supervised contrastive learning
framework achieves state-of-the-art performance.

Keywords: Few-shot learning · Contrastive learning · Action classification.

1 Introduction

Recently, the metric-based meta-learning paradigm has led to great advances in few-
shot learning (FSL) and become the mainstream [10, 36, 7]. Following such a paradigm,
FSL models are typically trained via two learning stages [21]: (1) They are first trained
on base classes to learn visual representations, acquiring transferable visual analysis
abilities. (2) During the second stage, the models learn to classify novel classes that
are unseen before by using only a few labelled samples per novel class. Similar to
FSL, contrastive learning (CL) [21] is also deployed to address the labelled data-hungry
problem. Specifically, CL is defined as unsupervised or self-supervised learning. The
target of CL is to obtain better visual representations to transfer the learned knowledge
to downstream tasks such as image classification [29, 8]. As illustrated in Figure 1, a
classic CL framework [25, 12, 14, 13] also follows the two learning stages (similar to
metric-based meta-learning): (1) An encoder named f and a predictor named g are
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Fig. 1: A typical contrastive learning framework for unsupervised image representation
learning. Specifically, two image views xi and xj are generated from the same family
of image augmentations (xi, xj ∼ Σ). A CNN-based encoder network f along with
the projection head g is applied to represent each sample effectively. After the network
parameters are trained based on a contrastive loss, the projection head g is put away, and
only the encoder network f and representations hi/hj are used for downstream tasks.

first trained with constructed positive and negative sample pairs; (2) The learned latent
embeddings hi/hj are further adapted to downstream tasks of interest. Therefore, it is
natural and indispensable to combine FSL and CL.

However, for few-shot action classification, the integration of CL and FSL is ex-
tremely challenging because of the complicated video encoding methods. Specifically,
two typical methods are widely used: (1) Extracting frame features and then aggregat-
ing them. For example, combined with long-short term memory (LSTM), 2D Convolu-
tional Neural Networks (CNNs) are often used for video encoding [32, 20, 40, 5]); (2)
Directly extracting spatial-temporal features using 3D CNNs [38, 30, 39, 9, 18] or their
variants. For both video encoding practices, the high-level semantic contexts among
video frames are difficult to be aligned either spatially or temporally [6, 4].

In this work, we thus propose a novel supervised contrastive learning framework to
make a closer integration of CL and FSL for few-shot action classification. Specifically,
we first obtain multiple spatial-temporal augmentations from each video sample for
each meta-training episode. Further, we define a supervised contrastive loss over the
augmented support samples by constructing positive and negative pairs based on their
class labels. Finally, the contrastive loss is combined with a few-shot classification loss
defined over a similarity score regression network for the end-to-end episodic meta-
training. In addition, the proposed framework can deploy the latest CL methods for
few-shot action classification with high flexibility.
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In summary, the major contributions of this paper are three-fold:

(1) We devise a spatial-temporal augmentation method to generate different augmen-
tations, facilitating CL to learn better video representations.

(2) We propose a novel supervised contrastive learning framework for few-shot action
classification. A similarity score network is shared by both CL and FSL, resulting
in a closer integration of the two paradigms.

(3) Extensive experiments on three benchmarks (i.e., HMDB51 [27], UCF101 [34],
and Something-Something-V2 [22]) show that the proposed supervised contrastive
learning framework achieves state-of-the-art performance.

2 Related Work

Few-shot learning for action classification. Few-shot learning (FSL) approaches are
often divided into two main categories: (1) The goal of gradient-based approaches [1,
19, 28, 31] is to achieve rapid learning on a new task with a limited number of gradient
update steps while simultaneously avoiding over-fitting (which can happen when few
labelled samples are used). (2) Metric-based approaches [6, 4, 2, 42, 21] first extract im-
age/video features and then measure the distances/similarities between an embedded
query sample and embedded support samples. It is essential to measure the distances
in the latent space to determine the class label of query samples. We examine the sim-
plicity and adaptability of the metric-based meta-learning framework in this paper. But
note that our proposed video augmentation methods and supervised contrastive learning
strategy are also compatible with other few-shot classification solutions.

Contrastive learning. Contrastive learning (CL) is now a relatively new paradigm for
unsupervised or self-supervised learning for visual representations, and it has shown
some promising results [25, 14, 12, 13, 23, 29, 26, 15, 8]. It is customary for CL methods
to learn representations by optimizing the degree to which multiple augmented views
of the same data sample agree with one another. This is accomplished by suffering a
contrastive loss in the latent embedding space. For example, SimCLR [12] achieves
the highest level of agreement possible between various augmented views of the same
data sample by obtaining representations and employing a contrastive loss while oper-
ating in the latent space. It comes with an improved version called SimCLR v2 [13]
that explores larger-sized ResNet models, boosts the performance of the non-linear net-
work (multiple-layer perception, MLP), and incorporates the memory mechanism. Mo-
mentum Contrast (MoCo) [25] approach creates a dynamic dictionary using a queue
structure and a moving-averaged encoder. It allows for the construction of an extensive
and consistent dictionary on-the-fly, which enables unsupervised contrastive learning
to take place more easily. In this second version [14], the authors apply an MLP-based
projection head and more kinds of data augmentation methods to establish strong repre-
sentations. By performing a stop-gradient operation on one of the two encoder branches,
SimSiam [15] is able to optimize the degree to which two augmentations of the same
image are similar to one another, which allows it to obtain more meaningful repre-
sentations even when none of the relevant factors (negative sample pairs, larger batch
sizes, or momentum encoders) are present. In this paper, we also evaluate our proposed
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Fig. 2: Architecture of our proposed few-shot action classification framework boosted
by supervised contrastive learning. A set of effective spatial-temporal augmentation
methods are utilized to generate various video clips (views), which are subsequently fed
into the feature extractor (3D CNN) to obtain semantic representation vectors. All these
sampled video semantic vectors fr

i,j (i ∈ {0, 1, · · · , N−1}, j ∈ {0, 1, · · · ,K−1}, r ∈
{0, 1, · · · , U − 1}) from the support set are exploited to train a similarity measurement
network M in a supervised way with the contrastive learning loss Lcl. Furthermore, fr

i,j

together with the representation vectors fr
Q, (r ∈ {0, 1, · · · , U − 1}) of the augmented

views of query samples are used to train downstream few-shot classification tasks with
softmax loss Lcls.

few-shot video action classification framework with the latest/mainstream CL methods,
verifying the flexibility and the independence of our method.

3 Methodology

3.1 Framework Overview

To increase the effectiveness of representation ability of the video encoder and mea-
sure the similarity score more effectively via contrastive learning, we propose a unified
framework that integrates contrastive learning and few-shot learning together in Fig. 2.
For an N -way K-shot few-shot episode, video augmentations considering both spatial
and temporal dimensions are performed for each video. Concretely, for the j-th input
video (j ∈ {0, 1, · · · ,K − 1}) in the i-th class (i ∈ {0, 1, · · · , N − 1}) in the support
set (i.e., Si,j), we obtain U augmented views/video clips Cr

i,j (r ∈ {0, 1, · · · , U − 1}).
Subsequently, these views with diversity are then followed by a CNN-based feature ex-
tractor so that the latent representations can be learned, and outputting the embedded
vectors fr

i,j . Similarly, for each query sample, we can also obtain the representations of
its different augmented views, denoted as fr

Q (r ∈ {0, 1, · · · , U − 1}). Since we have
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Fig. 3: Demonstration of temporal-spatial view augmentations for an input original
video with D = 117 frames and sampling T = 32 frames: (a-e) temporal sampling
using uniform, random, speed-up, slow-down, and Gaussian methods, respectively; (f)
random spatial crop for each selected frame.

label information for the support set, on the basis of the class labels, we are able to
generate positive and negative sample pairs for the purpose of engaging in contrastive
learning. That is, two latent vectors belonging to the same class are considered as a pos-
itive pair, while they are negative to each other if they come from different classes. In
the N -way K-shot scenario with U augmentations, we can generate N ×U × (U − 1)
positive pairs and U2 × N(N − 1)/2 negative ones in total (as is illustrated in the
dash-lined frame in Fig. 2). Then two branches are extended with the latent vectors:
the contrastive learning branch and the few-shot classification branch. The positive and
negative pairs are used to train the feature extractor with supervised learning as the
input for the contrastive learning branch.

With the loss function defined as Lcl, contrastive learning aims to facilitate the
feature extractor to generate more discriminative representations, which make positive
samples close and negative ones far away in the high-dimensional latent space. As for
a few-shot classification scenario, we make use of the mean representation of the K
shots for each class (denoted as a prototype) as the class center for the nearest-neighbor
search. And a similarity measurement neural network M is intended to regress the
distances between both query samples and prototypes, with the classification softmax
loss defined as Lcls.

3.2 Supervised Contrastive Learning

For each of the U data augmentation methods, we adopt a combination of temporal and
spatial augmentations. The spatial one is the same across all U augmentations, i.e., we
perform a random crop in each selected frame (as is shown in Fig. 3(f)). As for the
temporal augmentations, we use U = 5 methods to provide a diversity of visual rep-
resentations: uniform sampling, random sampling, speedup sampling, slow-down sam-



6 Hongfeng Han, Nanyi Fei, Zhiwu Lu, and Ji-Rong Wen

Algorithm 1 Supervised Contrastive Learning (SCL)
Require: N,K, video feature extractor g, a set of view augmentations T , batch size B, sampled

pair amount M in each batch, similarity measurement network M
Ensure: contrastive learning loss Lcl

for b ∈ {0, 1, · · · , B − 1} do
for sampled video pairs {(xb,l,x

′
b,l)}M−1

l=0 do
Draw two augmentation functions t ∼ T , t′ ∼ T ;
Cb,l, C

′
b,l = t(xb,l), t

′(x′
b,l); # clip generation

fb,l, f
′
b,l = g(Cb,l), g(C

′
b,l); # representation

if (xb,l,x
′
b,l) are sampled from the same class then

yb,l = 1.0;
else

yb,l = 0.0;
end if

end for
end for
for b ∈ {0, 1, · · · , B − 1}, l ∈ {0, 1, · · · ,M − 1} do

db,l = 1.0−M(fb,l, f
′
b,l); # pairwise distance

end for
Update video clip representation network g and similarity measurement network M by mini-
mizing Lcl.

pling, and Gaussian sampling. The augmented video clips (views) are further exploited
to generate positive and negative sample pairs related to contrastive learning.

(1) For uniform sampling, let I(σ) denote the frame index of the selected σ-th
frame (σ ∈ {0, 1, · · · , T−1}, and T is the quantity of selected frames) from the original
input video, which follows the distribution defined as:

I(σ) ∼ U(0, D), (1)

where D represents the total number of the original input video sample, and U is the
uniform distribution.

(2) For random sampling, we directly obtain T frames by independently sampling
T times from the original video without any replacement or sorting.

(3) As for speed-up or slow-down sampling, we are motivated by the observation
that sometimes meaningful behaviors happen at the front/end along the time dimen-
sion in the original video, but which may be ignored by the uniform/random sampling
method. The sampled frame I(σ) in both speedup and slow-down cases are defined as:

dI(σ)
dσ

= v, I(0) = 0, I(T ) = D, (2)

where v is the sampling velocity which is positive for speedup sampling while negative
for the slow-down case. Note that the initial state I(0) = 0 and I(T ) = D limits the
range of the sampled index. Speedup sampling samples more frames at the beginning
of the input video, and slow-down sampling focus more on frames at the tail.

(4) Gaussian sampling, with slow-down as its first half part and speedup as second
half, i.e., it samples most intensively at the middle of a given video sample. Its sampling
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formulation is the same with Equation (2) but the border state should be initialized as
I(0) = 0, I(T/2) = D/2 for the first half and I(T/2) = D/2, I(T ) = D for
the second half. Fig. 3(a-e) illustrate five examples with the same input video sample
(D = 117) for the five augmentations, respectively (T = 32, v = 4).

The supervised contrastive learning (SCL) algorithm is summarized in Algorithm 1,
where the similarity measurement network M is also shared in the few-shot classifica-
tion branch, which is used to reflect the distance within each positive/negative pair (the
details of M are described in Section 3.3). We follow the contrastive loss function Lcl

used in [11, 24, 35, 44, 16], which is defined as:

Lcl = − 1

BM

B−1∑
b=0

M−1∑
l=0

yb,ld
2
b,l + (1− yb,l)max(m− db,l, 0)

2, (3)

where M is the total constructed positive and negative pairs with a single mini-batch,
and db,l is the distance between two samples of the l-th pair in the b-th input episode,
and yb,l is the corresponding ground truth label (yb,l = 1 if the pair consists of two
views generated from the same class and yb,l = 1 otherwise). Note that m is a margin
that defines a radius, and the negative pairs affect the loss only when the distance is
within this radius.

3.3 Few-Shot Classification

The integration process related to contrastive learning and few-shot learning is re-
flected in two aspects: (1) The supervised contrastive learning loss is combined with
the few-shot classification loss during training. (2) There exists a similarity measure-
ment network M that is shared across the few-shot classification and the contrastive
learning branch to measure the latent distance/similarity between two given augmented
views. To exploit the few shots in the support set, we follow Prototypical Network [33]
and summarize all shots’ latent representations fr

i,j (i ∈ {0, 1, · · · , N − 1}, j ∈
{0, 1, · · · ,K − 1}, r ∈ {0, 1, · · · , U − 1}) by computing their average response:

fr
i =

1

K

K−1∑
j=0

fr
i,j . (4)

Fig. 4 illustrates the few-shot action classification network. For all the augmented
views for a specific class in the support set, the class prototypes fr

i (i ∈ {0, 1, · · · , N −
1}, r ∈ {0, 1, · · · , U − 1}) are only concerned with the query sample fr

Q coming
from the same augmentation. The similarity measurement network M is then utilized
to predict the similarity score sri,Q between two input views:

sri,Q = M(fr
i , f

r
Q). (5)

It is worth mentioning that the similarity score vector si,Q of all views is further weighted
by a linear layer w ∈ R1×U , to obtain the final predicted similarity score si,Q between
the i-th class prototype and the query sample:

si,Q = w · si,Q, (6)
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Fig. 4: The schematic illustration of the few-shot action classification process. For the
r-th augmented view in the i-th class, the class prototype fr

i is obtained by averaging
the latent representations fr

i,j along the shot dimension j. Together with each query
sample’s augmented view fr

Q, the prototype-query pairs are fed into the same similarity
measurement network M which is also used in supervised contrastive learning (see
Figure 2) to obtain the final similarity score vector si,Q.

where si,Q = [s0i,Q, s
1
i,Q, · · · , s

U−1
i,Q ]T .

Finally, a softmax layer maps N similarity scores to a classification distribution
vector for each query sample. And the few-shot classification loss Lcls is defined as:

Lcls = − 1

BQ

B−1∑
b=0

Q−1∑
q=0

N−1∑
i=0

yb,q,i log(ŷb,q,i), (7)

where B is the batch size, yb,q,i is the label of the q-th query from the b-th input episode,
and ŷb,q,i is the corresponding predicted classification probability.

3.4 Total Learning Objective

We incorporate supervised contrastive learning to the few-shot classification task by
adding an auxiliary loss Lcl, i.e., the final weighted loss L is constructed as:

L = Lcls + αLcl, (8)

where α is the balance hyper-parameter.

4 Experiments

4.1 Datasets and Settings

Datasets. In this paper, the proposed supervised contrastive learning framework is eval-
uated the performance on three different action recognition datasets: HMDB51 [27],
UCF101 [34] and Sth-Sth-V2 [22]. HMDB51 totally contains 6,766 videos distributed
in 51 action categories. UCF101 has included 13,320 videos covering 101 different
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Table 1: Comparison to state-of-the-art video action classification approaches on
the HMDB51, UCF101, and Sth-Sth-V2 datasets. All backbones are trained from
scratch. Accuracy (%) are reported on average over 1, 000 episodes. Note that Neg./Pos.
pairs ratio is configured as 2.5.

Methods Backbone
HMDB51 [27] UCF101 [34] Sth-Sth-V2 [22]

1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot
ARN [43] C3D 45.53 53.60 59.82 66.60 78.40 84.48 33.44 38.80 45.74
TARN [3] C3D 66.52 73.30 75.50 85.40 86.72 93.40 38.43 44.54 48.63
ProtoGAN [17] C3D 35.41 49.89 52.90 61.73 75.89 79.70 33.90 40.72 44.68
FAN [37] C3D 69.90 71.48 78.20 77.56 87.62 90.80 37.20 43.32 45.82
OTAM [6] C3D 64.63 79.80 81.90 88.12 91.07 92.10 39.60 47.10 52.30
TAV [4] C3D 71.30 78.42 83.80 87.90 92.30 92.26 39.40 46.60 49.92
Ours (w/o SCL) C3D 70.04 77.62 80.51 86.00 90.60 91.20 34.75 41.75 46.28
Ours (full) C3D 75.78 86.89 89.84 92.19 94.96 95.31 41.42 49.22 53.12

action-based categories. Sth-Sth-V2 includes 220,847 videos with 174 different classes.
For UCF101 and Sth-Sth-V2, we follow the same splits as in OTAM [6], and they are
randomly sampling 64 classes for meta training, 12 classes for meta validation, and 24
classes for meta testing, respectively. For HMDB51, we randomly select 32/6/13 classes
for meta training, validation, and testing.

Configuration. It is considered the few-shot scenarios with N = 5 and K = 1, 3, 5.
In each episode, we randomly select N categories, each consisting of K samples as the
support set and select another video for each class as the query sample. We train our
model over 2,000 episodes and check that the validation set matches an early stopping
criterion for every 128 episodes. We use Adam optimizer, and the learning rate is set
to 0.001. Furthermore, the average classification accuracies are reported by evaluating
500 and 1000 episodes in the meta-validation and meta-test split, respectively.

3D Backbones. To better demonstrate the generalizability of the proposed framework,
we perform extensive experiments with 5 different video feature extraction backbones:
C3D [38], R(2+1)D [39], P3D [30], I3D [41] and SlowFast [18]. All backbones are
trained with the input size of 224 × 224. The input clip length for C3D, R(2+1)D,
P3D, I3D, and SlowFast are 16, 16, 16, 32, and 40 frames, respectively. The global
average pooling layer in 3D backbones are remained, and the dimensions of the final
clip representation vectors are 4096, 2048, 2048, 2048, and 2304, respectively. All the
backbones are trained from scratch. As for the similarity measurement network M, it
consists of 5 fully connected layers with 1024, 1024, 512, 512, and 1 neuron.

Contrastive Learning Loss. With contrastive learning enabled, its loss Lcl contributes
to the final loss with α = 1.0. For the 5-way few-shot action classification scenario, the
maximum numbers of generated positive and negative pairs are 100 and 250, respec-
tively. Different positive and negative ratios can be achieved via masking the selected
pairs. The margin parameter m in Equation (3) is configured to 0.75 in our work. That
is, the distance between two clips of a negative pair is expected to be larger than it.
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4.2 Main Results

Comparison to State-of-the-Art. In this paper, we evaluate our proposed architec-
ture with supervised contrastive learning against the action classification methods on
HMDB51 [27], UCF101 [34] and Sth-Sth-V2 [22] datasets. Frame-level feature extrac-
tion based on 2D CNN and then aggregating them together as the video descriptor is
used in original OTAM [6]. For a fair comparison, we change its backbone to C3D to ex-
tract feature vectors (each video is split into 16 segments, and each contains 16 frames
(clip length)). As for TAV [4], we also re-implement it and replace its 2D backbone
with the C3D model, which is then combined with the original temporal structure filter
(TSF). For ARN [43], TARN [3], ProtoGAN [17] and FAN [37], we follow the original
configurations. The only difference between them and our re-implementation versions
is that we train all 3D backbones from scratch rather than use pre-trained weights (such
as Kinetics-400) since there inevitably exists a category overlap between mainstream
pre-trained models and our evaluation datasets. In Table 1, we summarizes the classifi-
cation accuracy over 1/3/5 shot(s):

(1) With supervised contrastive learning disabled, our proposed few-shot classifi-
cation architecture achieves better performance than ARN [43], ProtoGAN [17] on all
three datasets and achieves competitive performance w.r.t. TARN [3] and FAN [37].
However, it performs weaker than OTAM [6] and TAV [4] because both OTAM and
TAV mine the temporal alignment information between query and support samples in
the latent space, which benefits the subsequent distance measurement and classification.

(2) With supervised contrastive learning enabled, we achieve better classification
accuracy in all cases, surpassing prior methods with a significant margin. It illustrates
that the auxiliary SCL loss can boost the representation ability and similarity score
measurement capacity, resulting in improved final classification accuracy.

(3) Sth-Sth-V2 is much more difficult than HMDB51 and UCF101, as we can
observe that the classification results on Sth-Sth-V2 are much lower than those on
HMDB51/UCF101 with supervised contrastive learning enabled. Improving classifi-
cation results on a complex dataset is much more difficult than on simple ones. The
difficulty of Sth-Sth-V2 can be further explained by the diversity of samples in each
category. For example, the category “putting something onto something” on Sth-Sth-
V2 contains many different types of video clips. Almost all labels are general descrip-
tions rather than actions with concrete object names (e.g., not like “putting a cup onto a
table”). The general descriptions increase the classification difficulty significantly.
Contrastive Learning Framework Evaluation. The proposed few-shot action classi-
fication architecture with supervised contrastive learning is designed not only for high
efficient video representations, but also for pairwise similarity score regression. There-
fore, it can adopt other mainstream contrastive learning methods. To demonstrate its
generalization ability, MoCo [4], MoCov2 [14], SimCLR [12], SimCLRv2 [13] and
SimSiam [15] are compared with our supervised contrastive learning algorithm. The
batch size B is 128, and all these models are trained up to 400 epochs. Table 2 shows
the few-shot action classification results. As shown in Fig. 5, we show the model con-
vergence curves and training time cost using our SCL algorithm. Experimental results
demonstrate that adding the supervised contrastive learning branch indeed improves
the few-shot action classification performance. Furthermore, since our proposed SCL
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Table 2: Comparison with different contrastive learning approaches on the
HMDB51, UCF101, and Sth-Sth-V2 datasets. All contrastive learning methods adopt
the C3D model (trained from scratch) as their backbones (clip length is 16) to extract
video feature vectors. Mean accuracies (%) are reported over 1, 000 episodes. Note that
Neg./Pos. pair ratio is configured as 2.5.

Methods
HMDB51 [27] UCF101 [34] Sth-Sth-V2 [22]

1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot
FSL 70.04 77.62 80.51 86.00 90.60 91.20 34.75 41.75 46.28
FSL+SCL (MoCo [4]) 74.26 78.12 83.22 88.74 91.20 92.51 37.54 44.85 48.96
FSL+SCL (MoCov2 [14] ) 74.88 85.90 88.60 91.19 93.86 94.30 39.40 48.60 52.04
FSL+SCL (SimCLR [12] ) 72.32 81.60 84.10 88.90 91.08 92.48 36.90 45.72 49.28
FSL+SCL (SimCLRv2 [13]) 74.92 85.20 89.28 91.16 93.66 94.37 40.06 48.90 53.00
FSL+SCL (SimSiam [15] ) 74.90 85.41 89.17 91.12 93.73 94.70 41.29 48.34 52.92
FSL+SCL (ours) 75.78 86.89 89.84 92.19 94.96 95.31 41.42 49.22 53.12

Fig. 5: Model convergence analysis of our proposed supervised contrastive learning al-
gorithm for a few-shot action classification task. Experiments are performed in AWS
ml.g4dn.16xlarge EC2 instance (64 vCPU and 256G RAM).

algorithm considers an additional similarity network M, it achieves competitive per-
formance boosting.

4.3 Further Evaluations

Different Pos./Neg. Pair Ratios. In the experiment, we evaluate the influence of neg-
ative/positive pair ratio in contrastive learning. We configure the ratio to 0.2, 0.25, 0.4,
0.5, 1.0, 2.0, 2.5, 4.0, 6.0 and Fig. 6 plots the average accuracy on 1,000 meta-test
episodes using the SlowFast backbone as the video feature extractor. For more details,
the speed ratio α is set to 8, and the channel ratio β is 1/8. It is a poor performance of
the few-shot action classification when negative/positive pair ratio is smaller than 0.5
on both HMDB51 and UCF101 datasets. On the Sth-Sth-V2 dataset, our model achieves
the best results when the ratio is configured to 2.5. From Fig. 6, we can also conclude
that unlike SimSiam, our proposed SCL indeed depends on negative samples. One rea-
son is that: not only the video representations are improved (i.e., more discriminative)
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Fig. 6: Comparison of different negative/positive pair ratios for contrastive learning on
HMDB51, UCF101, and Sth-Sth-V2 datasets with few-shot action classification. Slow-
Fast is adopted (the speed ratio α = 8, and the channel ratio β = 1/8) as the backbone
(clip length is 40).

Table 3: Comparison of different video representation backbones. The average
classification accuracy (%) with supervised contrastive learning enabled over 1, 000
episodes are reported. The values in parentheses represent the percentage improvements
over a baseline model with contrastive learning disabled. Note that Neg./Pos. pair ratio
is configured to 2.5.

Dataset K C3D ([38]) R(2+1)D ([39]) P3D ([30]) I3D ([41]) SlowFast ([18])

HMDB51
1-shot 75.78 (+5.74) 76.22 (+4.78) 76.84 (+5.40) 78.80 (+3.80) 78.91 (+2.10)
3-shot 86.89 (+9.27) 85.82 (+6.09) 86.30 (+7.60) 87.52 (+4.40) 87.50 (+3.26)
5-shot 89.84 (+9.33) 90.02 (+8.24) 90.40 (+6.29) 91.38 (+6.10) 91.41 (+5.32)

UCF101
1-shot 92.19 (+6.19) 92.60 (+5.80) 93.90 (+6.70) 94.60 (+4.65) 94.53 (+3.74)
3-shot 94.96 (+4.36) 95.00 (+5.96) 96.38 (+5.92) 96.88 (+5.46) 96.88 (+5.28)
5-shot 95.31 (+4.11) 96.48 (+3.70) 97.96 (+4.26) 98.50 (+4.80) 98.44 (+3.90)

Sth-Sth-V2
1-shot 41.42 (+6.67) 42.69 (+6.10) 43.50 (+3.29) 43.74 (+2.10) 43.75 (+2.80)
3-shot 49.22 (+7.47) 51.00 (+7.32) 52.28 (+3.50) 52.40 (+2.46) 52.34 (+2.45)
5-shot 53.12 (+6.84) 53.18 (+5.43) 53.93 (+3.00) 54.60 (+2.65) 54.78 (+1.58)

by contrastive learning, but also the distances between video clips that are essential for
few-shot classification are explicitly learned by the contrastive learning loss.
Influence of Different Backbones. To evaluate the generalisability of our proposed
framework, we further integrate different video feature extraction backbones. In Ta-
ble 3, we summarize the few-shot action classification accuracies respectively based on
C3D [38], R(2+1)D [39], P3D [30], I3D [41] and SlowFast [18] (the speed ratio α = 8,
and the channel ratio β = 1/8) with supervised contrastive learning enabled. The per-
formance improvements are also given in parentheses compared to a simple model with
a single few-shot classification branch without contrastive learning. It is clear to see
that: (1) For all cases on three different datasets, the proposed framework achieves bet-
ter results with the supervised contrastive learning branch enabled, which demonstrates
the effectiveness as well as the potential for generalization of the methodology that we
have developed, i.e., contrastive learning indeed improves the video representation ca-
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Table 4: Comparison of different combinations of spatial-temporal augmentations
on HMDB51 with C3D as the backbone. Few-shot classification accuracies (%) are
reported over 1, 000 episodes. Note that Neg./Pos. pair ratio is configured to 2.5.

Augmentation Method 1-shot 3-shot 5-shot
Uniform Samp. (US) 75.00 84.28 87.40
Random Samp. (RS) 74.84 84.10 87.26
Speedup Samp. (SS) 70.42 81.28 83.40
Slow-Down Samp. (SDS) 71.30 82.00 83.36
Gaussian Samp. (GS) 72.60 83.90 86.45
US+RS 74.89 85.27 88.31
US+RS+SS 75.18 85.63 88.99
US+RS+SS+SDS 75.34 86.74 89.70
US+RS+SS+SDS+GS 75.78 86.89 89.84

pacity and benefits the distance measurement for classification. (2) The performance
improvements are less significant for high-capacity video extraction backbones such as
I3D and SlowFast.
Effect of Spatial-Temporal Augmentations. To evaluate the effect of spatial-temporal
augmentation methods, we combine different temporal sampling methods with the spa-
tial random crop. In Table 4, we report the performance on HMDB51 with the C3D
backbone. We can observe from Table 4 that uniform sampling and random sampling
can achieve better performance than speedup, slow-down, or gaussian sampling, which
because uniform and random sampling usually obtain the temporal information across
the whole time dimension, while for speedup, slow-down, and gaussian sampling, they
pay more attention to the beginning, the end and the middle of the video along the time
dimension, respectively. Furthermore, combining all these sampling methods together
and using learnable weights (attentive) to get the final similarity score (see Fig. 3) will
help us mine the video features better.

5 Conclusions

This paper proposes a general few-shot action classification framework powered by su-
pervised contrastive learning, where contrastive learning is deployed to improve the rep-
resentation quality of videos and a similarity score network is shared by both contrastive
learning and few-shot learning to make a closer integration of the two paradigms. Be-
sides, five spatial-temporal video augmentation methods are designed for generating
various video sample views in the N -way K-shot few-shot classification scenarios.
The significantly improvements achieved by our proposed framework in few-shot ac-
tion classification is mainly due to: (1) The auxiliary supervised contrastive learning
loss makes the video representations more discriminative. (2) The distance measure-
ment between clips is reflected by the similarity score more precisely thanks to a shared
similarity score measurement network in both few-shot classification and contrastive
learning branches. Importantly, our proposed framework shows strong generalization
abilities when different video representation backbones are used. Our proposed frame-
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work also has highly flexibility as it can achieve competitive performance when other
mainstream contrastive learning approaches are integrated.
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