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Abstract

Deploying large-scale pre-trained models in
the prompt-tuning paradigm has demonstrated
promising performance in few-shot learn-
ing. Particularly, vision-language pre-training
models (VL-PTMs) have been intensively ex-
plored in various few-shot downstream tasks.
However, most existing works only apply VL-
PTMs to visual tasks like image classifica-
tion, with few attempts being made on lan-
guage tasks like text classification. In few-
shot text classification, a feasible paradigm
for deploying VL-PTMs is to align the input
samples and their category names via the text
encoders. However, it leads to the waste of
visual information learned by the image en-
coders of VL-PTMs. To overcome this draw-
back, we propose a novel method named Vi-
sual Prompt Tuning (VPT). To our best knowl-
edge, this method is the first attempt to de-
ploy VL-PTM in few-shot text classification
task. The main idea is to generate the im-
age embeddings w.r.t. category names as vi-
sual prompt and then add them to the aligning
process. Extensive experiments show that our
VPT can achieve significant improvements un-
der both zero-shot and few-shot settings. Im-
portantly, our VPT even outperforms the most
recent prompt-tuning methods on five public
text classification datasets.

1 Introduction

Pre-training models have achieved great success
across a variety of tasks in recent years. Pre-
training language models (PLMs) like BERT (De-
vlin et al., 2019), GPT (Radford et al., 2018) and
their variants (Liu et al., 2019; Raffel et al., 2020;
Yang et al., 2019; Lewis et al., 2020) firstly ap-
peared as the milestones in the AI field. They
brought huge boost to natural language process-
ing (NLP) tasks, such as text classification (Devlin
et al., 2019), named entity recognition (NER) (Jia
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et al., 2020), and text generation (Chan and Fan,
2019). In computer vision, large-scale pre-training
models (e.g., BiT (Kolesnikov et al., 2020) and
ViT (Dosovitskiy et al., 2021)) became popular
as in NLP. With convolutional neural networks
or Transformers (Vaswani et al., 2017) as the
backbones, they were shown to be effective on a
wide range of visual downstream tasks (e.g., im-
age classification, object detection, and semantic
segmentation). More recently, inspired by these
pre-training models in NLP and computer vision,
vision-language pre-training models (VL-PTMs)
have been intensively explored (Su et al., 2020; Li
et al., 2020; Huo et al., 2021; Lu et al., 2022; Fei
et al., 2022). They achieve excellent performance
in cross-modal tasks like image-text retrieval, vi-
sual question answering (VQA), and image cap-
tion. Besides, they also show great potential in
single-modal tasks (Lin et al., 2021; Yuan et al.,
2021). These achievements clearly declare the
power of large-scale pre-training models.

With GPT-3 (Brown et al., 2020) demonstrat-
ing astonishing zero-shot and few-shot ability, re-
searchers are encouraged to explore the poten-
tial of large-scale pre-training models in few-
shot learning. Recently, prompt-tuning has been
widely used in few-shot tasks as a paradigm
for deploying pre-training models. Compared
with prompt-tuning, the performance of the tra-
ditional fine-tuning paradigm has apparent draw-
backs when only few training samples are avail-
able (Schick and Schütze, 2021). PLM based
prompt-tuning methods (e.g. Prefix-tuning (Li
and Liang, 2021), P-tuning (Liu et al., 2021b),
ADAPET (Tam et al., 2021)) have shown their ef-
fectiveness and robustness on NLP tasks. Mean-
while, VL-PTM based prompt-tuning methods
like CoOp (Zhou et al., 2021), Clip-Adapter (Gao
et al., 2021a) and CPT (Yao et al., 2021) ap-
ply VL-PTMs to few-shot visual tasks including
few-shot image classification and visual ground-



Figure 1: Zero-shot results on five public text datasets.
The cross-modal model BriVL (Fei et al., 2022) is
shown to outperform the comparably-sized single-
modal model RoBERTa-large, indicating that the visual
information may bring benefits to textual tasks.

ing. These successes reveal that textual informa-
tion is beneficial for visual tasks. However, there
still lacks a method to utilize VL-PTMs in few-
shot NLP tasks like few-shot text classification.
Importantly, we notice that the cross-modal model
BriVL (Fei et al., 2022) achieves better zero-shot
results than the comparably-sized single-modal
model RoBERTa-large on five public text classifi-
cation datasets (see Figure 1), indicating that the
visual information may bring benefits to textual
tasks. This thus motivates us to introduce VL-
PTM into few-shot text classification.

In this work, we propose a novel method named
Visual Prompt Tuning (VPT) for few-shot text
classification. It is a prompt-tuning method de-
signed to apply VL-PTM in few-shot text classi-
fication. To make use of the visual understand-
ing ability of VL-PTM, we design a visual prompt
generation module based on model inversion (see
Figure 2), which can obtain sound visual represen-
tations of the categories offline as visual prompts.
In the classification process, we still adopt the
standard prompt-tuning pipeline, using the text en-
coder of VL-PTM as backbone. Specifically, we
append learnable soft prompt to the front of cate-
gory names’ text embeddings. We then add visual
prompts to the obtained embeddings of the corre-
sponding categories and conduct the text classifi-
cation by computing the cosine similarity scores
between the input embeddings and the summed
(both visual and textual) category embeddings. In
addition, to make extensive evaluation, we collect
five public available datasets for Chinese text clas-
sification, which cover a diverse set of data do-
mains including news, emotions, types of app, and
specialized subjects.

Our main contributions are three-fold: (1) To
the best of our knowledge, this is the first work
on introducing VL-PTM into few-shot NLP tasks.

Particularly, the importance of VL-PTM has been
successfully shown in few-shot text classification.
(2) We devise a novel VPT method for VL-PTM,
which can utilize the visual information to boost
the text classification performance. (3) Exten-
sive experiments are conducted on five benchmark
datasets to show that our proposed VPT outper-
forms the state-of-the-art approaches.

2 Related Work

2.1 Vision-Language Pre-Training Models

We first deliver an overview of Vision-Language
Pre-Training Models (VL-PTMs). Note that ex-
isting VL-PTMs can be broadly divided into two
groups according to their network architectures:
single-tower models (Su et al., 2020; Li et al.,
2020) and two-tower ones (Radford et al., 2021;
Jia et al., 2021; Yuan et al., 2021).

Single-tower models appear as the pioneers of
VL-PTMs, using a joint network (mostly multi-
layer Transformers) to encode the image and text
pair. (Su et al., 2020) employs BERT-like objec-
tives to learn cross-modal representations from a
concatenated sequence of visual region features
and language token embeddings. (Li et al., 2020)
makes use of object tags as anchor points for align-
ing elements in two modalities. This method is
motivated by the observation that the salient ob-
jects in an image can be accurately detected, and
are often mentioned in the paired text. Single-
tower models have strong ability to fuse visual and
linguistic information. However, they still have a
lot of limitations due to the model structure, such
as limited understanding ability of high-level se-
mantics, long inference time, etc.

As the successors of VL-PTMs, two-tower
models demonstrate greater potential in cross-
modal pre-training. They adopt separate image
and text encoders, typically taking image-text re-
trieval as the pre-training task. (Radford et al.,
2021; Jia et al., 2021) introduces contrastive learn-
ing with SimCLR-based loss for visual-language
pre-training. The training goal is to learn power-
ful encoders that can embed image and paired text
samples into the same latent space for effective
image-text retrieval. With acceptable inference
time and ideal comprehension skill in both cross-
modal and single-modal tasks, two-tower models
are deployed in various of application scenarios.
To expand the learned representations to more vi-
sual tasks, (Yuan et al., 2021) concurrently uses



self-attention and cross-attention in their network,
enhancing the understanding ability in both single-
modal and cross-modal tasks.

In this work, we devise our VPT based on the
latest BriVL (Fei et al., 2022), which is a two-
tower large-scale Chinese VL-PTM (see Sec. 3.1
for more details). Theoretically, our VPT can be
extended to other VL-PTMs in the same way.

2.2 Prompt-Tuning of VL-PTMs

With the recent rapid development of VL-PTMs,
there is a growing interest in prompt-tuning with
VL-PTMs for various downstream tasks. As a
representative model of VL-PTMs, CLIP (Rad-
ford et al., 2021) employs prompt template like “A
photo of a {label}.” in image classification task
without further training, which shows the competi-
tive performance against linear probe on ResNet50
(He et al., 2019) (a fully supervised baseline).
This success declares the potential of the combi-
nation of prompt-tuning and VL-PTM. To allevi-
ate the instability and manpower cost of manual
hard prompt, (Zhou et al., 2021) introduces learn-
able prompt for few-shot image classification. In
addition to automated prompt engineering, (Gao
et al., 2021a) proposes to insert lightweight learn-
able module named adapter into VL-PTM, which
is a simpler alternative than soft prompt.

Beside image classification, recent works have
applied visual-language pre-training to more
downstream tasks with prompt-tuning. For ex-
ample, (Yao et al., 2021) reformulates the visual
grounding task into a fill-in-the-blank problem.
This recent work creatively uses the RGB value
of different colors to build the CLIP-like image
sub-prompt. (Tsimpoukelli et al., 2021) designs
a unified framework for multi-modal conditional
text generation. The proposed pipeline is compat-
ible with seven cross-modal tasks including Refer-
ring Expression Comprehension (REC) and Visual
Commonsense Reasoning (VCR).

Note that VL-PTMs are generally deployed for
visual or cross-modal tasks in the previous works
mentioned above. Differently, our proposed VPT
extends the application scenarios of VL-PTMs,
and forms the first prompt-tuning method that in-
duces VL-PTM into few-shot text classification.

2.3 Prompt-Tuning Methods in NLP Tasks

“Pre-train, prompt, and predict” paradigm is a sea
change in NLP (Liu et al., 2021a). Instead of

adapting PLMs to downstream tasks through ob-
jective engineering, the downstream problems are
reformed with the use of a textual prompt to seem
more like those solved during the original PLM
training. For instance, (Schick and Schütze, 2021)
maps each class into a masked token and inserts
it into cloze-style phrases, then predicting it us-
ing the pre-trained masked language model. This
method ensembles multiple models trained with
several manual prompts. To get better prompt
templates, (Gao et al., 2021b) adopts a T5 model
to automatically generate prompts in cloze-style.
Then another PLM like RoBERTA is deployed
to conduct the label name generation process.
(Liu et al., 2021b) introduces trainable continuous
prompt embeddings as a better choice than manual
prompts, which significantly improves the under-
standing ability of generative PLMs like GPT. Un-
like cloze question-based methods, (Devlin et al.,
2019) reformulates the classification task into tex-
tual entailment task. This setting can be used as
a unified approach to modelling different kinds
of classification tasks. Different from the above-
mentioned PLM based methods, we introduce VL-
PTM to few-shot text classification and propose a
novel Visual Prompt Tuning (VPT) method, which
blazes a new trail for few-shot NLP tasks.

3 Methodology

In this section, we give the details of the proposed
VPT. The overall architecture is shown in Figure
2. Our main idea is to improve the performance
of text classification by utilizing visual informa-
tion in help of VL-PTM. Specifically, VPT de-
ploys model inversion of VL-PTM to generate vi-
sual representations of category names and then
add them to the text embeddings of the corre-
sponding category names. We first describe the
overall framework of VPT in Sec. 3.1, followed
by a detailed description of visual prompt genera-
tion in Sec. 3.2. Finally, the training objective is
presented in Sec. 3.3.

3.1 Overall Framework

We employ BriVL as the backbone of VPT. To
learn better cross-modal representations, the rep-
resentative contrastive learning algorithm MoCo
(He et al., 2020) is adopted in the pre-training
stage of BriVL. The text encoder of BriVL con-
sists of RoBERTa-large (Cui et al., 2020) and a
successive self-attention block. The self-attention



Figure 2: A schematic illustration of the proposed VPT
model for few-shot text classification. The bottom
panel presents the visual prompt generation module,
and the top panel presents the prompt-tuning module
for few-shot text classification.

block with four layers of Transformers is de-
signed for keep RoBERTa from catastrophic for-
getting. To perform few-shot text classification
with BriVL, we adopt similar paradigm used in
few-shot image classification. In particular, given
a text classification dataset with M categories, we
have natural language expressions {C1, · · · , CM}
for all categories. For the m-th class Cm, we ap-
pend learnable soft prompts to the front of its word
embedding. That is, the total input embedding se-
quence tm for Cm is designed as:

tm = [CLS][V ]1 · · · [V ]N [CLASS]m[SEP ],
(1)

where [V ]n (n = 1, · · · , N ) denotes a learnable
vector with the same dimension as the word em-
bedding of BriVL, N is the hyperparameter speci-
fying the number of learnable tokens, [CLASS]m
is the word embedding of the m-th class name
Cm, and [CLS] (or [SEP ]) is the word embed-
ding of the special token CLS (or SEP). Note that
we adopt class-specific soft prompts and use word
embeddings of sampled tokens from the vocabu-
lary as the initialization of [V ]n.

With the text encoder of BriVL fixed during the
training stage, our training goal is to optimize the
soft prompts. We first get the visual prompts of
all categories offline from the visual prompt gen-

Algorithm 1 Pseudocode of Visual Prompt Generation in a
PyTorch-like style.

# text_list: list of all class names
# Shape: shape of pseudo image ([C, H, W])
# VP: list of visual prompts corresponding

to all class names
# f_image, f_text: image encoder and text

encoder of the adopted VL-PTM

VP = []
for text in text_list:
pseudo_image = random_tensor(*Shape)
pseudo_image.requires_grad_(True)
for i in range(max_iteration):
imageFea = f_image.forward(pseudo_image)
textFea = f_text.forward(text)

# Eqn.(2)
loss = -mm(imageFea, textFea.t()).mean()

# Adam update: pseudo_image
loss.backward()
update(pseudo_image.params)

VP.append(imageFea)
save(VP)

Notations: mm – matrix multiplication.

eration module. We then encode the tokenized in-
put sequence xi and class prompt tm into text em-
beddings ri and rCm via the text encoder of BriVL,
respectively. For cross-modal information fusion,
we thus adopt a simple operation-based method:
adding visual prompt to its corresponding class
name embedding rCm with the weight of α. Classi-
fication is finally conducted by computing cosine
similarity scores between the input embedding ri
and fused class embeddings.

3.2 Visual Prompt Generation
The bottom panel of Figure 2 illustrates the
pipeline of our visual prompt generation. Given
a text classification task, we choose to generate
a series of pseudo images according to the class
names. In this work, we take the embeddings of
pseudo images as the visual representations of the
class names, namely visual prompts.

For each class name Cm, we can obtain its text
embedding rCm through the text encoder of BriVL.
Then we randomly initialize a noisy image and
also compute its image embedding rIm through
the image encoder of BriVL. Since there should
be a one-to-one correspondence between pseudo
images and class names, we compute the inner
product similarity score between the image em-
bedding and the class embedding and maximize
it for model inversion. The loss function for the
m-th class can be written as follows:

Linversion = − < rCm, rIm >, (2)

where < ·, · > is the dot product of two vectors.



Algorithm 2 Pseudocode of VPT in a PyTorch-like style.

# VP: output from visual prompt generation
# prompt_tokens: N tokens from vocabulary
# alpha: weight of visual prompt
# f_text: text encoder of the adopted VL-PTM
# f_text.emb: word embedding layer of f_text
# class_names: tokenized class names in the

following form: [CLS][CLASS][SEP]

load(VP)
C = f_text.emb(class_names)
# initialize soft prompt
soft_prompt = f_text.emb(prompt_tokens)
soft_prompt.requires_grad_(True)
for input_text in loader: # load a minibatch
# Eqn.(1)
t = cat([C[:,0,:], soft_prompt, C[:,1:,:])

inputFea = f_text.forward(input_text)
labelFea = f_text.forward(input_embs=t)
labelFea += alpha * VP.ToTensor() # Eqn.(3)

logits = bmm(inputFea, labelFea)
# Eqn.(5)
loss = CrossEntropyLoss(logits, labels)

# Adam update: soft prompt
loss.backward()
update(soft_prompt.params)

Notations: bmm – batch matrix multiplication; cat – concatenation.

Because both encoders of BriVL are frozen during
pseudo image generation, only the noisy image is
set to be learnable, i.e., it can be updated through
back propagation. After a number of iterations,
we obtain the pseudo image that depicts a picture
of what BriVL knows about the category.

We take the image embedding rCm of the pseudo
image as our “visual prompt”, which can supple-
ment the insufficient information in rCm. Because
the generation process is done offline, there is no
extra time for classification, ensuring VPT’s effi-
ciency. The details of the visual prompt generation
pipeline are presented in Algorithm 1.

3.3 Training Objective
In this subsection, we describe our training objec-
tive and explain the role of visual prompt. The
similarity between the i-th input text xi and the
m-th class name Cm is calculated as follows:

sim =< ri, r
C
m + αrCm >, (3)

where ri and rCm are respectively the text embed-
ding of xi and class prompt tm, rCm is the vi-
sual prompt of Cm, and α is the weight of visual
prompt. A softmax function is then used to define
the probability value:

P (yi = m|xi) =
exp(sim/τ)∑M
j=1 exp(sij/τ)

, (4)

where P (yi = m|xi) means the chance of the i-th
input text xi belonging to the m-th class (yi is the

Table 1: Statistics of five text classification datasets.

Dataset Classes Train Val Test
THUCNews 14 661,785 83,000 83,000
Toutiao News 15 306,688 38,000 38,000
Inews 3 3,356 1,000 1,000
Iflytex 119 6,935 2,599 2,599
CSLDCP 67 536 536 1,784

predicted label), and τ is the temperature. Given
k shots per class, model training is performed by
minimizing the cross-entropy loss:

LC =
−1

k ∗M
∑
i

M∑
m

yim logP (yi = m|xi),

(5)
where yim = 1 if yi = m, otherwise yim = 0.

Note that Equation (3) indicates the core idea
of our proposed VPT for few-shot text classifica-
tion. That is, each input sentence is forced to be
matched with not only textual but also visual se-
mantics of class names. From this perspective, vi-
sual prompts act as augmentations of text embed-
dings of class names. They provide extra infor-
mation when searching the nearest class name in
the latent space for the input sentence. The full
VPT algorithm for few-shot text classification is
outlined in Algorithm 2.

4 Experiments

4.1 Datasets

We collect five public available datasets for text
classification in Chinese: THUCNews (Li et al.,
2006), Toutiao News1, Inews2, Iflytex (Xu et al.,
2020) and CSLDCP (Xu et al., 2021). Diverse
textual tasks are covered, including classifica-
tion on news (THUCNews, Toutiao News), emo-
tions (Inews), types of app (Iflytex), and special-
ized subjects (CSLDCP). We follow the origi-
nal dataset split from public benchmarks (Inews,
CSLDCP) and randomly split the others (THUC-
News, Toutiao News) with the train/validation/test
ratio 8:1:1. Particularly, for THUCNews, we only
use titles of the news in our experiments. Since the
test set of Iflytex is not labeled, we use the public
validation set as the test set, and split the public
training set into the training and validation sets.
The details of datasets are shown in Table 1.

1https://github.com/aceimnorstuvwxz/toutiao-text-
classfication-dataset

2https://github.com/ChineseGLUE/ChineseGLUE



Table 2: Comparative results for few-shot text classification on five public datasets. We report the mean (and
standard deviation) performance over 5 repeated trials. The best performance and the second best performance are
denoted in bold and underlined fonts, separately.

Method THUCNews Toutiao News Inews Iflytex CSLDCP
Soft Prompt 64.70 (3.64) 71.98 (1.15) 51.76 (1.90) 28.92 (1.67) 37.24 (1.40)
PET 66.33 (1.70) 75.75 (3.31) 62.10 (0.96) 33.49 (2.44) 41.87 (0.95)
LM-BFF 71.56 (0.99) 76.67 (1.24) 63.72 (2.25) 29.70 (1.68) 38.23 (2.71)
EFL 70.17 (2.12) 71.03 (2.89) 60.20 (5.83) 22.80 (5.06) 42.80 (1.45)
P-tuning 73.46 (2.29) 76.56 (1.02) 65.96 (2.18) 32.36 (2.63) 44.03 (1.59)
VPT (ours) 74.73 (0.90) 79.24 (1.44) 67.20 (2.85) 34.24 (1.35) 47.03 (0.84)

In our few-shot experiments, we set k = 16
shots per class for THUCNews, Toutiao News, and
Inews, but only k = 1 shot per class for Iflytex and
CSLDCP (given their large number of classes).

4.2 Implementation Details

For the visual prompt generation process, the total
iteration number is set to 2,000. The noisy im-
age is optimized by Adam with a learning rate of
0.02. The size of generated pseudo image is set
to 600*600, and the dimension of VP is 2,560 ac-
cording to the image encoder of BriVL.

For the classification process, the weight of vi-
sual prompt is set as α = 1, and the prompt length
is set as N = [15, 20, 40, 10, 5] for THUCNews,
Toutiao News, Inews, Iflytex, and CSLDCP, re-
spectively. We optimize the soft prompts using
Adam with the learning rate 1e-5.

4.3 Evaluation and Training Protocol

It is commonly accepted that fine-tuning on small
datasets can suffer from instability and results may
change dramatically given a new split of data. To
obtain a robust measure of the model performance,
we follow the setting of existing works (Gao et al.,
2021b; Devlin et al., 2019). Concretely, on each
dataset, we randomly sample k ∗M labeled train-
ing samples from the training set and k∗M labeled
validation samples from the validation set for few-
shot fine-tuning, which is repeated five times. The
average performance across five repeated trials is
reported. Note that the number of validation sam-
ples is set the same as the number of training sam-
ples during few-shot fine-tuning on each dataset.
Although few-shot fine-tuning using a larger set
of validation samples leads to significant improve-
ments (Gao et al., 2021b), its initial goal of learn-
ing from limited data is subverted.

4.4 Main Results

We compare our proposed VPT with a series of
few-shot learning methods based on PLMs, in-
cluding PET (Schick and Schütze, 2021), LM-
BFF (Gao et al., 2021b), P-tuning (Liu et al.,
2021b) and EFL (Devlin et al., 2019). The widely-
used RoBERTa-large is adopted as the backbone
for these methods. In addition, we apply our
framework without visual prompt generation to
the original RoBERTa-large as a baseline, denoted
as “soft prompt”. The comparative results are
shown in Table 2. We compare methods based
on VL-PTM and PLM, with two backbones (text
encoders) of similar sizes: BriVL and RoBERTa-
large, respectively. Note that the four PLM-based
baselines typically adopt the pre-trained masked
language modeling (MLM) head for prompt learn-
ing and thus we cannot apply BriVL (without
the MLM head) as their backbone. Moreover,
since the text embedding of RoBERTa-large is not
aligned with the visual prompt, it is unreasonable
to apply RoBERTa-large as the backbone to our
proposed VPT model.

We can clearly observe from Table 2 that our
proposed VPT consistently outperforms the recent
state-of-the-art methods for few-shot text clas-
sification on all five datasets. Particularly, our
proposed VPT yields more than 2.5% improve-
ments over the second best on Toutiao News and
CSLDCP. These observations indeed identify the
important role of our proposed VPT as a bet-
ter approach to few-shot text classification. Al-
though two different text backbones (i.e., BriVL
and RoBERTa-large) of similar sizes have been
employed, these observations are still remarkable
since the pre-training data of BriVL does not bring
benefits as expected (see Table 3). Moreover,
PLM-based prompt methods demonstrate unsta-
ble performance across text classification datasets



(a) ‘Zero-Shot’

(b) ‘Few-Shot’

Figure 3: Ablation study results of the proposed VPT
with the large-scale pre-training model BriVL as the
backbone. Average accuracy (%) on 5 repeated trials is
reported. VP stands for visual prompt.

with different data distributions, while our pro-
posed VPT demonstrates great robustness in few-
shot text classification.

4.5 Ablation Study Results

We conduct ablation studies to show the contri-
bution of the visual prompt. We run experiments
with and without visual prompt in both zero-shot
and few-shot scenarios, using the large-scale pre-
training model BriVL as the backbone. The ab-
lation results are shown in Figure 3. We have
two main observations. Firstly, after adding visual
prompt into few-shot prompt-tuning (see the com-
parison VPT vs. VPT w/o VP in Figure 3(b)), the
few-shot performance increases by 1.7% in aver-
age, as compared with that using standard prompt-
tuning alone (i.e., VPT w/o VP). Secondly, by di-
rectly adding visual prompt into zero-shot classi-
fication, the zero-shot performance of BriVL can
be improved by 4.0% in average (see the compari-
son Zero-shot w/ VP vs. Zero-shot w/o VP in Fig-
ure 3(a)). These evidences clearly show that the
visual prompt is indeed beneficial for deploying
BriVL in few-shot text classification.

Note that the usage of visual prompt at test
time is clearly shown in the experiments in Fig-
ure 3(a). Our visual prompt brings considerable
boost in zero-shot scenario, and only the infer-

Table 3: Results obtained by base models using differ-
ent pre-training data. The average accuracy (%) over
all five datasets is reported for each model.

Model Zero-shot Soft Prompt
RoBERTa-base 30.39 51.48
RoBERTa-base (finetune) 28.88 51.92
BriVL w/ RoBERTa-base 38.85 55.45

ence process is included. That is, we conduct
the classification by directly computing the co-
sine similarity scores between the embeddings of
input sentences and the embeddings of category
names. After adding visual prompts to the em-
beddings of category names, each input sentence
is forced to be matched with not only textual but
also visual semantics of class names. Therefore,
visual prompts serve as augmentations of text em-
beddings of class names at test time.

Furthermore, we notice that the pre-training
data of BriVL is different from that of RoBERTa,
which may cause a bit of unfairness in the compar-
ison of our experiments in Table 2. Therefore, we
make comparison among the following three mod-
els: (1) RoBERTa-base; (2) RoBERTa-base (fine-
tune): we finetune the pre-trained RoBERTa-base
on the text data of 22 million image-text pairs,
which is the same pre-training dataset of BriVL w/
RoBERTa-base; (3) BriVL w/ RoBERTa-base: it
is a smaller version (using RoBERTa-base as back-
bone instead) of the standard BriVL, which is pre-
trained with the aforementioned 22 million image-
text pairs. Due to the limited GPU resource, only
the base models are considered here. The ablation
results in Table 3 show that RoBERTa-base (fine-
tune) yields only slight improvements (or even
performance drops) over RoBERTa-base, while
BriVL w/ RoBERTa-base outperforms RoBERTa-
base by large margins. This is mainly due to
that the text data from large-scale image-text pairs
has not been filtered (without any reprocessing),
and PLMs like RoBERTa can hardly benefit from
this noisy data. Therefore, the observations/con-
clusions from Table 2 can still be drawn, even if
RoBERTa-large is first finetuned for the baselines
with the pre-training data of BriVL.

Finally, it would be easier to demonstrate the
advantages of our VPT by examining the impact
of visual prompt on accuracy when alternative
image representations are used for generating vi-
sual prompt. Concretely, we consider three im-



Table 4: Results obtained by using different image rep-
resentations for generating visual prompt. Results of
few-shot text classification are reported only on Iflytex.

Image Representation Accuracy
Random Noise 7.81
Visual Prompt (1K iterations) 30.94
Visual Prompt (2K iterations) 34.24

age representations for generating visual prompt:
(1) Random Noise: visual prompt initialized by
random noise (without optimization); (2) Visual
Prompt (1K iterations): low-quality visual prompt
obtained only with 1K iterations of optimization;
(3) Visual Prompt (2K iterations): standard visual
prompt obtained with 2K iterations of optimiza-
tion. Note that the results of few-shot text clas-
sification are reported only on the small dataset
Iflytex for quick evaluation. Two observations
can be drawn from the ablation results in Table 4.
Firstly, the visual prompt initialized by random
noise (without optimization) causes serious dam-
age to the performance of our VPT for few-shot
text classification. Secondly, the visual prompt ob-
tained with 2K iterations of optimization leads to
4.7% improvements over that obtained with 1K it-
erations of optimization, showing that the visual
prompt of higher quality brings larger benefits to
our VPT for few-shot text classification.

4.6 Influence of Hyperparameters

In this subsection, we discuss the influence of
two crucial hyperparameters on the performance
of VPT: prompt length – N , and weight of VP –
α. The detailed results are provided in Figure 4.
Only two small datasets Iflytex and CSLDCP are
considered for quick evaluation.

We first conduct experiments by varying the
prompt length in {1; 5; 20; 40; 60; 80; 100}, while
fixing the rest hyperparameters. Figure 4(a) and
Figure 4(c) show that increasing prompt length is
beneficial for better performance when the prompt
length is modest. When the prompt length is
further increased (e.g., more than 5), the perfor-
mance tends to gradually deteriorate. Notably,
VPT has a strong performance even with a sin-
gle prompt token. This indicates that VPT inher-
its the advantages of high efficiency of prompt-
tuning. Increasing the token count above 20 leads
to marginal gains (or even drops). Going above
60 tokens appears to be consistently damaging on

(a) (b)

(c) (d)

Figure 4: Effect of hyperparameters on the perfor-
mance of VPT. Results on two small datasets (Iflytex,
CSLDCP) are reported. The orange line refers to Ifly-
tex ((a), (b)) and the blue one refers to CSLDCP ((c),
(d)). (Left) On prompt length: employing more tokens
for VPT leads to improvements when the number of
prompt tokens is small. (Right) On weight of VP: VPT
performs the best on both datasets when α = 1.

both datasets. (Lester et al., 2021) discovered a
similar pattern of declining performance beyond
a particular prompt length. In addition, in Figure
4(a) and Figure 4(c), the minimum prompt length
is 1. If we set the prompt length to 0 (i.e., the soft
prompt is not used), the performance drops signif-
icantly. This means that the soft prompt does lead
to significant improvements in text classification.

Further, the influence of weight of VP is ex-
plored in the range from 0.1 to 100, while the
other hyperparameters are fixed. As shown in Fig-
ure 4(b) and Figure 4(d), increasing the weight α
yields performance improvements when α < 1
and causes negative effects when α > 1. Notably,
when α >> 1, the performance of VPT still out-
performs the baselines like Soft Prompt. This ob-
servation demonstrates that the generated VP in-
deed contains rich semantic information inherited
from the class name. However, VP can only play
an auxiliary role, i.e., it cannot take the place of
the textual class name.

4.7 Visualization Results

To directly figure out the effect of visual prompt,
we visualize the obtained pseudo images in the vi-
sual prompt generation process in Figure 5. Note



(a) "automobile" (b) "furniture" (c) "camera" (d) "machinery" (e) "gardening"

(f) "culture" (g) "art" (h) "military" (i) "technology" (j) "positive emotion"

Figure 5: Visualizations of generated images for different class names.

that the input texts of class names are originally
in Chinese and translated into English for illustra-
tion purpose. For text descriptions with concrete
meanings, the generated visualizations provide in-
tuitive pictures (e.g., “automobile”: a car; “furni-
ture”: table, chair and vase; “camera”: a telecam-
era; “machinery”: some gears and pipes; “garden-
ing”: morning glories). For text descriptions with
abstract meanings, the generated visualizations are
able to show concrete embodiment of these con-
cepts (e.g., “culture”: a figure in traditional Chi-
nese clothing with Chinese “culture” in the upper
right corner; “art”: geometric figures and abstract
portraits; “military”: soldiers, a military aircraft
and a armored vehicle; “technology”: monitors
and consoles; “positive emotion”: a smiling face
in the bottom left). Overall, these visualization re-
sults clearly demonstrate that our visual prompts
have actually be learned to well represent the se-
mantic content of the corresponding class names.

5 Conclusion

We propose a novel prompt-based method termed
Visual Prompt Tuning (VPT) for deploying VL-
PTM like BriVL in few-shot text classification.
The main component of our proposed VPT is a
visual prompt generation module based on model
inversion of VL-PTM. Extensive experimental re-
sults on five benchmark datasets demonstrate that
our proposed VPT achieves the new state-of-the-
art in few-shot text classification. The ablation
study and visualization results further show the ef-

fectiveness of our proposed VPT. In our ongoing
research, we will apply our proposed VPT to other
few-shot NLP tasks.
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