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Abstract. Distributed learning can well solve the problem of training
model with large-scale data, which has attracted much attention in recent
years. However, most existing distributed learning algorithms set uniform
mixture weights across clients when aggregating the global model, which
impairs the accuracy under Non-IID (Not Independently or Identically
Distributed) setting. In this paper, we present a general framework to
optimize the mixture weights and show that our framework has lower
expected loss than the uniform mixture weights framework theoretically.
Moreover, we provide strong generalization guarantee for our framework,
where the excess risk bound can converge at O(1/n), which is as fast as
centralized training. Motivated by the theoretical findings, we propose
a novel algorithm to improve the performance of distributed learning
under Non-IID setting. Through extensive experiments, we show that
our algorithm outperforms other mainstream methods, which coincides
with our theory.

Keywords: Distributed learning · Excess risk bound · Optimal mixture
weights.

1 Introduction

With the development of Internet of Things (IoT) technology and the popularity
of intelligent terminal devices, it is difficult to continue the traditional centralized
training of machine learning algorithms. Fortunately, distributed learning [23, 29,
2] provides an effective way for model training with large-scale data.

In standard distributed learning, many clients collaboratively train a global
model under the coordination of a central server, where the training samples
are splited on clients to alleviate the storage and computing limitations of the
server. Recently, there are many studies analyze the properties of distributed
learning from different perspectives [18, 3]. EasyASR [26] provides a distributed
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platform for training and serving large-scale automatic speech recognition mod-
els, which supports both pre-defined networks and user-customized networks.
In high-dimensional settings, Acharya et al. [1] analyzed the communication
problem in distributed learning, and obtained algorithms that enjoy optimal er-
ror with logarithmic communication by relaxing the boundedness assumptions.
Random topologies [30] is applied to tackle the unreliable networks problem
in distributed learning, which can achieve comparable convergence rate to cen-
tralized learning. MRE [24] aims to reduce the error in IID distributed learning,
where the error bound meets the existing lower bounds up to poly-logarithmic
factors. Deep Q-learning based synchronization policies [31] is used for param-
eter server-based distributed training, which can generalize to different cluster
environments and datasets.

With the increasing attention paid to privacy-preserving, data sharing in
distributed learning has been strictly limited. Thus, federated learning [19, 28]
was proposed to maintain or improve the performance of distirbuted learning
while protecting users’ privacy. However, local distributions on different clients
may be different due to the personality of users, which brings us the Non-IID
problem in distributed learning, where the global model is difficult to converge
to the optimal solution. To solve the problem, FedAvg [19] runs multi-step SGD
(stochastic gradient descent) on clients and aggregates local models by periodi-
cally communications. FedProx [16] introduces a proximal term to constrain the
divergence between local models and the global model. There are many other
studies try to tackle the Non-IID problem by different algorithms [27, 22, 11].

Although many related work has presented various methods to improve the
performance of Non-IID distributed learning, the mixture weights for model
aggregation are usually fixed as nk

n , where nk denotes the sample size on the
k-th client and n denotes the total sample size among all clients. In fact, the
uniform mixture weights is a good choice under IID settings, but it can not reflect
the heterogeneous characteristics. When we use the uniform mixture weights to
Non-IID distributed learning, the global model will shift to the local model with
larger sample size, which impairs the performance of global model. Furthermore,
most existing algorithms for distributed learning lack generalization guarantees,
which restricts their portability to some extent.

In this paper, we present a general framework for Non-IID distributed learn-
ing, where the mixtures weights can be optimized to promote the global model
to converge to the optimal solution. We also provid a strong generalization guar-
antee for our distributed learning framework based on local Rademacher com-
plexity. The main contributions of this paper are summarized as follows.

– A general framework. We present a general framework for Non-IID dis-
tributed learning, where the mixtures weights are optimized together with
model parameters by minimizing the objective. Theoretically, we demon-
strate that our framework has lower expected loss than distributed learning
with uniform mixture weights.

– A strong generalization guarantee. To our best knowledge, we derive a
sharper excess risk bound for Non-IID distributed learning with convergence
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rate of O(1/n) based on local Rademacher complexity for the first time,
which meets the current bounds in centralized learning and is much faster
than the existing bounds of distributed learning.

– A novel algorithm. Based on our general framework and theoretical find-
ings, we propose a novel distributed learning algorithm DL-opt, which opti-
mizes the mixture weights on server-side with validation samples and con-
strains local Rademacher complexity with an additional regularization term
on the local objective. Through extensive experiments, we show that DL-opt
significantly outperforms distributed learning with uniform mixture weights.

– An effective extension to federated learning.We extend DL-opt to fed-
erated learning, named FedOMW, which executes periodical communications
to alternately optimize the mixture weights and model parameters. We il-
lustrate that FedOMW performs better than FedAvg and FedProx with a clear
margin through a series of experiments.

2 Preliminaries and Notations

In this section, we first introduce the Non-IID distributed learning scenario and
then demonstrate the general notations used in this paper.

In a Non-IID distributed learning scenario, there are K clients and a central
server, where the local training samples Dk = {(xik, yik)}nk

i=1 on the k-th client
are drawn from a local distribution ρk with size of nk. The underlying local
distribution is different on different clients: ρi 6= ρj . We denote n =

∑K
k=1 nk

the total number of training samples across all clients.
Let H be the hypothesis space consisting of labeling functions h : X → Y,

where X denotes the input space and Y denotes the output space. The labeling
function is formed as h(x) = wTφ(x), where w denotes the vector of learnable
parameters and φ(·) denotes a fixed feature mapping. Let ` : Y×Y → R+ be the
loss function, we denote the loss space associated to H by G = {`(h(x), y)|h ∈
H}. For the k-th client, we define the expected loss as

Lk(h;w) = E(x,y)∼ρk [`(h(x), y)] ,

and the corresponding empirical loss as

L̂k(h;w) =
1

nk

nk∑
i=1

`(h(xik), yik).

The target of distributed learning is to obtain a global model. For traditional
distributed learning, the global model w is obtained by aggregating local mod-
els (wk denotes the local model on the k-th client) which are trained locally to
converge on clients. For federated learning, the global model is obtained by alter-
nately performing client-side local training and server-side model aggregating.
The objective of distributed learning can be formed as

min
w∈H

K∑
k=1

pkL̂k(h;w),
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where pk is the mixture weight of the k-th client.
Many distributed learning algorithms use uniform mixture weights (pk =

nk/n) to aggregate local models, which make use of local sample sizes, and they
work well when local training samples are independently drawn from an iden-
tical distribution (IID situation). However, under Non-IID setting, the uniform
mixture weights fails to capture the discrepancy among local distributions. To
this end, we consider optimizing the mixture weights together with w to get
an optimal solution, which can truely minimize the objective under Non-IID
setting.

Therefore, we present a general framework for Non-IID distributed learning,
and the general objective is defined as

min
w∈H

min
p∈P

L̂(h;w,p) =
K∑
k=1

pkL̂k(h;w), (1)

where p = [p1, · · · , pK ] is the vector of mixture weights and P is the parameter
space of p. The above objective is the empirical general loss of Non-IID dis-
tributed learning, and the corresponding expected general loss is L(h;w,p) =∑K
k=1 pkLk(h;w).
In our framework, we relax the constraint on p: the sum of K elements is 1

(
∑K
k=1 pk = 1) and the value of each element pk is in (0, 1) and expands the range

of feasibility, where each element pk can take any value under the assumption
that |pk| is upper bounded by τ (τ <∞). Thus, many gradient-based algorithms
can be applied to optimize the mixture weights to get the optimal solution.

3 Generalization Guarantee

We introduce two specific estimators in hypothesis space H: The empirical esti-
mator is defined as

ĥ = argmin
w∈H,p∈P

L̂(h;w,p),

and the optimal estimator is defined as

h∗ = argmin
w∈H,p∈P

L(h;w,p),

where ĥ minimizes the empirical general loss of Non-IID distributed learning
and h∗ minimizes the corresponding expected general loss.

Excess risk is often used to represent the generalization performance of an
estimator [7], which measures the gap between the empirical estimator and the
optimal estimator. We define the excess risk of Non-IID distributed learning as
follows:

L(ĥ;w,p)− L(h∗;w,p). (2)
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In the previous work, generalization error of centralized learning and dis-
tributed learning with uniform mixture weights has been widely studied, which
is actually the upper bound of excess risk [7]. Through Rademacher complexity
[6, 12] and stability theory [8, 9], the current generalization error bounds for cen-
tralized learning and distributed learning with uniform mixture weights converge
at O(1/

√
n). The convergence rate of generalization error bounds for centralized

learning can be improved to O(1/n) by local Rademacher complexity [5] and
some advanced techniques in stability. However, there is no existing work on
the generalization error bounds for distributed learning with convergence rate of
O(1/n).

In the following part, we will derive a sharper excess risk bound for Non-IID
distributed learning to give a stronger generalization guarantee on the general
framework defined in this paper.

3.1 Excess Risk Bound with Local Rademacher Complexity

We first introduce two important assumptions.

Assumption 1. Assume that the loss function is λ-Lipschitz continuous and
upper bounded by M (M > 0), that is

|`(h(x), y)− `(h(x′), y′)| ≤ λ |h(x)− h(x′)|

and

|`(h(x), y)| < M, ∀(x, y) ∈ X × Y.

Assumption 2. Assume that the loss function satisfies the Bernstein condition:
For some B > 0, it holds that

E [`(h(x), y)− `(h∗(x), y)]2 ≤ B (L(h;w,p)− L(h∗;w,p)) .

Assumption 1 is a commonly used assumption in generalization analysis [4,
25], where many loss functions meet this condition, such as hinge loss, margin
loss and their variants. Meanwhile, Assumption 2 is widely used in statistical
learning theory, such as local Rademacher complexity [5, 20, 10] and stability
[14, 13, 8].

The empirical Rademacher complexity of G is formed as

R̂(G) = Eε

[
sup
h∈H

K∑
k=1

pk
nk

nk∑
i=1

εik`(h(xik), yik)

]
,

and the empirical Rademacher complexity of H is formed as

R̂(H) = Eε

[
sup
h∈H

K∑
k=1

pk
nk

nk∑
i=1

εikh(xik)

]
,
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where {εik}k∈[K]
i∈[nk]

are independent Rademacher variables sampling uniformly
from {−1,+1}.

We define the empirical local Rademacher complexity of G and H on training
samples as follows:

R̂(G, r) = R̂
(
{`h|`h ∈ G,E[`h − `h∗ ]2 ≤ r}

)
,

R̂(H, r) = R̂
(
{h|h ∈ H,E[`h − `h∗ ]2 ≤ r}

)
,

where `h = `(h(x), y), for simplicity.
Without loss of generality, the feature mapping φ(·) mentioned Section 2 is

assumed to be upper bounded by κ: κ = supx∈X ‖φ(x)‖ ≤ ∞, and it is often
used in kernel methods. Moreover, the depth and structure of neural networks
are becoming deeper and more diverse in order to model more complex tasks,
so the value of hidden vector after feature mapping should be constrained by
normalization or other techniques to avoid training problems such as no conver-
gence. Thus, this condition also applies to current deep learning methods.

We present the excess risk bound for Non-IID distributed learning with local
Rademacher complexity in the following theorem.

Theorem 1 (Excess Risk Bound). Let d be the VC dimension of hypothesis
space H, ψ(r) be a sub-root function and r∗ be the fixed point of ψ(r). Assume
that ‖w‖2 ≤ r

λ2κ2 , under Assumption 1 and 2, ∀δ ∈ (0, 1] and ∀r ≥ r∗, it holds
that

ψ(r) ≥
λτ
√

2dK log[ end ]

n
≥ λE

[
R̂(H)

]
. (3)

With probability at least 1− δ, the following bound holds:

L(ĥ;w,p)− L(h∗;w,p) ≤ 705

B
r∗ +

(11M + 27B) log(1/δ)

n
. (4)

The proof is in Appendix A.1 of the supplementary file.
In Theorem 1, we derive a sharper excess risk bound for Non-IID distributed

learning related to our general framework, which provides strong generalization
guarantee for algorithms under our framework.

According to Theorem 1, the fixed point r∗ dominates the excess risk of
Non-IID distributed learning, which is affected by local Rademacher complexity
with the sub-root function ψ(r). In (3), we have proved that local Rademacher
complexity can converge at O(1/n). Meanwhile, the rest part in (4) also has the
convergence rate of O(1/n) due to the self-bounding property [5]:

E
[
R̂(H)

]
≤ R̂(H) +

√√√√2E
[
R̂(H)

]
log(1/δ)

n
.

Therefore, if we ignore the constants and other unrelevant factors, the excess
risk bound for Non-IID distributed learning can be rewritten as

L(ĥ;w,p)− L(h∗;w,p) ≤ O

(√
K

n

)
.
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Note that K is the total number clients, so the above result shows that the gen-
eralization performance can be worse if there are too many clients participated
in a Non-IID distributed learning, which is consistent with the actual applica-
tion. Moreover, when there is only one client, the above result degrades into
O(1/n), which meets the best excess risk bound for centralized learning. Thus,
our general framework for Non-IID distributed learning has strong generalization
guarantee and we provide a sharper excess risk bound for Non-IID distributed
learning with convergence rate of O(1/n) for the first time.

3.2 Comparison with Current Framework

In this part, we will demonstrate that our general framework has lower expected
loss than current distributed learning framework.

Traditional distributed learning framework uses uniform mixture weights
(pk = nk

n ) to aggregate the global model, we denote the empirical estimator of
this uniform framework by ĥuf. The expected loss of ĥuf is formed as L(ĥuf;w,p),
we show that the expected loss of our framework is upper bounded by the ex-
pected loss of uniform framework in the following theorem.

Theorem 2. Suppose that the distributed learning framework is applied to solve
a binary-classification task, where Y = {0, 1}. Let the loss function ` be the
cross-entropy loss. For some P and ρk (k ∈ [K]), we have

L(ĥ;w,p) ≤ L(ĥuf;w,p). (5)

Proof (Proof of Theorem 2). For simplicity, we consider that there are only two
clients and the sample sizes nk are equal. Given a single point x, we assume that
the local distribution on the first client satisfies ρ1(x, 0) = 0, ρ1(x, 1) = 1, and
the local distribution on the second client satisfies ρ2(x, 0) = 1

2 , ρ2(x, 1) = 1
2 .

We denote Pr0 the probability that h assigns to class 0 and Pr1 = 1− Pr0 that
h assigns to class 1.

Note that the objective is the weighted sum of local loss functions and the
mixture weights are [p1, p2] = [ 12 ,

1
2 ] in the uniform framework. Then, the ex-

pected loss of ĥuf is

L(ĥuf;w,p) =E(x,y) [− logPry] =
1

4
log

1

Pr0
+

3

4
log

1

Pr1

=
1

4
log 4 +

3

4
log

4

3
+KL

(
[
1

4
,
3

4
] || [Pr0,Pr1]

)
≥1

4
log 4 +

3

4
log

4

3
,

where KL(·) denotes the Kullback-Leibler divergence. Furthermore, we set Pr0 =
1
4 and Pr1 = 3

4 . Thus, the expected loss of uniform framework becomes

L(ĥuf;w,p) =
1

4
log 4 +

3

4
log

4

3
= log

4
4
√
27
.
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Under the same settings, the expected loss of our framework is

L(ĥ;w,p) = min
w∈H

min
p∈P

{
log

1

Pr0
,
1

2
log

1

Pr0
+

1

2
log

1

Pr1

}
=min

{
log

4

3
,
1

2
log 4 +

1

2
log

4

3

}
= log

4

3
≤ log

4
4
√
27
.

This completes the proof.

According to Theorem 2, our general framework for Non-IID distributed
learning has lower expected loss than current uniform framework, which demon-
strates that our framework has surpassed uniform framework theoretically.

4 Algorithm

Our general framework aims to optimize mixture weights p together with the
global model w, and we relax the constraints on p, so we consider applying SGD
to get the optimal mixture weights.

4.1 DL-opt: Distributed Learning with Optimal Mixture Weights

In Non-IID distributed learning, training samples are stored on K clients, where
local distribution vary across clients because of personal properties. Here, we
use classic distributed learning method to train wk on the k-th client locally
until it converges. Meanwhile, we define an additional constraint ‖w‖2 ≤ r

λ2κ2

on ‖w‖ in Section 3 to provide strong generalization guarantee for our general
framework, which indicates that the norm of w can not be very large. To this
end, we add ‖w‖ to the local objective as a regularization term. Thus, the local
objective on the k-th client is formed as

min
wk∈H

Lk(Dk) =
1

nk

nk∑
i=1

`(hk(xik), yik) + γ‖wk‖, (6)

where γ is a tunable parameter and hk = wT
k φ(xik) related to Section 2.

On the other hand, it is unwise to optimize p on client-side, because the
properties of other clients can not be integrated on the k-th client, which may
cause the global model to deviate from the global optima. In order to capture
global information and improve the performance of the aggregated global model
w =

∑K
k=1 pkwk, we optimize the mixture weights on the central server with a

group of validation samples Dval, where the validation samples Dval are randomly
sampled from each client in a small proportion.

After local training, local models wk are uploaded to the central server to
aggregate the global model w. Then, we use SGD to optimize p on the validation
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samples Dval. We first get K predictions [h1(x
val), · · · , hK(xval)] by K local

models. Next, we combine the mixture weights with the prediction vector as∑K
k=1 pkhk(x

val). Note that Dval is relevant to the task, so we can use the same
loss function as local objectives to construct the central objective, that is

min
p∈P

Lp(Dval) =
1

nval

nval∑
j=1

`

(
K∑
k=1

pkhk(x
val
j ), yval

j

)
, (7)

where nval is the sample size of Dval.
The pseudo code of DL-opt is listed in Algorithm 1.

Algorithm 1 DL-opt (Distributed Learning with Optimal Mixture Weights)

Input:
⋃K
k=1Dk (local samples), Dval (validation samples), w0 ∈ H (model parame-

ters), p0 ∈ P (mixture weights), Tl, Tc (total iterations of local training and central
training), ηw, ηp (learning rates).
Output: wglobal.
Client-side local training
1: K clients download the initial model: w0

k ← w0 (k = 1, 2, · · · ,K)
2: for k = 1, 2, · · · ,K do
3: for t = 1, 2, · · · , Tl do
4: wt

k = wt−1
k − ηw∇wkLk(Dk)

5: end for
6: end for

Server-side central training and aggregating
1: K clients upload local models wTlk (k = 1, 2, · · · ,K)
2: for t = 1, 2, · · · , Tc do
3: pt = pt−1 − ηp∇pLp(Dval)
4: end for
5: wglobal =

∑K
k=1 p

Tc
k w

Tl
k

4.2 FedOMW: Federated Learning Version of DL-opt

Federated learning is a new distributed learning paradigm preserving users’ pri-
vacy, which is a rising star in recent years. In addition to the encryption and
compression techniques, federated learning uses an alternating communication
mechanism to train the global model (shown in FedAvg [19]). In this part, we
extend DL-opt to federated learning and propose a novel Non-IID federated
learning algorithm FedOMW (Federated Learning with Optimal Mixture Weights).

The local objective and central objective in FedOMW are the same as DL-opt,
because both of them are induced from our general framework for Non-IID
distributed learning. The main difference between FedOMW and DL-opt is that
FedOMW executes client-side local training and server-side central training peri-
odically instead of training local models to converge. Moreover, the validation
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samples can not be sampled from clients for privacy issues. To this end, the fea-
ture vectors after feature mapping and encrypting can be uploaded to the central
server in a small proportion. Alternatively, we can also train a generator locally
on each client and use it to generator several samples on the central server to get
Dval. For some very common learning tasks such as sentiment analysis of com-
ments and next-word prediction, the validation samples are easy to get without
sharing or uploading from clients. For example, if we apply distributed learning
to solve a flower recognition task, we can easily get many flower pictures from
Internet, which are used to construct Dval after preprocessing, and the whole
process of constructing Dval will not bring privacy issues. Thus, the strategy of
introducing Dval is not difficult to implement in federated learning.

We list the pseudo code of FedOMW in Algorithm 2.

Algorithm 2 FedOMW (Federated Learning with Optimal Mixture Weights)

Input:
⋃K
k=1Dk (local samples), Dval (validation samples), w0 ∈ H (model parame-

ters), p0 ∈ P (mixture weights), T (total communication rounds), Tl, Tc (total itera-
tions of local training and central training), ηw, ηp (learning rates).
Output: wglobal.
Server-side central training and aggregating
1: K clients download the initial model: w0

k ← w0 (k = 1, 2, · · · ,K)
2: for ν = 1, 2, · · · , T do
3: w

Tl
k ← Client-side local training (k = 1, 2, · · · ,K)

4: for t = 1, 2, · · · , Tc do
5: pt = pt−1 − ηp∇pLp(Dval)
6: end for
7: wν =

∑K
k=1 p

Tc
k w

Tl
k

8: end for
9: wglobal = wT

Client-side local training
1: for k = 1, 2, · · · ,K do
2: for t = 1, 2, · · · , Tl do
3: wt

k = wt−1
k − ηw∇wkLk(Dk)

4: end for
5: end for
6: K clients upload local models wTk (k = 1, 2, · · · ,K)

5 Experiments

In this section, we evaluate all algorithms on various real-world datasets with
Non-IID partitioning.
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5.1 Experimental Setup

In the following experiments, we mainly focus on multi-classification task, so
the input space and output space can be expressed as X ∈ Rdx and Y ∈ RC ,
where dx denotes the input dimension and C denotes the output dimension
related to C classes. We use cross-entry as the loss function. As shown in Section
2, the model h is formed as h(x) = wTφ(x). Here, we use random Fourier
feature [21] as the feature mapping, that is φ(x) = 1√

D
cos(ΩTx + b), where

φ : Rdx → RD, Ω ∈ Rdx×D, b ∈ RD. According to [21], the entries in matrix Ω
obey Gaussian distribution with Ω ∼ N (0, 1/σ2) and the elements in vector b
are uniformly sampled from [0, 2π]. We set D = 2000 for the following datasets.

Real-world datasets. The real-world datasets come from LIBSVM Data4,
which provides both training and testing data publicly. To construct a Non-
IID partitioning setup [15, 17], we first divide the original training datasets into
training samples

⋃K
k=1Dk and validation samples Dval according to the ratio

of 8 : 2. Then, we split the training samples across 50 clients using a Dirichlet
distribution [27] DirK(0.01) to get the local training samples Dk for each client,
the original testing datasets are used to evaluate the performance of the global
model. The statistical information of all the datasets are listed in Table 1.

All the experiments are conducted on a Linux server equipped with two
NVIDIA GeForce 2080ti, and all the algorithms are implemented by Pytorch5.
We tune all the hyperparameters by grid search and list the best results in Table
(Appendix B.1 of the supplementary file).

Table 1. Statistical information of datasets.

Datasets Training Size Testing Size Dimensions Classes

usps 7291 2007 256 10
pendigits 7494 3498 16 10
satimage 4435 2000 36 6
letter 15000 5000 16 26
dna 2000 1186 180 3
mnist 60000 10000 28×28 10

5.2 Experiments of Distributed Learning

In this part, we compare DL-opt to distributed learning with uniform mixture
weights (abbreviated as DL-u). To ensure the fairness of comparison, we tune
local learning rate ηw for DL-u and apply the same value to DL-opt. We set
the epoch of local training as 200 and the epoch of central training as 100. The
initial mixture weights p0 in DL-opt is the same as DL-u (pk = nk/n).
4 Available at https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/
5 Codes are available at https://github.com/Bojian-Wei/Non-IID-Distributed-
Learning-with-Optimal-Mixture-Weights
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Table 2. Test accuracy (%) of distributed learning algorithms on Non-IID datasets.

Algorithms Datasets
usps pendigits satimage letter dna mnist

DL-u 91.53±0.25 96.13±0.18 80.05±0.25 57.28±0.50 91.03±0.31 95.56±0.24
DL-opt 92.49±0.09 96.53±0.35 83.25±0.27 62.95±1.31 92.80±0.31 96.29±0.13

We run each experiment with 3 random seeds and record the average and
standard deviation in Table 2. In Table 2, we bold the result results and underline
the results which are not significantly worse than the best one. As shown in Table
2, we observe that DL-opt is significantly better than DL-u with confidence level
95% and DL-opt generally outperforms DL-u with a clear margin (more than 5%
on letter). This illustrates that our general framework is effective in dealing with
Non-IID distributed learning, which is consistent with our theoretical findings.

5.3 Experiments of Federated Learning

We also propose a federated learning algorithm FedOMW based on our framework.
It is well know that FedAvg [19] and FedProx [16] are two mainstream algo-
rithms in federated learning with uniform mixture weights. Thus, we conduct a
comparative experiment to compare FedOMW with the two methods.

Table 3. Test accuracy (%) of federated learning algorithms on Non-IID datasets.

Algorithms Datasets
usps pendigits satimage letter dna mnist

FedAvg 90.82±0.26 95.45±0.14 79.52±0.19 51.17±0.64 90.30±0.01 95.15±0.22
FedProx 90.73±0.19 95.23±0.23 79.35±0.16 51.20±0.63 89.32±0.22 95.13±0.21
FedOMW 92.81±0.02 96.92±0.04 81.97±0.25 63.57±0.46 90.98±0.59 96.29±0.05

To ensure the fairness of comparison, we tune local learning rate ηw for
FedAvg and apply the same value to FedProx and FedOMW. We set the epoch of
local training as 2, the epoch of central training as 100 and the total communica-
tion round as 100. The initial mixture weights p0 in FedOMW remains pk = nk/n.

We also run each experiment with 3 random seeds and record the average and
standard deviation in Table 3, and we also bold the result results and underline
the results which are not significantly worse than the best one. According to
Table 3, it is obvious that FedOMW performs significantly (confidence level 95%)
better than FedAvg and FedProx, and FedOMW yields a marginal improvement
up to 12% (on letter) compared to the other algorithms. Moreover, in Fig 1, we
find that FedOMW not only performs better than the other algorithms, but also
converges much faster. More experimental results can be found in Appendix B.2
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(a) Test loss (b) Test accuracy

Fig. 1. Results of federated learning algorithms on Non-IID satimage.

of the supplementary file. Therefore, FedOMW is an effective algorithm to tackle
the Non-IID problem in federated learning, and our general framework is proved
to be well applied in classic distributed learning and federated learning scenarios.

5.4 Ablation Study

There are two important components in our framework: the optimization of
mixture weights p and the regularization term of ‖w‖, where the optimization
of p is the key strategy to improve the performance of distributed learning under
Non-IID settings. In order to analyze the contribution of these two components
to the proposed algorithms, we conduct an ablation experiment on both DL-opt
and FedOMW. We report the results in Table 4 and Table 5, where -p denotes the
algorithm only with the optimization of p, -w denotes the algorithm only with
the regularization term of ‖w‖ and -non denotes the algorithm without the two
components.

Table 4. Ablation Results of DL-opt on Non-IID datasets.

Algorithms Datasets
usps pendigits satimage letter dna mnist

DL-opt-non 91.61 94.51 80.25 57.02 90.13 95.68
DL-opt-w 91.69 94.80 80.45 57.04 90.14 95.70
DL-opt-p 92.42 95.94 82.80 63.28 93.41 96.35
DL-opt 92.58 96.28 83.20 63.42 93.59 96.40

As shown in Table 4 and Table 5, we find that the performance of DL-u (equal
to DL-opt-non) and FedAvg (equal to FedOMW-non) can be improved markedly by
only optimizing mixture weights p, which indicates the effectiveness of correcting
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Table 5. Ablation Results of FedOMW on Non-IID datasets.

Algorithms Datasets
usps pendigits satimage letter dna mnist

FedOMW-non 90.63 95.51 79.75 49.38 89.54 95.37
FedOMW-w 90.68 95.71 79.65 49.90 89.66 95.39
FedOMW-p 92.36 96.77 82.25 61.94 90.39 96.34
FedOMW 92.48 96.83 82.35 64.66 90.56 96.39

local models’ contributions before getting the global model in our framework.
Moreover, the performance can be further improved by constraining ‖w‖, which
coincides with our generalization theory.

5.5 Experiments of Mixture Weights

We visualize the mixture weights of 5 clients via central training in Fig 2. DL-u
uses fixed uniform mixture weights, so p won’t change during training. DL-opt
optimizes the mixture weights on Dval through central training and the target is
to minimize the classification loss. Thus, DL-opt adaptively assigns bigger mix-
ture weights to the local model with smaller classification loss on Dval. Combined
with the above experiments, we can conclude that our min-min framework im-
proves the performance of Non-IID distributed learning by selecting the optimal
mixture weights.

(a) DL-u (b) DL-opt

Fig. 2. Mixture weights via central training on Non-IID letter.

6 Conclusion

In this paper, we present a general framework for Non-IID distributed learning,
which optimizes the mixture weights together with model parameters to obtain
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the optimal combination of local models. Compared to the classic distributed
learning with uniform mixture weights, we demonstrate that our framework has
lower expected loss theoretically. Furthermore, we provide a strong generalization
guarantee for our framework based on local Rademacher complexity, where the
excess risk bound can converge at O(1/n). Driven by our framework and theory,
we propose an improved algorithm for Non-IID distributed learning and extend
it to federated learning, where both of them perform significantly better than
the current methods. The proof techniques in this paper may pave a way for
studying generalization properties in other learning scenarios. Furthermore, we
will study optimization errors and convergence guarantees in the future work.
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