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A B S T R A C T

Reconstruction and prediction of spatiotemporal time series data has been a classic problem
in structural health monitoring (SHM) in civil engineering applications. However, due to the
explosive growth of sensing data, traditional time series analysis approaches fail in handling
large-scale data with missing values. To this end, two autoregressive (AR) based matrix
factorization (MF) methods are presented for missing sensor data imputation and structural
response forecasting. The first model integrates the standard MF formulation with an innovative
graph-based temporal regularizer, which can effectively model the nonlinear dynamics of SHM
data and is computationally efficient, while the second approach introduces an additional AR-
based matrix to better simulate the temporal factor thanks to its capability of learning the details
of temporal evolution. Finally, the proposed methods are evaluated by using a field-recorded
SHM dataset of a municipal concrete bridge, considering various missing scenarios (i.e., random,
structured and mixed). The results demonstrate excellent performance of the methods which
accurately recover missing entries in the time series and forecast future response. Additionally,
the parametric analysis on model parameters indicates that reasonably higher rank and longer
time lag improve the estimation accuracy while saving computational cost.

. Introduction

In recent decades, the rapid development of sensor and wireless communication technologies facilitates the wide application of
tructural health monitoring (SHM) systems to various civil infrastructures, including momentous buildings and bridges. Typically,
hese systems receive and store the field-sensing data from structures and ambient environment through a series of functional
odules that are comprised of sensory sector, data acquisition module, local centralized computer components and global central

omputer system. Not only does the collected data serve for the current structural performance evaluation, but also offers a platform
or damage warning and reliable prediction of long-term serviceability. Nevertheless, there arises a challenge that high-quality data is
sually required for these structural analysis tasks, meanwhile, the data anomalies (e.g., missing values and outliers) are inevitable
n the monitoring period due to sensor malfunctions and power failure. These crucial issues have been attracting vast research
nterest in the field of data cleansing or preprocessing, and further response forecasting with imperfect data.
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All of these tasks depend on the computational modeling and approximation of underlying structural dynamics. The traditional
ime series analysis methods mainly cover autoregressive (AR) models and dynamic linear models (DLM) [1,2], and are further
xtended to more intricate and feasible probabilistic models applied in the specific domains of SHM [3–9]. However, these classic
pproaches have fallen into the tough situation of computational inefficiency when processing large-scale datasets. For instance,
onsidering a dataset collected from 𝑁 sensors with 𝑇 time stamps, the computational cost reaches 𝑂(𝑘𝑁2𝑇 + 𝑘3𝑇 ) by using the

standard Kalman filter based DLM method, where 𝑘 is the dimension of latent features and usually larger than 𝑁 [10,11]. Herein,
the multivariate time series problems become intractable due to considerable number of sensors and long-term monitoring period
(i.e., large 𝑁 and 𝑇 ) in real-world SHM. Additionally, Gaussian process (GP) also shows excellent capability in nonlinear structural
response modeling [12–18], whereas still remains scalability issues and needs ideal prior assumptions. Moreover, especially in data
reconstruction, compressive sensing (CS) [19–27] is extensively investigated thanks to its beautiful mathematical principle but the
performance largely relies on the optimization approach and the sparsity of collected data. Specifically, based on the traditional
CS principle, many algorithms have been proposed to improve the data recovery performance in the field of SHM, mainly covering
Bayesian CS [20], adaptive wavelet based methods [23,24] and the spectro-temporal scheme [25]. It is also worthwhile to mention
that the general idea of sparse representation has also been extended to structural damage identification [28]. Recently, the rapid
advances in deep learning have lead to a proliferation of interesting studies in dynamical response prediction/modeling from both
data-driven [29–31] and physics-informed [32–34] perspectives. In spite of the outstanding nonlinear fitting ability for surrogate
modeling, they may encounter plights when dealing with missing values, and be short of generalization.

Hence, the challenging forecasting task based on large-scale datasets with missing values has been an inescapable obstacle
in SHM. To this end, we seek to the resurgent matrix/tensor factorization (MF/TF) approaches [35–37] for solving such multi-
dimensional time series problem in consideration of its natural strength in promoting high computational efficiency through
decomposing the high-dimensional data into low-dimensional factors with low-rank assumption. The inspiration also comes from
the empirical observation of the intrinsic correlation between structural dynamical responses, which well poses a low-rank and
sparse-representation condition. MF/TF methods have already been widely adopted in biomedical science [36,38], wireless network
engineering [37,39,40], traffic modeling [41–44], ranging from missing data imputation to pattern discovery, etc. In addition,
there are also several attempts integrating the matrix/tensor factorization with current research interests in SHM. For instance,
these methods are employed for data recovery [45], blind denoising [46], and computational cost reduction in finite element
simulations [47]. However, the majority of previous matrix factorization (MF) methods capture latent temporal features directly
based on the inner product of two factor matrices, which are incapable of predicting future time series data. To resolve this problem,
graph-based approaches [48,49] and autoregressive (AR) process [11,50,51] are introduced into MF for explicitly modeling temporal
propagation.

The main contribution of this paper is to investigate the refreshing theory of autoregressive matrix factorization for sensing data
imputation and forecasting in SHM, and further propose a novel algorithm to improve the captured details of time series data.
Firstly, we apply the temporal regularized matrix factorization (TRMF) method proposed by Yu et al. [11], which factorizes the
imperfect sensor data matrix into spatial factor and temporal factor as well as innovates in the AR temporal regularizer. Secondly,
we improve the classic AR-based MF method by introducing an additional matrix with AR process and further constructing the
temporal factor matrix. In addition, we validate the performance of AR-based MF methods by using the SHM dataset recorded
from a concrete bridge. The experimental results demonstrate that they can effectively capture the spatiotemporal evolution
with satisfactory computational efficiency. We further implement the analysis on the model hyper-parameters which helps provide
insights on the selection of rank and time lags.

The following sections of this paper is structured as follows: Section 2 describes the problem setup and introduces the theoretical
background of two AR-based MF methods. The relationship between these two approaches and the comparison with classic time
series analysis are also included. In Section 3, we test the AR-based MF methods with a temperature dataset under different missing
scenarios. Besides, we also analyze the effects of model hyper-parameters. Section 4 concludes the entire paper.

2. Methodology

2.1. Problem statement

In this work we tackle the continuous SHM data imputation and forecasting problem by applying the MF scheme and leveraging
the AR process on latent temporal factor. Herein, we consider the sensing data as a spatiotemporal matrix 𝐘 ∈ R𝐿×𝑇 , which is
collected from 𝐿 sensor locations within 𝑇 time stamps. Generally, given partially observed multidimensional time series, our
goal is to estimate the historical missing values and provide a reliable prediction for the future response. In the context of MF, we
can reach this target by learning the latent spatial factor 𝐒 ∈ R𝐾×𝐿 and temporal factor 𝐏 ∈ R𝐾×𝑇 which represent the inter-sensor
effects and temporal propagation features respectively, where 𝐾 is the rank of a specific matrix. As shown in Fig. 1, the mathematical
ormulation of MF is given by 𝐘 ≈ 𝐒⊤𝐏.

In specific, at the sensor location 𝑖, we denote the imperfect time series as

𝐘𝑖 = (𝑌𝑖,1, 𝑌𝑖,2,… , 𝑌𝑖,𝑇 ). (1)

he imputation process aims to recover the unobserved data with the imputed values at corresponding time stamps, while the
esponse forecasting for future 𝜏 time stamps (i.e., (𝑌𝑖,𝑇+1,… , 𝑌𝑖,𝑇+𝜏 )) relies on the dynamical AR process and the learned spatial
2

factor and temporal factor.
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Fig. 1. Temporal regularized matrix factorization for SHM data with missing data.

2.2. Temporal regularized matrix factorization

Classic time series data analysis methods always suffer from the high computational cost when dealing with large-scale sensing
data. To handle this, we investigate the application of temporal regularized matrix factorization (TRMF) [11], for explicitly modeling
the temporal propagation on latent features based on the MF scheme. The basic components of MF are the spatial factor S (colored
red) and the temporal factor P (colored blue) as shown in Fig. 1. The missing entries during the monitoring period are marked as
ark squares. Element-wisely, the estimated signal 𝑌𝑖,𝑡 is given by

𝑌𝑖,𝑡 = 𝐒⊤𝑖 𝐏𝑡 (2)

where 𝐒⊤𝑖 and 𝐏𝑡 denotes the 𝑖th row vector of spatial factor and 𝑡th column vector of temporal matrix, respectively.
Furthermore, we adopt the graph-based regularization on the temporal factor which captures the dynamical dependencies

between variables and holds better interpretability for time series data compared with the standard MF methods [11,52]. The 𝐖
(colored yellow) in Fig. 1 plays the role of weighting factor in the time series analysis, which refers to the AR model in this paper.
Thus, the estimated element can be further extended by

𝑌𝑖,𝑡 =
𝐾
∑

𝑟=1
𝑆𝑖,𝑟

(

∑

𝑙∈
𝑤𝑙,𝑟𝑃𝑟,𝑡−𝑙

)

(3)

where 𝑟 denotes the 𝑟th element in corresponding column of factor matrices, and  represents the length of time lag in AR process.
In specific, regarding the temporal dependency in AR process, Fig. 2 illustrates the inter-relationship between different variables

at different time stamps, which further constructs the regularization on temporal factor 𝐏 in the objective function. Herein, 𝑤𝑖−𝑗 is
the edge weight between the 𝑖th element and 𝑗th element. Thus, the graph-based temporal regularizer is formulated as

(𝐏 ∣ 𝐖, 𝛾) = 1
2
∑

𝑙∈

∑

𝑡∶𝑡>𝑙
𝐰⊤
𝑙
(

𝐏𝑡 − 𝐏𝑡−𝑙
)2 +

𝛾
2

𝑇
∑

𝑡=1

‖

‖

𝐏𝑡
‖

‖

2 (4)

where the first regularizer term works for learning the correlation between 𝑡th row and (𝑡 − 𝑙)-th row of temporal factor, and the
econd term guarantees the convexity. Besides, it is also notable that edge weights are always positive values in consideration of
nsuring the convexity of (𝐏 ∣ 𝐖, 𝛾). Here 𝛾 is a weighting coefficient, and ‖⋅‖2 denotes the Frobenius norm. Afterwards, by applying
he graph-based temporal regularizer, the holistic optimization goal is given by

min
𝐒,𝐏,𝐖≥𝟎

∑

(𝑖,𝑡)∈𝛺

(

𝑌𝑖,𝑡 − 𝐒⊤𝑖 𝐏𝑡
)2 + 𝜆𝑠

𝐿
∑

𝑖=1

‖

‖

𝐒𝑖‖‖
2 +

𝜆𝑝
2

∑

𝑙∈

∑

𝑡∶𝑡>𝑙
𝐰⊤
𝑙
(

𝐏𝑡 − 𝐏𝑡−𝑙
)2 +

𝜆𝑝𝛾
2

𝑇
∑

𝑡=1

‖

‖

𝐏𝑡
‖

‖

2 . (5)

ere 𝜆𝑠 and 𝜆𝑝 are the weighting hyper-parameters for spatial factor and temporal factor, respectively. The squared Frobenius norm
or spatial factor is a common choice of regularization to avoid overfitting. Besides, 𝛺 represents an indicator set for the observed
lements in 𝐘.

However, here comes a challenging issue that 𝐖 tends to yield to all-zero solution when updating the parameters in Eq. (4).
o alleviate it, Temporal Regularized Matrix Factorization (TRMF) [11] introduces a novel temporal regularizer to avert the
forementioned limitation. The improved temporal regularization is based on the popular time series model with the formulation
s [11]

𝐏𝑡 =
∑

𝐰⊤
𝑙 𝐏𝑡−𝑙 + 𝝐𝑡 (6)
3

𝑙∈
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Fig. 2. An example of graph structure induced by the AR temporal regularizer with  = 1, 2, 3, 4.

where 𝑙 is in the lag set . Here 𝝐𝑡 is a zero mean Gaussian noise vector. Therefore, the new temporal regularizer [11] is realized
by employing a negative log likelihood on the time series model: −logP(𝐏1,… ,𝐏𝑇 ∣ 𝐖). When the spatial factor 𝐒 and the temporal
feature matrix 𝐏 are fixed, the optimization issue only lies in the weighting coefficients part,

min
𝐖

AR(𝐏 ∣ 𝐖) + 𝜆𝑤𝑤(𝐖) (7)

where AR(𝐏 ∣ 𝐖) denotes the regularizer for AR model and 𝐖(𝐖) represents the penalty on the parameters. Hence, it is reduced
to a maximum-a-posterior (MAP) task for obtaining the optimal solution of 𝐖. Thanks to this Bayesian setting, the notorious
zero-solution issue can be prevented. Herein, the explicit formulation of the regularizer AR in Eq. (7) are given by

AR

(

𝐏𝑟 ∣ ,𝐰𝑟, 𝛾
)

= 1
2

𝑇
∑

𝑡=1+𝑀

(

𝑃𝑟,𝑡 −
∑

𝑙∈
𝑤𝑙,𝑟𝑃𝑟,𝑡−𝑙

)2

+
𝛾
2
‖𝐏𝑟‖

2, (8)

where 𝐰⊤
𝑟 and 𝐏

⊤
𝑟 are the 𝑟th rows of 𝐖 and 𝐏, respectively. Besides, 𝑀 is an auxiliary parameter defined as max(). Another

haracteristic establishment is to define the learned weighting matrix 𝐖 as diagonal, which can improve the efficiency of training and
till exhibit excellent performance for imputation and forecasting. Besides, the selection of lag set  is quite flexible. When dealing
ith long-range missing sensing data, we can set  to be large and even discontinuous to capture the dynamical and periodical
atterns without huge computational efforts. Finally, the overall objective function is formulated as

min
𝐒,𝐏,𝐖

∑

(𝑖,𝑡)∈𝛺

(

𝑌𝑖,𝑡 − 𝐒⊤𝑖 𝐏𝑡
)2 + 𝜆𝑠

𝐿
∑

𝑖=1

‖

‖

𝐒𝑖‖‖
2 +

𝐾
∑

𝑟=1
𝜆𝑝AR

(

𝐏𝑟 ∣ ,𝐰𝑟, 𝛾
)

+ 𝜆𝑤‖𝐖‖

2, (9)

which can be solved by using alternating minimization procedure. 𝜆𝑤 is the hyper-parameter for weighting matrix 𝐖. First of all,
we keep 𝐏 and 𝐖 fixed, and use alternating least square to update 𝐒. Next, for updating 𝐏, we utilize Graph Regularized Alternating
Least Squares (GRALS) proposed in [53] to obtain the best estimation of

argmin
𝐏

∑

(𝑖,𝑡)∈𝛺

(

𝑌𝑖,𝑡 − 𝐒⊤𝑖 𝐏𝑡
)2 +

𝐾
∑

𝑟=1
𝜆𝑝AR

(

𝐏𝑟 ∣ ,𝐰𝑟, 𝛾
)

. (10)

astly, with both 𝐒 and 𝐏 fixed, the optimization problem for updating 𝐖 can be split into independent updating of each row of 𝐖,
hich is given by

argmin
𝐰𝑟

𝑇
∑

𝑡=1+𝑀

(

𝑃𝑟,𝑡 −
∑

𝑙∈
𝑤𝑙,𝑟𝑃𝑟,𝑡−𝑙

)2

+
𝜆𝑤
𝜆𝑝

‖𝐰𝑟‖
2. (11)

he entire minimization can be seen as a ridge regression task solved with Cholesky factorization efficiently. For the selection of
eighting coefficients, they are empirically determined via the grid search {𝜆𝑠, 𝜆𝑝, 𝜆𝑤} ∈ {0.5, 1, 2, 5, 10, 20, 50}. Herein, we set all of

these three coefficients as 5 so that each loss component has the same scale in the optimization process.

2.3. AR-based matrix factorization

Next, the second AR-based MF method (i.e., ARMF) is proposed by designing a different temporal regularizer for learning
dynamical evolution. Fig. 3 depicts the intrinsic philosophy of ARMF, where the right part mainly shows the MF scheme on the
observed dataset and the left part presents the AR model respectively. We show the missing entries marked as dark squares in the
right part of Fig. 3. First of all, for ARMF, the temporal factor matrix 𝐏 (blue box) is formed as the product of the weight matrix 𝐖
(yellow box) and the prepositive temporal factor matrix 𝐐 (both green part and light green part) considering AR process. Herein,
different from TRMF, the AR-based part of ARMF has the form

𝐏𝑡 =
∑

𝐰⊤
𝑙 𝐐𝑡−𝑙 + 𝝐𝑡. (12)
4

𝑙∈
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Algorithm 1: Temporal Regularized Matrix Factorization (TRMF)
Input: the SHM data matrix 𝐘, the hyper-parameters 𝜆𝑠, 𝜆𝑝 and 𝜆𝑤, the iteration number 𝑁 , the tensor rank 𝐾, the time lag  and the

forecasting length 𝜏.
Output: the approximation matrix 𝐘̂1 and the predicted matrix 𝐘̂2.

1 Initialize: random 𝐏, 𝐒 and 𝐖;
2 𝐿, 𝑇 = 𝐘.size;
3 for 𝑛 = 1,⋯ , 𝑁 do
4 for 𝑖 = 1,⋯ , 𝐿 do
5 Update the spatial factor 𝐒𝑖 (Eq. (9));
6 end
7 for 𝑡 = 1,⋯ , 𝑇 do
8 Fix the spatial matrix 𝐒;
9 Update the prepositive temporal factor 𝐏𝑡 (Eq. (10));
10 end
11 for 𝑙 = 1,⋯ , do
12 Fix the spatial and temporal matrices 𝐒, 𝐏;
13 Update the weight matrix 𝐖𝑙 (Eq. (11));
14 end
15 end

// The imputation process
16 Compute 𝑌1 (Eq. (3));

// The forecasting process
17 for 𝑗 = 1,⋯ , 𝜏 do
18 Compute 𝐏𝑇+𝑗 (Eq. (6));
19 Compute 𝐘̂2 (Eq. (3));
20 end

Then the approximated spatiotemporal matrix 𝐘̂ is calculated by the inner product spatial factor 𝐒 and temporal factor 𝐏. Note
hat there is an additional part (light green box) attached in the beginning of the parallel temporal factor matrix, which can improve
he imputation performance of the data in the beginning part. Herein, the basic principle of ARMF is to inherit the graph-based
emporal regularizer and relieve the undesirable situation of zero-solution by utilizing the auxiliary matrix 𝐐. According to Eq. (12),
e build the loss function as:

min
𝐒,𝐐,𝐖

∑

(𝑖,𝑡)∈𝛺

(

𝑌𝑖,𝑡 −
𝐾
∑

𝑟=1
𝑆𝑖,𝑟

(

∑

𝑙∈
𝑤𝑙,𝑟𝑄𝑟,𝑡−𝑙

))2

+ 𝜆𝑞‖𝐐‖

2 + 𝜆𝑠‖𝐒‖2 + 𝜆𝑤‖𝐖‖

2 (13)

here 𝜆𝑞 , 𝜆𝑠 and 𝜆𝑤 are the hyper-parameters for weighting different loss components. The regularizer on matrices 𝐐, 𝐒 and 𝐖 are
esigned for avoiding overfitting. The reason behind it lies in that the regularizers can constrain the parameter estimates towards
ero and thus help the learned model escape from being too complex. The introduction of matrix 𝐐 promotes learning the correlation
mong the observed time series from multiple sensors, and prevents the issue of zero-solution.

We apply alternating minimization approach to get the best solution for this objective function in Eq. (13). The data imputation
nd forecasting tasks can be handled after the deriving these factor matrices 𝐖, 𝐐 and 𝐏. In specific, for updates 𝐖, we aim to solve
he sub-problem

argmin
𝐖

∑

(𝑖,𝑡)∈𝛺

(

𝑌𝑖,𝑡 −
𝐾
∑

𝑟=1

(

∑

𝑙∈
𝑤𝑙,𝑟 ⋅𝑄𝑡+𝑀−𝑙,𝑟

)

𝑆𝑖,𝑟

)2

+ 𝜆𝑤 ‖𝐖‖

2 , (14)

hen 𝐐 and 𝐏 are fixed. Next, for updating 𝐐, the optimization problem is presented as

argmin
𝐐

∑

(𝑖,𝑡)∈𝛺

(

𝑌𝑖,𝑡 −
𝐾
∑

𝑟=1

(

∑

𝑙∈
𝑤𝑙,𝑟 ⋅𝑄𝑡+𝑀−𝑙,𝑟

)

𝑆𝑖,𝑟

)2

+ 𝜆𝑞 ‖𝐐‖

2 . (15)

inally, the updating for 𝐒 equals to a simple matrix factorization problem as Eq. (2). The weighting coefficients are also determined
ith the grid search of {1, 10, 100, 200, 500, 800, 1000}. Here we select 500 for {𝜆𝑞 , 𝜆𝑠, 𝜆𝑤} in this paper.

.4. Comparison between ARMF and TRMF

These two AR-based MF methods (i.e., TRMF and ARMF) share many similarities, but in the meanwhile, also hold their own
haracteristics. First of all, TRMF and ARMF both originate from the general MF scheme with the incorporation of AR process.
amely, they both largely rely on the temporal regularizer for modeling the dynamical responses. Nevertheless, the difference

ies in the distinctive establishment of the temporal regularizer: (1) for TRMF, an innovative graph-based temporal regularizer is
ntroduced to estimate the best solution of temporal factor matrix; (2) for ARMF, an auxiliary matrix 𝐐 is employed for improving
5
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Fig. 3. Autoregressive-based matrix factorization for structural health monitoring data.

Algorithm 2: AR-based Matrix Factorization (ARMF)
Input: the SHM data matrix 𝐘, the hyper-parameters 𝜆𝑞 , 𝜆𝑝 and 𝜆𝑤, the iteration number 𝑁 , the tensor rank 𝐾, the time lag  and the

forecasting length 𝜏.
Output: the approximation matrix 𝐀1 and the predicted matrix 𝐀2.

1 Initialize: random 𝐏,𝐐,𝐒,𝐖;
2 𝐿, 𝑇 = 𝐘.size;
3 for 𝑛 = 1,⋯ , 𝑁 do
4 for 𝑙 = 1,⋯ , do
5 Update the weight matrix 𝐖𝑙 (Eq. (14));
6 end
7 for 𝑡 = 1,⋯ , 𝑇 do
8 Update the prepositive temporal factor 𝐐𝑡 (Eq. (15));
9 end
10 for 𝑖 = 1,⋯ , 𝐿 do
11 Compute the temporal factor matrix P (Eq. (12));
12 Update the spatial factor S𝑖 (Eq. (13));
13 end
14 end

// The imputation process
15 Compute 𝐀1 =

∑𝐾
𝑟=1 𝑆𝑖,𝑟

(
∑

𝑙∈ 𝑤𝑙,𝑟𝑄𝑟,𝑡−𝑙
)

;
// The forecasting process

16 for 𝑗 = 1,⋯ , 𝜏 do
17 Compute 𝐏𝑇+𝑗 (Eq. (12));
18 Compute 𝐀2;
19 end

the stability of temporal factor. The different strategies lead to varying performance based on theoretical and experimental analysis,
mainly discussed in computational efficiency and estimation accuracy.

Computational efficiency. In each iteration, TRMF firstly conducts MF procedure to update 𝐒, and then learns the temporal
dependency of 𝐏 and 𝐖 using AR model. However, for ARMF, four factor matrices are updated based on all of the correlated observed
entries directly, including the auxiliary matrix 𝐐. In specific, when updating weight matrix 𝐖, ARMF applies the information of both
current temporal factor matrix 𝐏 and correlated observed entries, whereas TRMF only utilizes temporal factor matrix 𝐏. Therefore,
the convergence of TRMF is always faster than that of ARMF.

Accuracy. Theoretically, with the same setup of rank and time lags, TRMF and ARMF have very close performance for recon-
struction/prediction after sufficient iterations. However, there is a slight difference between them. TRMF tends to show excellent
performance for imputed/predicted results from a global perspective with averaged errors in multi-dimensional time series, whereas
ARMF holds the strength in capturing the local details accurately (e.g., dramatic dynamics).
6
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Fig. 4. Location and layout of sensors on the studied bridge

3. Experimental analysis

In this section, the imputation and forecasting performance of these two AR-based MF methods are evaluated through using the
field-monitoring data recorded from a concrete box girder bridge. Distinctive and typical missing scenarios are simulated considering
the real-world monitoring conditions. Furthermore, we dive deep into the sensitivity analysis of model parameters (i.e., rank and
time lags) which essentially affect AR-based MF methods.

3.1. Field-tests description

The case bridge is a continuous concrete box girder bridge, comprised of 7 equal spans (i.e., 7 × 35 m). The depth of the girder
is 2,000 mm, and the width of top plate and bottom plate are 26,000 mm and 17,000 mm respectively. As shown in Fig. 4, there are
four types of sensing data collected from the investigated bridge, including temperature, humidity, displacement and stress. All these
sensors were instrumented in the two cross sections (i.e., A–A and B–B). Specifically, the sensors located on the cross section A–A
(at the pier), gather the environmental temperature, pavement temperature, humidity and longitudinal displacement. Moreover, we
receive the stress and temperature information of the bottom plate from the cross section B–B (in the mid-span).

Herein, the dataset used for experimental validation contains 270-day SHM data collected from November 6, 2020 to August 3,
2021 with 1-hour interval (i.e., 24 time stamps in one day). Fig. 5 presents the dynamic patterns of the measurement data, where
Figs. 5(a), 5(b), 5(c) and 5(d) showcase the time-series of temperature, humidity, displacement and stress, respectively. Considering
the relevance across different types of sensing data and the correlation among the sensors of the same category, we utilize all
of the measurements to conduct the experimental evaluation. In addition, we mainly investigate the imputation and forecasting
performance on temperature, displacement and stress data as representative cases. Namely, we only set the missing scenarios on
these three types of data, respectively.

3.2. Categories of missing data

Here we consider three missing scenarios simulated on the recorded SHM data: random missing, fiber missing and mixed missing.
For the first scenario (random missing), the missing entries are randomly removed, which presents discrete and arbitrarily missing
7
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Fig. 5. Time series of measured SHM data.

time histories. The random missing is usually induced by power fluctuation in the real-world monitoring. The second case (fiber
missing) describes that missing data always show continuous corruptions over a period (e.g., one-day or several continuous days),
which usually occurs due to sensors/system check, power off and software failure. To set the fiber missing experiments, we remove
a certain proportion of continuous data with constant missing length ℎ. Lastly, it is more common to simultaneously observe the
andom missing and the fiber missing appearing in the long-term monitoring period. Therefore, we define the mixed missing scenario
hich couples random missing and fiber missing and generates a more practical missing condition. The temperature data can be
aturally organized as a matrix (16 sensors × 6480 time stamps).

In order to evaluate the imputation and forecasting performance of our proposed methods, we define a binary indicator matrix
∈ R𝐿×𝑇 to record the missing positions, where 1 represents the observed entry while 0 marks the missing value. Therefore, given

he fully-observed data matrix 𝐘∗, the sparse data matrix with missing entries 𝐘 is given by 𝐘∗⊙, where ⊙ denotes the Hadamard
roduct. Besides, we define an accuracy index to evaluate the effectiveness of AR-based MF methods, which is the root mean square
rror (RMSE) between the estimated results and the ground truth normalized by the root mean square of the target measurements.
he formulation is given by

𝜌 =

⎛

⎜

⎜

⎜

⎜

⎝

1 −

√

1
𝑛
∑𝑛

𝑖=1

(

𝑌𝑖 − 𝑌 ∗
𝑖

)2

√

1
𝑛
∑𝑛

𝑖=1
(

𝑌 ∗
𝑖
)2

⎞

⎟

⎟

⎟

⎟

⎠

× 100%. (16)

Here 𝑌𝑖 and 𝑌 ∗
𝑖 are the reconstructed/predicted value and ground truth value at the corresponding position 𝑖 respectively, where

he measurement is missing or to be predicted. In addition, 𝑛 is the total number of entries that need to be reconstructed/predicted.

.3. Missing data imputation

As mentioned in Section 2, ARMF and TRMF share the similar graph structure of AR model, and the performance of them are
lose to each other when keeping same model parameters of the factor matrices. The testing results of imputation under random
issing scenarios further demonstrate that these two methods have similar accuracy when missing rate is lower than 70%, as shown

n Table 1. However, when the missing rate surpasses 70% (e.g., 80%), TRMF still performs robustly and reconstructs the missing
easurements precisely, while ARMF shows inferior results. Hence, we apply TRMF to examine the imputation performance in
ifferent missing scenarios. Among all the experiments, the matrix rank is set as 8 and the maximum time lag is defined as 8.

For random missing scenarios, the sensor S-2 is selected as a typical example to present the imputation performance which is
hown in Fig. 6. The overall missing rate 𝜂 ranges from 20% to 80% with increment of 20%. We observe that the imputation results
atch well with ground truth, even when occurring large missing rate (i.e., over 50%). The excellent performance validates the

ffectiveness of AR-based matrix factorization methods, for capturing the nonlinear dynamics of time series data.
Secondly, for fiber missing, we define the missing rates covering from 10% to 50% increased by 10% for each scenario. Besides,

e also investigate the influence of missing length ℎ, which is defined as ℎ = {1, 4, 7, 15} days. As shown in Fig. 7, the imputation
esults of four different missing rates 𝜂 with three missing length ℎ demonstrate that AR-based MF approaches hold the remarkable
8
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Table 1
Comparison of imputation accuracy between ARMF and TRMF under random missing scenarios.
Missing rate 𝜂 [%] Accuracy 𝜌 [%]

TRMF ARMF

10 99.70 99.50
20 99.59 99.33
30 99.36 98.83
40 98.95 98.55
50 98.93 98.08
60 98.71 96.21
70 97.87 93.39
80 90.47 80.72

Fig. 6. The imputation results for four random missing cases of S-2. Note that the shading areas represent the time periods where data missing occurs, while
the white areas denote that the strain time series are successfully recorded. Figs. 6(b), 6(d), 6(f), 6(h) are the zoom-in descriptions for four random missing
scenarios.

capability for accurately modeling nonlinear time series data in general. The larger discrepancy can be observed in the extreme
case (i.e., 𝜂 = 40%), especially with the larger missing length ℎ.

Furthermore, we describe the details of the model performance and compare the accuracy of different missing scenarios with
distinctive missing rates 𝜂 and fiber missing length ℎ, which are listed in Table 2. It is obvious that the overall trend is the estimation
accuracy decreases when the missing rate 𝜂 increases under the same missing rate condition, as well as when the missing length ℎ
enlarges with the same missing rate 𝜂. Nevertheless, there exist lower accuracy marked in bold in Table 2, which is caused by the
data missing of all sensors occurs during the same time period. To figure out the effect of such harsh situation, we introduce a new
9
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Fig. 7. The zoom-in imputation results for 12 fiber missing cases of S-2. Note that the shading areas represent the time periods where data missing occurs,
while the white areas denote that the strain time series are successfully recorded. The symbol ‘‘d’’ denotes ‘‘days’’.

Table 2
Accuracy for different missing scenarios.
Missing rate 𝜂 [%] Accuracy 𝜌 [%]

ℎ = 1d ℎ = 4d ℎ = 7d ℎ = 15d

10 98.24 95.93 95.62 95.79
20 97.93 95.59 95.52 92.76
30 97.67 95.00 94.04 92.44
40 96.77 90.19 91.34 91.42
50 94.33 78.64 69.16 63.04

index 𝜅 to represent the proportion of data missing of all sensors in the same time. Herein, we test 100 random missing scenarios
with the same overall missing rate (𝜂 = 50%) but different 𝜅 by running TRMF method. The relationship between the index 𝜅 and
the accuracy 𝜌 is exhibited in Fig. 8, where the accuracy falls off with increasing 𝜅.

In addition, while keeping all model parameters fixed, we further test two cases for mixed missing: (1) 30% fiber missing (ℎ = 4d)
combined with 20% random missing; (2) 20% fiber missing (ℎ = 4𝑑) mixed with 30% random missing. The representative imputation
results of the sensor S-2 are shown in Fig. 9. Generally, the imputed data produces remarkable agreement with the ground truth.
Moreover, the results in Case 2 own larger errors in data missing areas due to the larger 𝜅 of Case 2 compared with that of Case 1.

3.4. Forecasting with missing data

Thanks to the employment of AR process, we can easily predict the future structural response based on the observed time
series data, even when the measurement data is imperfect. The dataset is split into two parts, where the first 75% segment is
extracted for imputation and the rest 25% data is used for forecasting. Herein, we evaluate the prediction performance by testing
the mixed missing scenario with 20% random missing and 10% fiber missing. The model parameters are same as those in Section 3.3
10
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Fig. 8. Linear regression of accuracy and 𝜅.

Fig. 9. The imputation results for two mixed missing cases of S-2. Note that the shading areas represent the time periods where data missing occurs, while the
white areas denote that the temperature time series are successfully recorded.

Fig. 10. The imputation and forecasting result for mixed missing at S-2. Note that the shading areas with dim-gray and light-blue represent the time periods
where data missing occurs in observed period and predicted period respectively, while the white box areas denote that the temperature data are successfully
recorded.

based on TRMF. In addition, we test 4 forecasting conditions with different steps (i.e., {2, 5, 10, 20}) in considering of the significant
effect of the forward steps for prediction. The results are shown in Fig. 10. Both the imputed (i.e., before May. 26) and predicted
(i.e., after May. 26) data well captures the overall dynamical patterns. Moreover, with the multi-step increasing, the difference
between estimated results and the ground truth becomes larger but is still acceptable.
11
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Fig. 11. The comparison of imputation performance with respect to different ranks and different lags.

3.5. Analysis of rank and time lags

Considering AR-based MF methods, the selection of rank and time lags is central to the performance of reconstruction/prediction.
We implement the comparison experiments by using TRMF approach. Firstly, for rank analysis, we quantitatively investigate the
performance of different ranks (i.e., {4, 8, 12, 16}) under different random missing scenarios with 𝜂 ranging from 10% to 80%. As
shown in Fig. 11(a), the overall trend is that higher ranks lead to higher accuracy when missing rate is less than 60%, but the accuracy
improvement becomes mild and even worse with larger rank when 𝜂 is larger than 60%. Obviously, there exists an optimal rank for
the best imputation performance. Secondly, for time lags, we test and compare the performance by choosing 5 distinctive time lags
under different random missing scenarios with 𝜂 from 10% to 60%. The results are presented in Fig. 11(b). Generally, the models
of longer time lags exhibit better imputation performance. Thus, the longer time lags can better capture the temporal dependencies
due to more dynamical information learned and incorporated.

3.6. Extension to general SHM data

We also test on the displacement and stress data to evaluate the adaptation of AR-based MF methods to different types of
monitoring data. Herein, we consider the 30% random missing scenario for testing the imputation performance. As shown in Fig. 12,
our proposed approaches manifest the great match between the ground-truth observed data and the imputation values, which further
validates their excellent capability of imputation for other types of SHM data as well. Therefore, the versatility is embraced by the
AR-based MF methods, regardless of the magnitude or the variation of the measured data.

4. Conclusions

Inspired by the intrinsic low-rank structure in SHM data, this paper introduces two AR-based MF methods for sensing data
imputation and prediction. These methods integrate the concept of AR process with MF scheme, which realize spatiotemporal
learning and explicitly temporal dependency modeling simultaneously. In the experimental validation, we evaluate the performance
of AR-based approaches under various missing scenarios, even the extremely large-scale missing conditions. The excellent reconstruc-
tion/prediction results demonstrate the effectiveness of AR-based MF methods with satisfactory computational efficiency. Besides,
the significant analysis on model hyper-parameters provides the reasonable range for the selection of rank and time lags. In the
12
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Fig. 12. The imputation results of other types of monitoring data.

future, based on the current investigation, we can further incorporate the physical laws into the AR-based MF model, which will
make the learning process more robust and faster to converge.
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