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a b s t r a c t

There has been increased interest in missing sensor data imputation, which is ubiquitous in
the field of structural health monitoring (SHM) due to discontinuous sensing caused by
sensor malfunction. Recent development in Bayesian temporal factorization models for
high-dimensional time series analysis has provided an effective tool to solve both imputa-
tion and prediction problems. However, for large datasets, the default Bayesian temporal
factorization model becomes inefficient since the model has to be fully retrained when
new data arrives. A potential solution is to train the model using a short time window cov-
ering only most recent data; however, by doing so, we may miss some critical dynamics
and long-term dependencies which can only be identified from a longer time window.
To address this fundamental issue in temporal factorization models, this paper presents
an incremental Bayesian matrix/tensor learning scheme to achieve efficient imputation
and prediction of structural response in long-term SHM. In particular, a spatiotemporal
tensor is first constructed followed by Bayesian tensor factorization that extracts latent
features for missing data imputation. To enable structural response forecasting based on
long-term and incomplete sensing data, we develop an incremental learning scheme to
effectively update the Bayesian temporal factorization model. The performance of the pro-
posed approach is validated on continuous field-sensing data (including strain and temper-
ature records) of a concrete bridge, based on the assumption that strain time histories are
highly correlated to temperature recordings. The results indicate that the proposed prob-
abilistic tensor learning framework is accurate and robust even in the presence of large
rates of random missing, structured missing and their combination. The effect of rank
selection on the imputation and prediction performance is also investigated. The results
show that a better estimation accuracy can be achieved with a higher rank for random
missing whereas a lower rank for structured missing.

� 2021 Elsevier Ltd. All rights reserved.

1. Introduction

High-quality data plays a pivotal role in structural health monitoring (SHM) for condition assessment, damage detection,
and decision making. However, during long-term monitoring, it is inevitable for imperfect and corrupted sensor measure-
ments, especially in a harsh and noisy environment, which calls for effective approaches for imputation/recovery missing
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and noisy data. Furthermore, in order to conduct real-time early-warning of structural deterioration or even disastrous fail-
ure, forecasting/prediction of structural response has also received considerable attention. The general idea of time series
analysis, in the context of imputation and forecasting, is to find key dynamic patterns from observations and establish a map-
ping function between the historical records and the estimation. Nevertheless, these tasks are rather challenging on account
of complex spatiotemporal dependencies and inherent difficulty in large-scale and nonlinear characteristics of SHM data,
especially in practical applications.

There have been a number of attempts made to solve the data imputation and forecasting problems in the SHM commu-
nity. On one hand, in the missing data recovery research, compressive sensing is one common and typical approach to
rebuild the entire temporal signals based on the sparsity assumption of the data in certain feature spaces [1–5]. Another
interesting stream for data imputation is the use of probability methods (e.g., Gaussian process (GP) thanks to its great inter-
pretation capacity for nonlinear dynamic processes), which has been comprehensively studied in outlier detection [6,7],
model calibration/updating [8–16] and system identification [17–22]. For instance, Wan et al. [23] employed Bayesian
multi-task learning with multi-dimensional GP priors to recover SHM data. Chen et al. [24] explored the possibility of prob-
ability density function estimation for data loss compensation with warping transformations. Some recent surveys have
reported the great potential in data imputation by considering both the sensor information and time series, which is usually
conceptualized as spatiotemporal. Yang et al. [25] developed a low-rank matrix completion method with ‘1-norm and a
nuclear norm for imputation of random missing data. This approach is powerful but has limitations due to an ideal assump-
tion that the data is randomly missing, which is less common in practical SHM (e.g., data might be missing for a continuous
duration). Chen et al. [26] investigated the inter-sensor relationship of stochastic structural responses with non-parametric
copulas, which flexibly captured the spatial dependency for strain data. Moreover, the sequential broad learning (SBL)
approach was recently presented for efficiently reconstructing structural response [27], which is however short for spatial
consideration. On the other hand, for the sake of data-driven structural response forecasting, the majority of existing
research focus on the time-dependent response approximation based on high-quality collected data (e.g., data missing is
not considered). In particular, the widely-accepted and well-studied methods are based on the linear combination of previ-
ous observations, for example, dynamic linear models [28–30] and autoregressive (AR) models [31–33]. Distinctively, Wan
and Ni [34] examined the capability of a GP-based Bayesian approach for underlying nonlinear dynamic system response
prediction from a statistic perspective. Besides, deep learning techniques, such as the convolutional neural network (CNN)
[35–37], the long-short term memory (LSTM) network [38,39], and the variational autoencoder (VAE) [40], have also been
proven to be a decent alternative for extracting spatial features for dynamic response reconstruction and prediction.

Despite the rapid development of data science in SHM, there still remain three representative challenges for the specific
aim of data imputation and response forecasting. Firstly, very little work has been devoted to the spatial dependency and
correlation in the time series analysis. The second is the lack of consideration on vast and continuous missing scenarios
(e.g., data missing for a long continuous period such as one day or consecutive days). Lastly, almost all of the present studies
on response forecasting are based on high-quality data instead of imperfect measurements with missing values. To this end,
in light of the recent renaissance in tensor learning [41–43], which has already greatly contributed to image processing [44–
49], recommender systems [50–52], and traffic data analysis [53–63]. In the context of SHM, we can naturally consider the
data as multivariate time-series matrix and then apply temporal factorization models (e.g., [61]) where the low-rank repre-
sentation can effectively characterize the complex spatial and temporal dependencies rooted in the data.However, in order
to keep the model up-to-date, retraining is typically needed given streaming data: the same model deeds to be retrained
based on the complete recorded data whenever new data arrives to the system, resulting in computational inefficiency.
The growing data size demands extensive computation especially for large-scale long-term datasets. This poses a critical
challenge for SHM which requires efficient models to account for continuous monitoring. To address these issues, in this
paper, we inherit the modeling idea for matrix/tensor factors based on Chen and Sun [61] and propose an incremental Baye-
sian learning scheme that enables imputation of SHM data and forecasting of structural response in a long-term horizon for
temporal/continuous SHM, which is the limitation of [61]. In addition, this research sheds new light on integrating physics
into the tensor model inspired by the strong correlation between strain data and temperature data [64–67,30], resulting in
an interpretative low-rank data structure. Instead of training on the full data ever recorded, we propose an incremental
updating scheme leveraging locally streaming data, resulting in more efficient and accurate imputation/prediction for
long-term SHM data. In particular, we employ the proposed learning approach for (1) reconstruction of spatiotemporal miss-
ing data in SHM and (2) forecasting of structural response under the scenario of missing/incomplete data. It is worthy to
mention that, different from [25], tensor factorization in the context of Bayesian inference [61] provides a principled selec-
tion mechanism for suitable likelihood models and allows for uncertainty quantification in parameter estimation and pre-
diction [68].

The main contribution of this paper can be summarized as follows. Firstly, to the best of our knowledge, it is the first time
to realize response forecasting with incomplete data in SHM applications, based on reliable latent features instead of directly
using the corrupted data. Secondly, by constructing one-dimensional time series data into a second- or third-order tensor
structure (e.g., sensor locations � time stamps), we can easily capture the spatiotemporal features of the data for accurate
imputation and forecasting. Thirdly, the physical relationship between strain and temperature is introduced to optimize the
tensor structure. Fourthly, we propose an incremental learning scheme to tackle practical continuous monitoring problems
and speed up the tensor factorization process through efficient updating. We further validate the proposed approach on a
concrete bridge with multi-year recordings of strain and temperature time histories.
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The rest of the paper is organized as follows, in addition to this Introduction section. Section 2 begins by laying out the
theoretical dimensions of this work, and is concerned with the proposed methodology. In Section 2.1, we describe the prob-
lem definition and general principle of data imputation and response forecasting under the data missing scenarios. In Sec-
tions 2.2, 2.3 and 2.4, we circumstantially present the Bayesian generation and inference procedure, as well as the
autoregressive process for temporal feature modeling. In Section 2.5, we introduce the incremental Bayesian tensor learning
architecture and two adaptive factor updating stages. In Section 2.6, the extension to Bayesian high-order tensor learning is
discussed. Section 3 elaborates the experimental validation results of the proposed method, focusing on three key themes:
imputation and forecasting performance with respect to different missing rates, uncertainty quantification and rank analysis.
Section 4 concludes the current work and the outlook of future directions.

2. Methodology

In this section, we formulate the problem of SHM data imputation and response forecasting in the context of incremental
Bayesian tensor learning, and present the spatiotemporal dependency modeling procedure via matrix factorization.

2.1. Problem description

The goal of continuous/steaming SHM data imputation and forecasting is to estimate the missing values and predict the
future structural response given partially observed data collected from a sensor network. The multidimensional time series
data, with missing values, can be represented by the second-order tensor Y 2 RM�T , where M denotes the number of sensor
locations and T is the number of time stamps for a certain continuously monitoring period, or the third-order tensor
Y 2 RM1�M2�T , where M1 and M2 might represent the number of sensors in two different spatial directions. Let us take the
second-order tensor (matrix) for illustration. The imputation process aims to firstly learn a factorized spatial feature U
and a temporal feature X based on the observed data Y, and then reconstruct the response with imputed values. Afterwards,
given y:;t signifying the multivariate data at time t, the course of response forecasting utilizes the well-trained spatial factor U
and the updated temporal factor X� to map L (P 1) historical sensing data to future T (P 1) structural responses, given by

y:;t�Lþ1; . . . ; y:;t

� �
�!X

�

U
y:;tþ1; . . . ; y:;tþT
� �

ð1Þ

which essentially establishes a temporal forecasting process.

2.2. Hierarchical Bayesian modeling for matrix decomposition

Naturally, spatiotemporal SHM data observed from M sensor locations with T time stamps can be constructed in the form
of a two-dimensional tensor, Y 2 RM�T . Due to inevitable data missing in practical applications, we define an indicator set for
the observed elements in Y as X ¼ i; tð Þjyi;tisobserved

� �
. To characterize the spatiotemporal dependencies, we employ the

general idea of second-order tensor (matrix) decomposition to approximate the multidimensional data through two factor
matrices, namely,

Y � U>X; ð2Þ

where U 2 RK�M is the spatial latent factor whose columns are ui’s, and X 2 RK�T is the temporal latent feature whose col-
umns are xt ’s. Here, K is a positive integer referring to the tensor rank. Element-wise, yi;t is estimated by the inner product of

ui and xt , where ui 2 RK represents the latent spatial feature at sensor i and xt 2 RK is the latent temporal embedding at time
t, expressed as

yi;t � u>
i xt : ð3Þ

Fig. 1. A graphic illustration of matrix factorization. Note that the white boxes represent the missing values while the grey boxes denote the observed data.
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The basic concept of matrix factorization is illustrated in Fig. 1.
Next, we introduce the fully Bayesian method for tensor learning [61]. To begin this process, the likelihood of the

observed SHM data yi;t is given by:

yi;t � N u>
i xt; s�1

�

� �
; ð4Þ

where N �ð Þ denotes the Gaussian distribution with mean u>
i xt and precision s�. Secondly, to model the spatial factor, the

prior distribution over the spatial feature vectors (i.e., ui) is assumed to be multivariate Gaussian, viz.,

ui � N lu;K
�1
u

� 	
: ð5Þ

We further place conjugate Gaussian-Wishart priors on the spatial feature parameters Hu ¼ lu;Ku
� �

, i.e.,mean vector

lu 2 RK andprecision matrix Ku 2 RK�K , written as [61]

p Hujl0; b0;W0; v0
� �

¼ p lujKu
� �

p Kuð Þ ¼ N lujl0; b0Kuð Þ�1
� 	

W KujW0; v0ð Þ: ð6Þ

Here, l0; b0;W0;v0 are hyper-parameters; W �ð Þ denotes the Wishart distribution with v0 degrees of freedom and a K � K
scale matrix W0, namely,

W KujW0; v0ð Þ ¼ 1
C
jKuj

v0�K�1
2 exp �1

2
Tr W�1

0 Ku

� 	
 �
; ð7Þ

where C is the normalizing constant and Tr(�) denotes the matrix trace defined as the sum of all the elements on the main
diagonal of the matrix.

The second stage of model generation is to deal with the precision parameter s� as shown in Eq. (4). In particular, a con-
jugate Gamma prior over s� is introduced to make the generative model robust in consideration of the indeterminate noise
effect in SHM data:

s� � Gamma a0; b0ð Þ: ð8Þ

Here, we define Hs ¼ a0; b0f g where a0 and b0 represent the shape parameter and the rate parameter, respectively. The
PDF of s� has the form as follows:

p s�ja0; b0ð Þ ¼ ba0
0

C a0ð Þ s
a0�1
� exp �b0s�ð Þ: ð9Þ

Although probabilistic modeling of the spatial factors is straightforward, it is tricky to capture the time-evolving patterns
and predict the dynamic trends in the Bayesian learning. Here, we consider incorporating the AR process into the matrix/ten-
sor factorization model for describing the temporal dependencies [61]. Generally, an AR model is characterized by a time lag
set and a weight parameter vector. However, different from the traditional AR model which is more applicable for low-
dimensional data, we make two modifications to handle the multi-dimensional time-series issue. The first distinction is that
we introduce a flexible AR structure on time lags L [53]. Instead of applying a small-size lag set (e.g., L ¼ 1f g) which only
learns the simple temporal patterns (e.g., daily similarity), we try to use more complex time lags to infer seasonal or yearly
trends for long-term forecasting. The second alteration is changing the tensor structure of AR model parameters for conve-
nience. Let the time lags set be L ¼ l1; l2; . . . ; ldf g, where d is the order of the AR model. In our case, the weight parameter Aj

(j 2 1;2; . . . ; df g) should be a K � K matrix since the elements in the AR model are formed as column vectors (i.e., xt 2 RK�1)
in the temporal feature matrix X. The graphic illustration is shown in Fig. 2 with the example of L ¼ 1;3f g.

In addition, there is no diagonal restriction on Aj due to the complicated causal relationship between factors. Thus, the
reorganized formulation of the AR process can be written as:

xtþ1 � A1xtþ1�l1 þ A2xtþ1�l2 þ � � � þ Adxtþ1�ld ¼ A1;A2; . . . ;Ad½ �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
A>

x>
tþ1�l1

;x>
tþ1�l2

; . . . ; x>
tþ1�ld

h i>
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ztþ1

: ð10Þ

Fig. 2. Auto-regressive model for temporal dependencies.
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For simplicity, we define a time-invariant matrix A 2 R Kdð Þ�K and a historical observation vector ztþ1 2 R Kdð Þ�1 shown in Eq.
(10). As a result, by assuming the prior distribution for the temporal factor xt as multivariate Gaussian, we have the mean
vector as A>zt for the forecasting process. Therefore, the piecewise modeling of the temporal feature matrix is summarized
as:

xt � N l
�
x;R

�
x

� 	
�

N 0; Ixð Þ; if t 2 1;2; . . . ; ldf g;
N A>zt;R
� �

; otherwise;

(
ð11Þ

where 0 2 RK�1 is a zero vector and Ix 2 RK�K is an identity matrix.
Likewise, a conjugate Matrix Normal Inverse Wishart prior is applied to the hyper-parametersHx ¼ A;Rf g in the forecast-

ing process [61]:

p HxjK0;V0;W0;v0ð Þ ¼ p AjRð Þp Rð Þ ¼ MN AjK0;V0;Rð ÞIW RjW0;v0ð Þ; ð12Þ

where MN �ð Þ is Matrix Normal distribution and IW �ð Þ denotes Inverse Wishart function.Herein, the Inverse-Wishart distri-
bution R � IW W0;v0ð Þ is equivalent to R�1 � W W�1

0 ;v0
� �

. Besides, the probability density function (PDF) for A is given by

p AjK0;V0;Rð Þ ¼ 2pð Þ�
K2d
2 jV0j�

K
2 jRj�

Kd
2 exp �1

2
Tr R�1 A� K0ð Þ>V0 A� K0ð Þ
� �� �
 �

; ð13Þ

in which K0 2 R Kdð Þ�K is the mean matrix parameter, V0 2 R Kdð Þ� Kdð Þ represents the row-variance matrix, and R 2 RK�K denotes
the column-variance matrix parameter.

The graphic model representing the generative Bayesian tensor learning described above is depicted in Fig. 3. The grey
node yi;t ( i; tð Þ 2 X) is the observed SHM data, while ui;xt and s� are the parameters in the likelihood distribution 4. In

our experiments, we initialize the scalars as: b0 ¼ 1;v0 ¼ K; a0 ¼ b0 ¼ 1� 10�6. The vector l0 and the matrix K0 are set as
a zeros. The remaining matrices W0;V0;W0f g are all set to be identity matrix but with different dimensions.

It is notable that the proposed Bayesian matrix/tensor learning approach shares similarity with the linear Gaussian state
space model (LGSSM) [69,70] and the dynamic linear model (DLM) [29,71,72], especially in the context of temporal feature
modeling.However, the Bayesian matrix/tensor learning builds the temporal dependency over the continuous latent features
X as shown in Eq. (2), while LGSSM and DLM operate directly on the raw incomplete data through latent learning. Thus, sat-
isfactory flexibility and scalability are two distinctions that differentiate our method from LGSSM. Firstly, the selection of
time lags of our method is more flexible compared with LGSSM and DLM. For example, the time lags of our model can be
multiple and discontinuous (e.g., 1;2;144f g), more capable of representing the periodicity or seasonality. Secondly, the tra-
ditional DLM [71,72] has always encountered the computational inefficiency issue when handling high-dimensional data

[53]. Specifically, the classical DLM based on the Kalman filtering scheme exhibits O LM2T þ L3T
� 	

complexity, where L is

the number of latent parameters and usually larger than the number of time series M [73]. However, our method can reduce
the number of trainable parameters, reduce computational complexity, and offer a scalable choice for data imputation and
forecasting, based on a low rank structure and the temporal latent factor modeling scheme (e.g., since the rank K is generally
smaller or much smaller than M, the number of resulting latent parameters of our method is also less than L). Thirdly, when

Fig. 3. Probabilistic graphic model for Bayesian matrix/tensor learning [61].
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there exists missing data at a high ratio (e.g.,P 10%), challenges arise for LGSSM and DLM to reach satisfactory imputation/-
forecasting accuracy since the temporal modeling is directly performed over the raw data under missing conditions. One the
contrary, our method tackles this issue via modeling the temporal dependency based on the decomposed latent features
which are continuous.

2.3. Missing data imputation

Following the Bayesian modeling formulation in [44,74], we infer the predictive distribution over missing entries below:

p y�i;t jY;H
u
0;H

x
0

� 	
¼
ZZ

p y�i;t jui;xt ; s�
� 	

p U;X; s�jY;Hu;Hx;Hsð Þp Hu;Hx;HsjHu
0;H

x
0

� �
d U;X; s�f gd Hu;Hx;Hsf g ð14Þ

where Hu
0 ¼ l0; b0;W0;v0

� �
and Hx

0 ¼ K0;V0;W0;v0f g are assemblies of the hyper-parameters. Noteworthy, the exact solu-
tion of Eq. (14) cannot be obtained analytically due to the intricate integration over all the latent variables and hyper-
parameters. Therefore, we seek to use Markov Chain Monte Carlo (MCMC) sampling [75] to estimate the distributions.
The underlying logic of MCMC sampling is that we can draw dependent sequences of samples representing the posterior dis-
tribution. Thus, we can describe the predictive distribution in Eq. (14) as:

p y�i;t jY;H
u
0;H

x
0

� 	
� 1

N

XN
n¼1

p y�i;t ju
nð Þ
i ;x nð Þ

t ; s nð Þ
�

� 	
; ð15Þ

where u nð Þ
i ;x nð Þ

t ; s nð Þ
�

n o
denote the nth simulated sample from the posterior distribution of interest. Herein, we introduce the

Gibbs sampling [76] to generate the posterior samples, which is a sequential sampling approach by sweeping through each
variable to sample from its conditional distribution with the remaining variables fixed to their current values. In addition,
thanks to the use of conjugate priors in the Bayesian model generation, we can easily derive the conditional distributions
since the posterior distribution is in the same probability distribution family as the prior distribution. The Gibbs sampling
procedure for all the parameters and hyper-parameters are described below.

2.3.1. Sampling spatial features
We sample the spatial hyper-parameters Hu first. Considering the likelihood in Eq. (5) and the prior in Eq. (6), the pos-

terior distribution is given by a Gaussian-Wishart distribution [61]:

p lu;KujU;Hu
0

� �
¼ N lujl�

0; b�
0Ku

� ��1
� 	

W KujW�
0; v

�
0

� �
/
YM
i¼1

N uijlu;K
�1
u

� �
�N lujl0; b0Kuð Þ�1

� 	
�W KujW0; v0ð Þ ð16Þ

where

l�
0 ¼ b0l0 þM�u

b0 þM
;b�

0 ¼ b0 þM;v�
0 ¼ v0 þM; W�

0

� ��1 ¼ W�1
0 þM�Sþ b0M

b0 þM
l0 � �u
� �

l0 � �u
� �>

: ð17Þ

Here, �u and �S are two statistical parameters defined as:

�u ¼ 1
M

XM
i¼1

ui; �S ¼ 1
M

XM
i¼1

ui � �uð Þ ui � �uð Þ>: ð18Þ

The conditional distribution over spatial features ui, conditioned on temporal features X, partially observed sensor data Y,
precision s� and all other hyper-parameters of interest can be obtained [61]:

p uijY;X;Hu; s�ð Þ ¼ N uijl�
u; K�

u

� ��1
� 	

/
YT
t¼1

N yi;t ju>
i xt ; s�

� �
�N uijlu; Kuð Þ�1

� 	
; ð19Þ

where

K�
u ¼ Ku þ s�

XT
t¼1

xtx>
t ;l

�
u ¼ K�

u

� ��1 s�
XT
t¼1

xtyi;t þ Kulu

 !
; i; tð Þ 2 X: ð20Þ

2.3.2. Sampling temporal features
Following the sampling procedure for spatial features, we infer the conditional distribution of the hyper-parameters Hx

with the likelihood in Eq. (11) and the prior in Eq. (12), namely,

p A;RjX;Hx
0

� �
¼ MN AjK�

0;V
�
0;R

� �
IW RjW�

0; v
�
0

� �
/
YT
t¼1

N xt jl
�
x;R

�
x

� 	
�MN AjK0;V0;Rð Þ � IW RjW0;v0ð Þ: ð21Þ

Matching the coefficients of the hyper-parameters in Eq. (21), we can obtain the updated parameters as follows [61]:
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V�
0 ¼ V�1

0 þ Q>Q
� 	�1

;K�
0 ¼ V�

0 V�1
0 K0 þ Q>P

� 	
;v�

0 ¼ v0 þ T � ld;W
�
0 ¼ W0 þ P>Pþ K>

0V
�1
0 K0 � K�

0

� �> V�
0

� ��1
K�

0: ð22Þ

These two matrices P 2 R T�ldð Þ�K and Q 2 R T�dð Þ� Kdð Þ are defined for simplicity and convenience, expressed as

P ¼ x>
ldþ1; . . . ; x

>
T

h i>
;Q ¼ z>ldþ1; . . . ; z

>
T

h i>
: ð23Þ

After sampling the hyper-parameters, we further derive the conditional distribution of the temporal factor xt , whose pos-
terior distribution follows Gaussian, given by

p xtjY;U;Hx; s�ð Þ ¼ N xt jl�
x;R

�
x

� �
/
YM
i¼1

N yi;tju>
i xt ; s�

� �
�N xt jl

�
x;R

�
x

� 	
: ð24Þ

Nevertheless, sampling xt is complicated due to the piecewise Bayesian modeling on the temporal feature parameters.
Here, we introduce four auxiliary variables C;D;E; Ff g considering the function of the AR process. The general updating for-
mulation can thus be written as [61]

R�
x ¼ s�

XM
i¼1

uiu>
i þ Cþ D

 !�1

;l�
x ¼ R�

x s�
XM
i¼1

uiyi;t þ Eþ F

 !
; i; tð Þ 2 X; ð25Þ

where the variables C and E are given by

C ¼
Xd

j¼1;ld<tþlj6T

A>
j R

�1Aj; if t 2 1;2; . . . ; T � l1f g;

0; otherwise;

8>><
>>: ð26Þ

E ¼
Xd

j¼1;ld<tþlj6T

A>
j R

�1/tþlj
; if t 2 1;2; . . . ; T � l1f g;

0; otherwise;

8>><
>>: ð27Þ

with /tþlj
being defined as

/tþlj
¼ xtþlj �

Xd
p¼1;p–j

Apxtþlj�lp : ð28Þ

In addition, the variables D and F can be written as

D ¼
Ix; if t 2 1;2; . . . ; ldf g;
R�1; otherwise;



ð29Þ

F ¼
0; if t 2 1;2; . . . ; ldf g;

R�1� �Xd
p¼1

Apxt�lp ; otherwise:

8><
>: ð30Þ

2.3.3. Sampling precision
With the combination of the likelihood in Eq. (4) and the prior in Eq. (8), the posterior distribution of precision s� can be

represented by a Gamma distribution [61], namely,

p s�jY;U;X;Hsð Þ ¼ Gamma a�0; b
�
0

� �
/
YM
i¼1

YT
t¼1

N yi;tju>
i xt ; s�

� �
� Gamma s�ja0; b0ð Þ; ð31Þ

where the hyper-parameters a�
0 and b�

0 can be expressed as

a�0 ¼ 1
2

X
i;tð Þ2X

si;t þ a0; b
�
0 ¼ 1

2

X
i;tð Þ2X

yi;t � u>
i xt

� �2 þ b0: ð32Þ

Note that si;t is 1 if i; tð Þ 2 X and 0 otherwise.
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2.4. Structural response forecasting

We predict the future structural response yi;tþ1 based on both incrementally updated spatial feature U (see Fig. 4) and
temporal feature xtþ1 (see Fig. 1), but set a periodical updating constraint on forecasting the spatial attribute considering
computational efficiency. Namely, after getting well-trained parameters from the imputation process, we keep X;Af g
unchanged for the forecasting step and only view U;R;xtþ1; s�f g as the updated targets. Moreover, to predict yi;tþ2 sequen-
tially, we provide the observed yi;tþ1 as an input and conduct the above procedure iteratively. The general philosophy of
Bayesian forecasting can be illustrated by two steps as follows.

The first step is to learn U;R;xt ; s�f g from the historical observation y:;t . The model generative formulations are expressed
as:

yi;t � N u>
i xt; s�1

�

� �
; xt � N l

�
x;R

�
x

� 	
;R
�
x � IW W0;v0ð Þ; s� � Gamma a0; b0ð Þ; ð33Þ

where l
�
x is a known parameter denoted as A>zt . Note that there is possible missing values in y:;t . The model inference using

Gibbs sampling for this step is divided into three parts. To begin with, if t is at the end of batch window, we need to sample
the spatial factor and its hyper-parameters referring to Eqs. (16) and (19). Secondly, for the temporal feature, we do sampling

on the hyper-parameter R
�
x

� 	�1
� W W�

0

� ��1
;v0 þ 1

� 	
where

W�
0 ¼ W0 þ xt � A>zt

� �
xt � A>zt
� �>

: ð34Þ

Then we sample the future temporal factor xt � N l
�
x

� 	�
; R

�
x

� 	�� 	
with

R
��
x ¼ s�

XM
i¼1

uiu>
i þ R

��1
x

 !�1

;l
��
x ¼ R

��
x s�

XM
i¼1

uiyi;t þ R
��1
x A>zt

 !
: ð35Þ

The third part is the sampling of the precision parameter s� using Eq. (32).
After generating samples of xt , the second step for forecasting is that we run Gibbs sampling on the prediction for mul-

tiple iterations based on y:;tþ1 � U> A>ztþ1
� �

, and get the average of these samples in the burn-in period as output. This is an
efficient strategy for forecasting, especially for large-scale problems.

2.5. Incremental learning scheme

For continuous SHM, data streams over time where imputation and forecasting should be ideally done in a real-timeman-
ner accounting for new records. This typically requires online learning with model re-training involved, resulting in signif-
icant computational burden especially when large-scale data analysis is performed. To this end, inspired by the work in [58],
we present an incremental learning scheme as illustrated in Fig. 4. Instead of retraining the model when new data arrives, in
the incremental scheme we only take the up-to-date information from sensors within a certain number of time stamps for
intermittent training/updating. The benefits of this proposed scheme are twofold: (1) possessing efficiency and alleviating
the computational burden induced by online model re-training for every time stamps, and (2) maintaining satisfactory accu-
racy thanks to the use of streaming sensing data.

Fig. 4. The proposed incremental learning scheme. Note that the dynamic batch window size is I;2I; . . . ; T1 for each short-time updating period respectively,
while the long-period fixed batch window remains constant (e.g. T1) after reaching a critical point (e.g., one year).
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Specifically, there are two updating stages for data imputation and response forecasting in continuous SHM: (1) short-
time dynamic batch window and (2) long-period fixed batch window. The dynamic batch window stage learns the latent
spatial attribute U from previous records during the time interval 0; I½ � when I is small (e.g., one month), where I denotes
the length of data for forward imputation period. Then we fix U for response forecasting within I;2I½ � and execute the next
spatial information updating using records during 0;2I½ �. The rest of the first dynamic tensor learning stage will follow the
same manner until the total imputation time reaches one critical time stamp T1 (e.g., one year), where U is incrementally
updated. In the second stage, we update the spatial attribute U and the temporal factor X simultaneously due to the constant
temporal dimension of the fixed batch window. For instance, U and X will be updated in the time period I; T1 þ I½ � for impu-
tation, then we still keep U unchanged and perform forecasting within T1 þ I; T1 þ 2I½ �. Subsequently, we repeat the impu-
tation and forecasting procedure with the fixed batch window as the continuous monitoring proceeds. The basic concept
of the proposed incremental learning scheme for semi-online tensor learning is presented in Fig. 4. Such a scheme enables
recovery of missing data incrementally (e.g., every I-unit increment) and forecasting of structural response on the fly for
long-term SHM. The process can be realized through a Bayesian tensor learning approach [61], which is introduced above.

The pseudo code for the proposed incremental Bayesian tensor learning for missing SHM data imputation and structural
response forecasting is summarized in Algorithms 1 and 2. Empirically, the general guideline for selecting the Gibbs sam-
pling parameters is that we can use small number of samples (e.g., 50) for both chain length Nmc

1 ;Nmc
2 and burn-in period

Nb
1;N

b
2 at low missing rates (e.g., no more than 10%). For a larger missing rate, it is suitable to proportionally increase the

number of samples for Nmc
1 ;Nmc

2 ;Nb
1;N

b
2

n o
. Regarding the setting of time lags, we can define it as the combination of different

time slots (e.g., 1;2;144f g) to account for different periodic patterns. The forecasting length and the forward batch window
can be set as one month while the critical point can be defined as one year. The selection of rank varies significantly and is
analyzed in Section 3.5.

Algorithm1: Incremental tensor learning
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Algorithm2: Gibbs sampling for Bayesian tensor learning

2.6. Extension to Bayesian high-order tensor learning

Furthermore, we extend the data format to a third-order tensor Y 2 RM�N�T . It can be a versatile tensor with data repre-
sentation of ‘‘sensors � sensor types � time stamps”, ‘‘transverse sensors � longitudinal sensors � time stamps” or ‘‘sensors
� days � time stamps per day”, depending on specific sensor types/locations. In particular, we consider the tensor format of
‘‘sensors � days � time stamps per day” for data imputation due to the lack of rich spatial distribution of sensors in this
work. We leverage the CANDECOMP/PARAFAC (CP) decomposition [41] to extract the factors, viz., Y �

PP
p¼1up 	 vp 	 xp. Here,

P is a positive integer; up 2 RM;vp 2 RN , and xp 2 RT are the rank-1 tensors of the pth column factor matrices. Intuitively, we
can extend presented Bayesian matrix factorization to probabilistic high-order tensor learning, whose element-wise form is
given by:
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yi;j;t � N
XP
p¼1

ui;pv j;pxt;p; s�1
�

 !
; i; j; tð Þ 2 X; ð36Þ

where X is a third-order indicator set for observed elements. Similarly, the hierarchical Bayesian modeling of ui;xt and s� is
consistent to that of the Bayesian matrix factorization using on Eqs. (5), (11) and (8) respectively. For the factor vj, we also
assume its prior distribution as multivariate Gaussian, namely,

vj � N lv ;K
�1
v

� �
: ð37Þ

The same conjugate Gaussian-Wishart priors are applied on the hyper-parameters of ui (i.e., Hu ¼ lu;Ku
� �

) and those of
vj (i.e., Hv ¼ lv ;Kv

� �
) as shown in Eq. (6), while the Matrix Normal Inverse Wishart prior is employed for the hyper-

parameters of xt (i.e., Hx ¼ A;Rf g) as shown in Eq. (12).
The model inference can be realized via the holistic sampling procedure analogical to that of Bayesian matrix factoriza-

tion. The posterior distributions of Hu and Hv have the same formulations as described in Eqs. (16) and (17). The posterior
distribution of Hx has the identical form shown in Eqs. (21) and (22). Nevertheless, slight difference is present on the pos-
terior distributions of ui;vj and xt between Bayesian tensor decomposition and matrix factorization. In particular, the con-

ditional distribution over ui is given by N uijl�
u; K�

u

� ��1
� 	

with

K�
u ¼ Ku þ s�

X
j;t

wj;tw>
j;t;l

�
u ¼ K�

u

� ��1 s�
X
j;t

wj;tyi;j;t þ Kulu

 !
;wj;t ¼ vj 
 xt ; i; j; tð Þ 2 X: ð38Þ

The conditional distribution on vj share the same probabilistic inference as Eq. (38). The conditional distribution over xt

can be described by N xt jl�
x;R

�
x

� �
with

R�
x ¼ s�

X
i;j

wi;jw>
i;j þ Cþ D

 !�1

;l�
x ¼ R�

x s�
X
i;j

wi;jyi;j;t þ Eþ F

 !
;wi;j ¼ ui 
 vj; i; j; tð Þ 2 X: ð39Þ

Here, C;D;E; Ff g are the same variables defined in Eqs. (26), (29), (27) and (30), respectively. For the precision, the pos-
terior distribution of s� is expressed as Gamma a�0; b

�
0

� �
where

a�0 ¼ 1
2

X
i;j;tð Þ2X

si;j;t þ a0;

b�
0 ¼ 1

2

X
i;j;tð Þ2X

yi;j;t �
XK
r¼1

ui;rvj;rxt;r

 !2

þ b0:

ð40Þ

Note that si;j;t is 1 if i; j; tð Þ 2 X and 0 otherwise.

3. Experimental validation

In this section, we test the imputation and forecasting performance of the proposed Bayesian tensor learning method
under data missing scenarios, using long-term field-monitoring data of a concrete bridge (e.g., strain and temperature
records). In particular, we impute and forecast the strain time histories of the bridge. Inspired by the strong correlation
between strain and temperature, we formulate the tensor data structure by combining both strain and temperature along
the sensor dimension. We also conduct a series of analyses of uncertainty quantification and rank selection for tensor fac-
torization. The numerical analyses were performed on a standard workstation with 28 Intel Core i9-7940X CPUs.

3.1. Bridge description

The instrumented concrete bridge (see Fig. 5(a)) considered herein is a connection bridge located in the old section of
Wanzhou District, Chongqing, China. It has the total length of 94.015 m, whose span composition is 5� 16 mþ 10 m (see
Fig. 5(c)). The superstructure of this bridge consists of continuous hollow slab beams constructed of reinforced concrete.
As shown in Fig. 5(c), we name the bridge abutment A0 and the piers P1;P2;P3;P4;P5;P6f g orderly according to the vehicle
moving direction to the main bridge. Two sections are monitored, marked as S1 and S2 in the mid-span of the fourth span and
near the top of pier P4, respectively. Fig. 5(d) shows that each monitoring section Si i 2 1;2f gð Þ has five strain sensors installed
on the bottom of the hollow slab beam. Vibrational chord strain gauges are installed which facilitate monitoring of both
strain response of the bridge and the corresponding operation temperature (see Fig. 5(b)).

The dataset collected from the above SHM system contains strain and temperature time histories recorded from June 1,
2015 to October 14, 2018. We resample the data at the rate of 10 min interval. Thus, it can be organized as a two-
dimensional tensor with both strain data and temperature data (with a size of 20 � 177,408, representing sensors � time
stamps). The salient feature behind this data arrangement is that the tensor structure with both strain and temperature
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Fig. 5. The instrumented concrete bridge.

Fig. 6. Time series of measurements at sensor S1 � 1.
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can capture a lower rank compared to the tensor structure with only strain data, due to the strong correlation between strain
and temperature. Fig. 6 illustrates the recorded strain and temperature time series for over three years from a typical sensor
(e.g., S1 � 1 as shown in Fig. 5(c) and (d)).

3.2. Scenarios of missing data

First of all, to evaluate the proposed model for imputation and forecasting, we only set data missing on the strain record-
ings while keeping the temperature data fixed/known. Namely, the missing rate g (e.g., 20%) is introduced for the strain data
in the validation experiments, which is computed as the ratio of the amount of missing data to the total amount of measure-
ments. Secondly, to simulate the real-world missing conditions during monitoring period, we define three primary missing
scenarios for the two-dimensional tensor data considered herein, following a similar experimental design procedure for
higher-dimensional tensors discussed in [59]. The first scenario is called ‘‘random missing” (RM) which presents discrete
and arbitrary lack of data in the time histories. Each strain entry in the data matrix is dropped randomly (e.g., following a
uniform random distribution). The second scenario is termed as ‘‘structured missing” (SM) where there is data missing
occurs continuously for certain periods (e.g., one day or consecutive days). It is a common scenario in practical SHM appli-
cations due to sensor malfunctioning, but more challenging and less investigated in literature. In particular, we structurally
remove the strain data by selecting multiple days randomly and dropping the corresponding data to simulate a practical
missing condition. The last scenario is named ‘‘mixed missing” (MM) which combines random missing and structured miss-
ing at different rates.

After setting the different missing scenarios, we define a sparse binary matrix
B 2 RM�T bi;t ¼ 1 if i; tð Þ 2 X and 0 otherwise

� �
to record the missing positions for the subsequent comparison between

imputation results and the ground truth. The target dense tensor without data missing is named Yd, and the partially
observed tensor Y can be calculated element-wisely by B
 Yd, where 
 denotes the Hadamard product. The imputation/-
forecasting accuracy q is defined as the root mean square error (RMSE) between the reconstructed/predicted data and the
corresponding ground truth, normalized by the root mean square (RMS) of the target values:

q ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 yi � y�i
� �2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1y

2
i

q
0
B@

1
CA� 100%: ð41Þ

where yi and y�i denote the ground truth and the estimated value at the same missing position i, and n is the total number of
missing entries.

3.3. Results

We test the overall performance of the proposed method and identify its limit of capacity for data imputation and
response forecasting under various missing settings with different missing rates. We assume that the time lags L is
1;2;144f g. In the incremental learning, the forward batch window length I is defined as 30 days with 4,320 data points,
while the critical time stamps T1 is one year (i.e., 12� 30). The dataset for imputation ranges from June 1, 2015 to October
11, 2018 with 1,230 days in total, and the forecasting data is from July 1, 2015 to October 11, 2018 with thirty-days data
ahead of the imputation dataset. To begin with, we first consider the missing rate of 10%, for both random and structured
missing scenarios, while setting the tensor rank of eight. In addition, keeping the tensor rank fixed, we also set two mixed
missing cases: Case 1 for 10% structured and 20% random missing occurring at the same time, while Case 2 for 20% struc-
tured and 30% random missing simultaneously. Here, sensor S2 � 4 is selected to showcase the result.

Figs. 7 and 8 show the corresponding imputation and forecasting result obtained by the proposed incremental Bayesian
tensor learning model. It can be seen that the predicted time series match well with the ground truth. In particular, the
imputed data possess excellent agreement with the ground truth (see Fig. 7), while the forecasted response has relatively
larger errors especially for the mixed missing cases with overall large missing rates (e.g., Case 1 and Case 2) as shown in
Fig. 8(c) and (d). In general, the spatiotemporal dependencies of the data are well learned by the proposed model. Besides,
we provide three representative segments (zoomed view) of the predicted response by choosing one-month strain (March
2016, December 2017 and August 2018) for showcase of imputation (see Fig. 9) and forecasting (see Fig. 10).

It is notable that, despite large missing rates, the imputation is very robust and produces excellent estimation as shown in
Fig. 9. Though the forecasted responses exhibit noisy oscillations depicted in Fig. 10, the overall trend is well captured (espe-
cially for relatively smaller missing rates, e.g., 10%).

To further investigate the performance of the proposed approach, we conduct uncertainty quantification of the predic-
tion. Thanks to the incremental learning architecture, we can achieve the convergence with fewer Monte Carlo samples
(e.g., 10 � 50) for small missing rates (e.g., 10%). The probabilistic imputation and forecasting results are summarized in
Figs. 11 and 12 respectively, where the predicted mean and three standard deviations of the strain response are shown
for Sensor S2 � 4 in comparison with the ground truth records on March 10, 2016, December 15, 2017 and August 22, 2018.

For all these four missing scenarios, the imputation uncertainty is prominently smaller than the forecasting uncertainty.
In the forecasting cases, it is observed that the missing data cause prediction fluctuations, which leads to deviation from the
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ground truth. Moreover, the forecasting uncertainty tends to be more unstable and larger when the missing rate becomes
larger as shown in Fig. 12(g)–(i) and (j)–(l).

3.4. Missing rate effect

In addition, we perform parametric studies on the influence of data missing rate on the accuracy of imputation and fore-
casting. The test experiments arrange the first 80% portion of the recorded data for missing data recovery and the rest 20% for

Fig. 7. The imputation result for four missing cases of Sensor S2 � 4. Note that the shading areas represent the time periods where data missing occurs,
while the white box areas denote that the strain time series are successfully recorded. The dataset ranges from June 1, 2015 to October 11, 2018 including
41 months.
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response forecasting. Here, the rank K is defined as eight while the time lags L is 1;2;144;145f g. In total, we run 200 iter-
ations for MCMC sampling, where the first 100 are taken as burn-in and the last 100 are used to estimate the missing entries.
Fig. 13 summarizes the parametric study result. For the random missing scenario shown in Fig. 13(a), the proposed method
presents outstanding accuracy (over 95:0% for both imputation and forecasting) given the missing rate g up to 70%. The
extreme case we consider here is the missing condition with g ¼ 80%. Nevertheless, the proposed approach still achieves
over 86:0% missing data recovery accuracy and more than 92:0% forecasting accuracy. For the structured missing scenario

Fig. 8. The forecasting result for four missing cases of Sensor S2 � 4. Note that the shading areas represent the time periods where data missing occurs,
while the white box areas denote that the strain time series are successfully recorded. The forecasting dataset is from July 1, 2015 to October 11, 2018 with
40 months.
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(more practical and commonly seen in real-world applications), it is naturally more challenging to recover the missing data
and forecast the response compared with the ideal randommissing. As is seen in Fig. 13(b), the capacity limit of the proposed
Bayesian tensor learning method shows to be g ¼ 40%where the imputation accuracy surpasses 91:0%while the forecasting
has over 88:0% accuracy. Interestingly, the mixed missing scenarios demonstrate quite perfect imputation and forecasting
accuracy, namely, 99.8% for imputation and 98.4% for forecasting in Case 1% for imputation and 98.0% for forecasting in Case
2. This result is closely related to optimal tensor rank selection which is discussed in Section 3.5.

3.5. Rank analysis

There exist many recent researches attempting to reveal the effect of imperfect data on tensor representation [77–80].
According to [79], it is believed that clean datasets exhibit correlations across time and modalities while the imperfect data
with incomplete values break these natural correlations and lead to the requirement of a higher rank. Inspired by this study,
we also quantitatively investigate the prediction performance of the proposed Bayesian tensor learning method with differ-
ent ranks (e.g., 4, 8 and 12) under different data missing scenarios (e.g., random and structured), and summarize the result in
Fig. 14. In particular, we test the imputation capability. As shown in Fig. 14(a), with the increasing rank, the estimation
achieves a better accuracy in the randommissing scenario, which agree with the observation in [79]. In other words, random
missing destroys the spatiotemporal correlations so that we should increase the tensor rank for a more accurate result when
dealing with this type of imperfect data condition.

For the structured missing scenario (see Fig. 14(b)), it is surprising to see that we get a higher accuracy of missing data
recovery with a lower rank under different missing rates. We empirically extrapolate that continuous element missing helps
to build a more correlated tensor structure.

3.6. Comparison with robust principle component analysis

We also compare the performance of data imputation between the proposed method and the Robust Principle Compo-
nent Analysis (RPCA) approach [81] which has also been implemented for missing data recovery in SHM [25]. The dataset
considered herein contains one year (360 days) observations starting from June 1, 2015. We conduct the comparison exper-

Fig. 9. The zoomed view of the imputed strain time series in Fig. 7. Note that the shading areas represent the time periods where data missing occurs, while
the white box areas denote that the strain time series are successfully recorded. The black lines and the red dashed lines depict the one-month field
measurement and the imputed time histories, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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iments on four missing scenarios, including 10% random missing, 10% structured missing, 20% structured missing and the
mixed missing with 30% random missing and 20% structured missing. Instead of directly applying RPCA method, we follow
the idea of reshaping the dimension of time-series matrix [25] which helps to greatly improve the recovery accuracy for SHM
data, e.g., 800� 1296. The model parameters in our method are identical to those used in subSection 3.4.

For the randommissing scenario, both RPCA and our method achieve high imputation accuracy, 99:2% and 99:7%, respec-
tively, showing excellent performance. However, for the case of structured missing, RPCA fails to capture the dynamic pat-
terns of the imperfect time series data with the accuracy of 76:7% (g ¼ 10%) and 60:4% (g ¼ 20%), while our method still
retains satisfactory accuracy of 98:6% (g ¼ 10%) and 95:0% (g ¼ 20%). For the mixed missing scenario, both methods exhibit
better imputation performance compared with the purely structured missing scenarios. Meanwhile, the accuracy of our
method is 99:6%, which is higher than that of RPCA (83:0%). Generally, RPCA is also a matrix decomposition method, which
shares similar characteristics with our method where imputation performance is closely related to the approximated rank.
The mixed missing scenario surprisingly helps to form a good condition for optimal rank selection of matrix decomposition
methods. The imputation results under four missing scenarios are presented in Fig. 15, where a typical month is selected for
illustration. In general, our method outperforms the RPCA approach, especially for the imperfect time series with structured
missing.

3.7. Data imputation with high-order tensor

To validate the feasibility of the proposed high-order tensor learning, we reshape the sensor data to a third-order tensor Y
with the size of 20 � 1,232 � 144, which represents ‘‘sensors � days � time stamps per day”. We set 10% missing rate for
both the random and structured missing scenarios. For the model parameters, the rank is set as 8 and the time lags is
assumed to be 1;2;3;4;5;6;7f g. The proposed Bayesian tensor decomposition method could achieve 99.9% and 98.6% recov-
ery accuracy for the two missing scenarios, which demonstrates the satisfactory viability of the high-order tensor learning.
The overall imputation results are shown in Fig. 16. Nevertheless, it is noteworthy that the above tensor format is inappli-
cable to response forecasting since the reshaped data format breaks the long-term temporal continuity. Due to the insuffi-
cient number of sensors considered in this example, it is less proper to construct the tensor in the form of ‘‘transverse sensors
� longitudinal sensors � time stamps”. Such a particular tensor form is more applicable to the practice where measurements
from a grid of sensors are available. This will be tested in our future study.

Fig. 10. The zoomed view of the predicted strain time series in Fig. 8. Note that the shading areas represent the time periods where data missing occurs,
while the white box areas denote that the strain time series are successfully recorded. The black lines and the orange dashed lines depict the one-month
field measurement and the forecasted time histories, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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4. Conclusions and discussions

This paper presents an incremental Bayesian matrix/tensor learning method for spatiotemporal data imputation and
response forecasting for SHM applications, with the incorporation of the AR process which contributes to the temporal fea-
ture modeling in an incremental learning scheme. With the existence of temperature data, the tensor model can easily gain a
low-rank structure and utilize the correlation between strain and temperature for robust prediction of the strain response. In
our validation experiments, we both consider the ideal random missing scenario and a more realistic missing condition –
structured missing. Based on the learned latent features, the accurate estimation and forecasting results show the satisfac-
tory performance of the proposed approach for processing incomplete SHM recordings, with uncertainty quantification capa-
bility. In addition, the extreme cases illustrate that acceptable imputation and forecasting accuracy can retain for the missing
rate up to g ¼ 80% in random missing and up to g ¼ 40% in structured missing. Furthermore, the investigation into rank
selection has revealed that a lower rank helps achieve better prediction performance for structured missing, while a higher
rank is preferred for random missing. Lastly, we extend the Bayesian matrix factorization to high-order tensor learning for
SHM data imputation, showing satisfactory performance.

There are three highlights of the proposed method. The first and the most notable significance is that we model the tem-
poral dependency via the latent features instead of using incomplete data directly, which offers a robust and flexible mod-
eling scheme for multivariate time series data. Secondly, it is unnecessary to know which of the entries in the tensor data are
incomplete beforehand. Thirdly, the fully Bayesian method can avoid overfitting and relax parameter tuning. However, it
poses high computational complexity due to the use of MCMC sampling. Notwithstanding the most time consuming process

Fig. 11. Uncertainty quantification of imputation for four data missing cases. Note that the shading areas represent the time periods where data missing
occurs, while the white box areas denote that the strain time series are successfully recorded. The black lines and the red dashed lines depict the one-day
field measurement and the imputed means respectively, and the red band is the area between plus/minus three standard deviations. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Uncertainty quantification of forecasting for four data missing cases. Note that the shading areas represent the time periods where data missing
occurs, while the white box areas denote that the strain time series are successfully recorded. The black lines and the orange dashed lines depict the one-
day field measurement and the predicted means respectively, and the yellow band is the area between plus/minus three standard deviations. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. The accuracy of imputation and forecasting with respect to different data missing rates.
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remains in the imputation process, our proposed incremental Bayesian tensor learning algorithm can drastically reduce the
computational time and make it efficient for data imputation and response forecasting for continuous SHM with streaming
yet missing data.

The present study demonstrates that tensor learning has potential to become a promising area in SHM applications. Some
future research directions and outlook are proposed herein. Firstly, as long as we have enough sensor locations and moni-
toring zones (e.g., distributed sensing), the higher order tensor decomposition for imputation and forecasting should be
explored more thanks to its possibility of outperforming the second-order tensor factorization [82]. Secondly, the proposed
approach can be extended to tackle issues of SHM data anomaly detection and de-noising on account of the power of tensor
representation. Thirdly, the variational Bayesian inference (VBI) [83], as a faster and more scalable inference alternative,
should gain more attention for Bayesian tensor learning, especially when dealing with large datasets. Last but not least,
the spatial feature can be described in a more realistic way by considering graph kernels [53,84], which will be worthy to
investigate.

Fig. 14. The performance imputation with respect to different tensor ranks.

Fig. 15. Comparison between the proposed Bayesian matrix learning approach and RPCA for four missing scenarios. Note that the shading areas represent
the time periods where data missing occurs, while the white box areas denote that the strain time series are successfully recorded. The black lines denote
one-month observations. The red dashed lines and blue dashed lines represent the imputation results by our method and RPCA respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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