
Counteracting User Attention Bias in Music Streaming
Recommendation via Reward Modification

Xiao Zhang
∗

Gaoling School of Artificial

Intelligence

Renmin University of China

zhangx89@ruc.edu.cn

Sunhao Dai
∗

Gaoling School of Artificial

Intelligence

Renmin University of China

sunhaodai@ruc.edu.cn

Jun Xu
†

Gaoling School of Artificial

Intelligence

Renmin University of China

junxu@ruc.edu.cn

Zhenhua Dong

Huawei Noah’s Ark Lab

dongzhenhua@huawei.com

Quanyu Dai

Huawei Noah’s Ark Lab

daiquanyu@huawei.com

Ji-Rong Wen

Gaoling School of Artificial

Intelligence

Renmin University of China

jrwen@ruc.edu.cn

ABSTRACT
In streaming media applications, like music Apps, songs are recom-

mended in a continuous way in users’ daily life. The recommended

songs are played automatically although users may not pay any

attention to them, posing a challenge of user attention bias in train-

ing recommendation models, i.e., the training instances contain

a large number of false-positive labels (users’ feedback). Existing

approaches either directly use the auto-feedbacks or heuristically

delete the potential false-positive labels. Both of the approaches

lead to biased results because the false-positive labels cause the

shift of training data distribution, hurting the accuracy of the rec-

ommendation models. In this paper, we propose a learning-based

counterfactual approach to adjusting the user auto-feedbacks and

learning the recommendation models using Neural Dueling Ban-

dit algorithm, called NDB. Specifically, NDB maintains two neural

networks: a user attention network for computing the importance

weights that are used for modifying the original rewards, and an-

other random network trained with dueling bandit for conducting

online recommendations based on the modified rewards. Theo-

retical analysis showed that the modified rewards are statistically

unbiased, and the learned bandit policy enjoys a sub-linear regret

bound. Experimental results demonstrated that NDB can signifi-

cantly outperform the state-of-the-art baselines.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Reinforcement learning.

∗
Equal contribution.

†
Jun Xu is the corresponding author. The work was partially done at Beijing Key

Laboratory of Big Data Management and Analysis Methods.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00

https://doi.org/10.1145/3534678.3539393

KEYWORDS
user attention bias, dueling bandit, streaming recommendation

ACM Reference Format:
Xiao Zhang, Sunhao Dai, Jun Xu, Zhenhua Dong, Quanyu Dai, and Ji-Rong

Wen. 2022. Counteracting User Attention Bias in Music Streaming Rec-

ommendation via Reward Modification. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’22), Au-
gust 14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3534678.3539393

1 INTRODUCTION
With the increasing popularity of on-demand streaming services,

music streaming recommendation has attracted increasing research

attentions in recent years [4, 8, 36]. Typically, a music App would

provide the users playlists according to their music preferences.

The songs in the playlists will be automatically played until the

users explicitly stop/skip the songs, or reach the end of the playlists.

Therefore, one important task is how to automatically generate

playlists that well fit the music preferences of users [6, 33].

One approach to music streaming recommendation is treating

the problem of automatic playlist generation as a process of sequen-

tial song selection. As shown in Figure 1, after recommending the

first song to a user, the next song is selected from the candidate

songs based on the user’s contexts, and this process is repeated

until the user exits the playlist/App. During the sequential selection

process, the model is updated according to the user feedbacks in

an online manner. Thus, it is critical for a music recommendation

model to receive and leverage accurate user feedbacks.

After a user receives a recommended song, she may play the

entire song (positive feedback) or skip the song before the ending

of this song (negative feedback). Unfortunately, some of the pos-

itive feedbacks are false since the songs in a playlist are usually

consecutively streamed and played automatically without any user

behaviors on the system. Specifically, songs are typically played

in the background while users may pay less attention to the mu-

sic App and perform other activities such as exercising, late-night

reading, or whilst commuting [15, 35].

This phenomenon has been empirically demonstrated in Figure 2:

(a) the frequency of users’ active actions (i.e., skip actions) gradually

decrease indicating that the user’s attention is gradually losing over

https://doi.org/10.1145/3534678.3539393
https://doi.org/10.1145/3534678.3539393

KDD ’22, August 14–18, 2022, Washington, DC, USA Xiao Zhang et al.

07:0701:49

User

?

?

…

Recommendation
Model

Feedback

Candidate
Songs

PlaylistMusic App

Figure 1: The task of automatically generation of playlists
in music streaming recommendation scenario.

1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100
Position in Session

0.07

0.08

0.09

0.10

0.11

0.12

0.13

Pe
rc

en
ta

ge
 o

f U
se

r's
 S

ki
p

Ev
en

ts

0.78000.78250.7850
Online Average Reward

∞

10

8

6

4

2

 o

f
C

ut
of

f

Figure 2: Empirical study of user attention on the data on
Last.fm [3]. Left: Percentage of user’s skip events w.r.t. the
position of the recommended songs in one session. Right:
Recommendation performance (online average reward de-
fined in Section 6.1.3) of SBUCB [16] equipped with a play
cutoff technology [25], where only the first 𝐶 songs played
entirely after the user’s skip action were considered as the
positive user feedbacks and the rest of user feedbacks were
ignored. 𝐶 is called the ‘# of Cutoff’ and ‘∞’ means that all
the observed user feedbacks were used for training.

time; (b) Simply discarding some of the positive user feedbacks

in training can help improve the performance of recommendation

models. In other words, when a user is performing activities other

than listening to music, a song is played automatically even if the

song does not fit her music preference. As a result, some songs

that are not liked by the user are played completely, that is, some

positive user feedbacks are then falsely labeled and stored in the

user’s historical listening activities (false-positive labels exist). The
feedback distribution of the training instances is different from the

user’s real preferences, which ultimately hurts the recommendation

performances. In this paper, we call this category of biases in user

feedback due to the lack of concentration as the user attention bias.
In order to counteract the user attention bias, it is necessary to

model the mechanism of both the user attention and the user’s

musical preferences simultaneously [1]. Existing music streaming

recommendation approaches, however, either directly learn the

recommendation model from the user’s listening feedback [4, 21],

or use heuristic algorithms to address user attention bias [25] over-

looking the contextual information of both the user and songs.

Little research efforts have been paid on modeling user attention in

streaming recommendation scenarios where users sometimes listen

to music in a passive mode and a large number of false-positive

labels exist in the log data.

In this paper, we propose a counterfactual learning approach

to adjusting the falsely labeled positive feedbacks of users and

learning users’ musical preferences using a dueling bandit model,

referred to as NDB. To achieve unbiased estimates of the real user

feedbacks, NDB maintains a recurrent neural network to capture

the mechanism of user attention on the recommender system, and

learns a randomly weighted neural network using random Fourier

features for predicting the relevance. In this way, the importance

weights can be derived from the predicted probability distributions

of the user attention and relevance, and used for obtaining the

unbiased modified rewards. Then, the relevance prediction model

can be updated based on the modified rewards via dueling bandit,

and adopted as a recommendation model for conducting music

streaming recommendations. Theoretical analysis demonstrated

that the reweighted rewards are statistically unbiased of the true

rewards, and the bandit policy enjoys a sub-linear regret bound.

2 RELATEDWORK
User modeling in music recommendation aims to analyze and

simulate the user behaviors in music services, which can help im-

prove the performance of music recommendation models [29, 34,

39]. Cheng et al. [10] presented a personalized dual-layer topic

model for the music retrieval task, which captures users’ music

preference on songs via the connection of latent semantic spaces.

Ferwerda and Schedl [12] proposed a personality-based music rec-

ommendation model by modeling users’ personality traits, in which

the relationships between users’ personality and their behavior,

preferences, and needs are identified. Reza Aditya Permadi [25] de-

signed a heuristic cut-off technology to address user attention bias,

which simply treats some part of music videos watched completely

after an active user action on the system as positive user feed-

backs. Since behavior patterns are usually different among users

on different contents, contexts of both the users and songs are cru-

cial for accurate recommendations, and learning-based debiasing

approaches for user attention bias need to be further studied.

Bandit-based streaming recommendation has received con-

siderable attention over the past several years, which aims to maxi-

mize the cumulative reward feedback from users by training and

applying the recommendation model in an online manner. There

are several types of bandit approaches which are commonly used

in streaming recommender systems, including contextual bandit [4,

19], batched bandit [16, 40], bandit optimization [21, 27, 38]. Ben-

dada et al. [4] proposed a contextual bandit model for music playlist

recommendation with multiple user plays, which leverages swi-

peable carousels to recommend personalized content to their users.

Zhang et al. [40] presented a batched bandit approach for streaming

recommendation with delayed feedback, where a survival model

is maintained to capture the delay mechanism and the online rec-

ommendation model is fixed. Pereira et al. [21] introduced an effi-

cient bandit optimization algorithm for music streaming recommen-

dation using dueling bandit, which updates the recommendation

model using negative user feedbacks. Although bandits have been

Counteracting User Attention Bias in Music Streaming Recommendation via Reward Modification KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 1: A summary of notations.
Symbol Explanation

[𝑚] {1, 2, . . . ,𝑚}
𝑁 Number of episodes

𝐵𝑛 Batch size in the 𝑛-th user session (i.e., the 𝑛-th episode)

𝒖𝑛 ∈ R𝑑𝑢 Feature vector of the user in the 𝑛-th user session

𝒔 ∈ R𝑑𝑠 Feature vector of a candidate song

𝒙𝑛 (𝒔)
Context vector corresponding to the song 𝑠 and

the user 𝒖𝑛 which is represented by 𝒙𝑛 (𝒔) =
[
𝒖⊺
𝑛 , 𝒔

⊺
]⊺

𝑐 ∈ {0, 1} Observed user feedback indicating whether the user

skips the song (𝑐 = 0) or plays the entire song (𝑐 = 1)

𝑣 ∈ {0, 1} True user preference (i.e., relevance) indicating whether

the user prefers recommended song (may be unobserved)

𝑜 ∈ {0, 1} Attention variable indicating whether the user pays

attention to the recommended song (may be unobserved)

extensively studied in streaming recommendation, how to deal with

user attention bias in an online manner is still an unsolved problem.

3 PROBLEM FORMULATION
This section formulates the problem of music streaming recommen-

dation (MSR)with bandit and analyzes the user attention bias in MSR.

3.1 Music Streaming Recommendation (MSR)
MSR can be formulated as a problem of sequential decision making

where each user consumes a music streaming service through a

music-listening session. More specifically, during a music-listening

session of each user (i.e., one episode), the candidate song set can

be viewed as the action space S of an episodic bandit. Then, given

a context space X that summarizes the information of both the

user and candidate songs, a song is selected by a recommendation

policy 𝜋 and sequentially recommended to the user. After one

song is recommended, the song may be entirely played by the

user (i.e, positive user feedback) or skipped before its ending (i.e,

negative user feedback). Finally, the bandit reward 𝑟 defined on

the user feedback is received and can be used for updating the

current recommendation policy. The updated policy, thereafter, will

be adopted for recommending the next song.

The above process can be formalized as an episodic bandit, and
represented using a 5-tuple ⟨𝑁,S,X, 𝜋, 𝑟 ⟩:

Number of episodes 𝑁 . The sequential decision process in-

cludes𝑁 episodes, where each episode corresponds to a user session.

In the 𝑛-th user session (i.e., the 𝑛-th episode), the agent interacts

with one user 𝐵𝑛 times (i.e., recommends 𝐵𝑛 songs to the user in an

online manner). 𝐵𝑛 is called the batch size in the 𝑛-th user session.

Action space S denotes a given candidate action set, where

each action (also called arm) corresponds to a specified candidate

song. Each song in S is represented as a feature vector 𝒔 ∈ R𝑑𝑠 ,
where 𝑑𝑠 is the feature dimension. At each step in one episode,

a dynamic action space is selected as the candidate song set for

recommendation. That is, at the step 𝑏 in the 𝑛-th user session, a

dynamic action space S𝑛,𝑏 ⊆ S is recalled by some strategy, and

choosing an action 𝒔𝐼𝑛,𝑏 from S𝑛,𝑏 means that the corresponding

song is recommended to the user, where 𝐼𝑛,𝑏 denotes the index of

the selected song in the candidate song set S𝑛,𝑏 .
Context space X ⊆ R𝑑𝑥 denotes a context space that summa-

rizes feature information of both the users and songs, where 𝑑𝑥 is

the dimension of contexts. In recommendation, a user is typically

expressed as a feature vector 𝒖 ∈ R𝑑𝑢 . In particular, the user in the

𝑛-th user session is represented by a feature vector 𝒖𝑛 ∈ R𝑑𝑢 . Then,
at step 𝑏 in the 𝑛-th user session, for a candidate song 𝒔 ∈ S𝑛,𝑏 ,
the corresponding context 𝒙𝑛 (𝒔) can be represented by the con-

catenation of the user features 𝒖𝑛 and the song features 𝒔, i.e.,
𝒙𝑛 (𝒔) = [𝒖⊺𝑛 , 𝒔⊺]⊺ ∈ X ⊆ R𝑑𝑥 where 𝑑𝑥 = 𝑑𝑢 + 𝑑𝑠 .

Policy 𝜋 : X → S describes the decision-making rule of an

agent (i.e., the recommendation model), which selects action for

execution according to the relevance score of each action. At step

𝑏 in the 𝑛-th user session, given a set of candidate songs S𝑛,𝑏 , a
relevance score function (or relevance probability) 𝑓 parameterized

by 𝜽𝑛,𝑏 treats the context 𝒙𝑛 (𝒔) ∈ X as inputs and determines

which action to take: 𝒔𝐼𝑛,𝑏 := argmax𝒔∈S𝑛,𝑏 𝑓 (𝒙𝑛 (𝒔) |𝜽𝑛,𝑏).
Reward 𝑟 is defined upon the user feedback. Specifically, after

recommending a song 𝒔 ∈ S to a user 𝒖, a corresponding user

feedback 𝑐 ∈ {0, 1} is observed, which implicitly indicates whether

the user feedback is negative (𝑐 = 0, skip before the ending of this

song) or positive (𝑐 = 1, play the entire song). Then the observed

reward 𝑟 = 1 if 𝑐 = 1 and 𝑟 = 0 otherwise. Let’s use the unob-

servable variable 𝑣 ∈ {0, 1} to indicate whether a user prefers the
recommended song over other candidate songs, i.e., the relevance.

Unfortunately, the user feedback 𝑐 may not be consistent with the

true but unobservable relevance 𝑣 ∈ {0, 1} if the user did not pay

attention to the recommended song 𝒔.
Table 1 summarizes the notations used throughout this paper.

3.2 User Attention Bias in MSR
In this section, we formally describe the user attention bias defined

in the introduction. As defined in Table 1, we introduce the attention

variable 𝑜 ∈ {0, 1} for indicating user’s attention while listening

to music, where 𝑜 = 1 if user pays attention to the recommended

song and 𝑜 = 0 otherwise. Ideally, after receiving a recommended

song, a user will play the entire song if she prefers this song, or

skip the song if the song does not fit her musical tastes. In other

words, the observed user feedback 𝑐 ∈ {0, 1} should be consistent

with the true relevance 𝑣 ∈ {0, 1}, i.e., given a context 𝒙𝑛 (𝒔) ∈ X
in the 𝑛-th user session,

Pr {𝑐 = 1| 𝒙𝑛 (𝒔)} = Pr {𝑣 = 1| 𝒙𝑛 (𝒔)} , (1)

where Pr {𝑣 = 1| 𝒙𝑛 (𝒔)} denotes the relevance probability indicating
how much the user 𝒖𝑛 prefers the recommended song 𝒔. However,
as summarized in Table 2, the positive user feedbacks will be false if

the user loses her attention to the music app and songs are played

automatically that do not fit her music preference. Then, different

from the ideal user model in Eq.(1), an attention-based user model

can be derived from Table 2:

Pr {𝑐 = 1| 𝒙𝑛 (𝒔)}
= Pr {𝑜 = 1| 𝒙𝑛 (𝒔)} · Pr {𝑣 = 1| 𝒙𝑛 (𝒔)} + Pr {𝑜 = 0| 𝒙𝑛 (𝒔)} ,

(2)

where Pr {𝑜 = 1| 𝒙𝑛 (𝒔)} is called the attention probability that rep-

resents the probability that user attention is on the recommender

system. From Eq.(2) we can observe that the probability distribution

of observed user feedback 𝑐 depends on not only the true relevance

𝑣 but also the attention variable 𝑜 , and the user attention bias is

caused by the loss of user attention. Thus, to counteract the user

KDD ’22, August 14–18, 2022, Washington, DC, USA Xiao Zhang et al.

Table 2: Relation among the variables in presence of user at-
tention bias. ‘Attention’: attention variable; ‘Relevance’: true
relevance; ‘True/False’: variable indicating whether the ob-
served user feedback 𝑐 is true or false.

Attention 𝑜 Relevance 𝑣 User Feedback 𝑐 True/False

1 1 1 (play) True

1 0 0 (skip) True

0 1 1 (play) True

0 0 1 (play) False

Reward
ModificationRelevance Prob.

Recommended
Song

User

Candidate
Songs

Modified Rewards

Biased User
Feedback

Attention Prob.

Relevance
Prediction

Attention
Prediction

Figure 3: The overall architecture of the proposed NDB.

attention bias, it is essential to maintain learning-based models for

both the user attention and her music preference.

4 NDB: THE PROPOSED APPROACH
In this section, we present a novel Neural Dueling Bandit approach

named NDB which modifies the observed rewards using counter-

factual learning for counteracting the user attention bias.

4.1 Approach Overview
Figure 3 illustrates the overall architecture of the proposed NDB

approach. NDB consists of three ingredients: (1) reward modifica-
tion tries to counteract the attention bias in user feedbacks and

construct the unbiased modified rewards through the prediction

of the probabilities of the user attention and the relevance; (2) at-
tention prediction predicts the attention probability of each user on

the recommended songs, which is implemented using recurrent

neural networks; (3) relevance prediction aims to predict the user

preference for the candidate songs and choose the most relevant

song for online recommendation, where the prediction model is

formulated using randomly weighted neural network that can be

trained online based on the modified rewards using dueling bandit.

Next, we specify the ingredients of NDB with details.

4.2 Reward Modification using Importance
Sampling

In the 𝑛-th user session, after recommending a song 𝒔 to a user 𝒖𝑛,
her feedback 𝑐 ∈ {0, 1} is received. Then, we can specify the ob-
served reward by 𝑟 (𝒙𝑛 (𝒔), 𝑐) := 𝑐 , where 𝒙𝑛 (𝒔) = [𝒖⊺𝑛 , 𝒔⊺]⊺ ∈ X is

the context. But the true reward is determined by the true relevance

𝑣 and denoted by 𝑟 (𝒙𝑛 (𝒔), 𝑣) := 𝑣, and the goal of recommendation

should be maximizing the following expected true reward:

E𝑣 [𝑟 (𝒙𝑛 (𝒔), 𝑣)] = Pr {𝑣 = 1| 𝒙𝑛 (𝒔)} .

In comparison with the expected true reward, the expected observed
reward can be expressed by:

E𝑐 [𝑟 (𝒙𝑛 (𝒔), 𝑐)] = Pr {𝑐 = 1| 𝒙𝑛 (𝒔)} .

From Eq.(2) we have Pr {𝑣 = 1| 𝒙𝑛 (𝒔)} ≠ Pr {𝑐 = 1| 𝒙𝑛 (𝒔)} usually
holds, and thus we can conclude that the observed reward is biased

for estimating the expected true reward. To counteract the biases in

observed rewards caused by the loss of user attention, we propose to

modify the biased observed rewards using counterfactual learning.

Specifically, by leveraging importance sampling approach [7, 30,

37, 40], the following modified rewards can be obtained:

𝑟mod (𝒙𝑛 (𝒔), 𝑐) := 𝑤 · 𝑟 (𝒙𝑛 (𝒔), 𝑐), (3)

where𝑤 denotes the importance weight that is defined as follows:

𝑤 :=
Pr {𝑣 = 1| 𝒙𝑛 (𝒔)}
Pr {𝑐 = 1| 𝒙𝑛 (𝒔)}

= 1

/ [
Pr {𝑜 = 1| 𝒙𝑛 (𝒔)} +

Pr {𝑜 = 0| 𝒙𝑛 (𝒔)}
Pr {𝑣 = 1| 𝒙𝑛 (𝒔)}

]
.

(4)

The last equality in Eq.(4) is obtained by substituting the proposed

attention-based user model Eq.(2). Theoretically, we can easily

prove the unbiasedness of the obtained modified rewards equipped

with the importance weights in Eq.(4) for estimating the expected

true reward, shown in Theorem 4.1.

Theorem 4.1 (Unbiasedness of Modified Rewards). In the
𝑛-th user session, for any context 𝒙𝑛 (𝒔) ∈ X, the modified reward
using the importance weight in Eq.(4) is an unbiased estimate of the
expected true reward, i.e., E𝑐 [𝑟mod (𝒙𝑛 (𝒔), 𝑐)] = E𝑣 [𝑟 (𝒙𝑛 (𝒔), 𝑣)] .

From the formulation in Eq.(4), we observe that the importance

weights satisfy 𝑤 ≤ 1, and a larger probability Pr {𝑜 = 1| 𝒙𝑛 (𝒔)}
leads to a larger weight closed 1. The intuition is that the attention

probability Pr {𝑜 = 1| 𝒙𝑛 (𝒔)} can be interpreted as a confidence

score indicating if the positive user feedback 𝑐 = 1 is true, and a

more reliable observed reward deserves a larger weight. Another

observation from Eq.(4) is that, to estimate the importance weight

𝑤 , the attention probability and the relevance probability need to

be predicted simultaneously, and the prediction components will

be introduced in the following sections.

4.3 Attention Prediction with GRUs
To predict the attention probability Pr(𝑜 = 1|𝒙𝑛 (𝒔)) in Eq.(4), we

propose a user attention model 𝑔 using recurrent neural networks,

which is parameterized by 𝜷𝑛 in the 𝑛-th user session. The attention

model 𝑔 enables NDB to take the contextual information (i.e., the

user listening history and her feedbacks in this session) into consid-

eration. At step 𝑏 in the 𝑛-th user session, we first collect the recom-

mended songs and user feedbacks that have so far received in this

session and store them into a buffer D𝑛,𝑏 := {(𝑢𝑛, 𝒔𝐼𝑛,𝑗 , 𝑐𝑛,𝑗)} 𝑗 ∈[𝑏] ,
where 𝑐𝑛,𝑗 denotes the user feedback received at step 𝑗 in this ses-

sion. Then, the predicted attention probability at step 𝑏 in the 𝑛-th

user session, denoted by 𝑝𝑛,𝑏 , can be obtained by:

𝑝𝑛,𝑏 := 𝑔(D𝑛,𝑏 | 𝜷𝑛), (5)

Counteracting User Attention Bias in Music Streaming Recommendation via Reward Modification KDD ’22, August 14–18, 2022, Washington, DC, USA

＋

· · ·

GRU1 GRU1GRU1

GRU2 GRU2GRU2

· · ·

· · ·

＋
＋

MLP

 , , ,
 (,) (,) (,)

 , , ,

· · ·

· · ·

· · ·

· · ·

· · ·

User

Recommended
Songs

User
Feedbacks

Predicted Attention
Probability

,1nIs
,2nIs

,n BnIs

,11()
nIy s ,21()

nIy s
,1()

n BnIy s

Figure 4: The component of attention predictionwith GRUs.

where the obtained 𝑝𝑛,𝑏 is an estimate of the true attention probabil-

ity Pr

{
𝑜 = 1| 𝒙𝑛 (𝒔𝐼𝑛,𝑏)

}
. As illustrated in Figure 4, we implement

the user attention model 𝑔 using one MLP (Multi-Layer Percep-

tron) and two GRUs (Gated Recurrent Units) [11]. Specifically, we

formulate the attention model 𝑔 in Eq.(5) as follows:

𝑔(D𝑛,𝑏 | 𝜷𝑛) = 𝜎 (MLP(𝒚1 (𝒔𝐼𝑛,𝑏) ⊕ 𝒚2 (𝑐𝑛,𝑏) ⊕ 𝒖𝑛)),
where ’⊕’ is an operation to concatenate two vectors together, and

𝜎 (·) is the element-wise sigmoid function, and the representations

𝑦1 (𝒔𝐼𝑛,𝑏) and 𝒚2 (𝑐𝑛,𝑏) are obtained by two GRUs. Formally, in each

session, (a) GRU1 scans the historical listening songs as follows: at

step 𝑏, it takes the embedding of the recommended song 𝒔𝐼𝑛,𝑏 as

input, and output the representation 𝒚1 (𝒔𝐼𝑛,𝑏):
𝒚1 (𝒔𝐼𝑛,𝑏),𝒉𝑛,𝑏 = GRU1 (𝒔𝐼𝑛,𝑏 ,𝒉𝑛,𝑏−1),

where 𝒉𝑛,𝑏 and 𝒉𝑛,𝑏−1 are the hidden vectors at the 𝑏-th and (𝑏−1)-
th steps, respectively; (b) another GRU2 is used to process the user

feedback sequence as follows: 𝒚2 (𝑐𝑛,𝑏),𝒉′𝑛,𝑏 = GRU2 (𝑐𝑛,𝑏 ,𝒉′𝑛,𝑏−1),
where the output𝒚2 (𝑐𝑛,𝑏) is the representation of the user feedback

at step 𝑏 in the 𝑛-th user session, and 𝒉′
𝑛,𝑗

denotes the hidden vector

in GRU2 at the 𝑗-th step. The estimate of 𝑝𝑛,𝑏 can also be achieved

using randomized experiments or unbiased methods such as [2].

4.4 Relevance Prediction using RWNN
For predicting the relevance probability Pr(𝑣 = 1|𝒙𝑛 (𝑺)) in Eq.(4),

we adopt a Randomly Weighted Neural Network (RWNN) that can

be viewed as a single-hidden-layer neural network with randomly

drawn weights as a encoder [24, 31]. As an empirical implemen-

tation of RWNN, we use the random Fourier features [23] as the

random hidden layer. Specifically, at step 𝑏 in the 𝑛-th user ses-

sion, for a candidate song 𝒔 ∈ S𝑛,𝑏 , its relevance probability can be

predicted by the RWNN 𝑓 (·|𝜽𝑛,𝑏) as follows:

𝑓 (𝒙𝑛 (𝒔) |𝜽𝑛,𝑏) := 𝜎
(
𝜽⊺
𝑛,𝑏
𝜙 (𝒙𝑛 (𝒔))

)
, 𝜙 (𝒙𝑛 (𝒔)) :=

cos

(
𝑮𝒙𝑛 (𝒔) + 𝝆

)√
𝑑/2

,

where 𝜽𝑛,𝑏 ∈ R𝑑 denotes the model parameters of 𝑓 , 𝑑 is the di-

mension of the model parameters, 𝑮 ∈ R𝑑×𝑑𝑥 is a random matrix

with each entry drawn independently according to the Gaussian

distribution N(0, b2), 𝝆 ∈ R𝑑 is a random vector drawn i.i.d. from

[−𝜋, 𝜋] uniformly, cos(·) is an element-wise cosine function, and

𝜎 (·) is a sigmoid function. An intuitive interpretation of the random

mapping 𝜙 (·) is that the contexts are projected onto a novel feature
space that is an unbiased estimate of the Gaussian reproducing

kernel Hilbert space [23, 41], which can help capture the nonlinear

relation between the context and the relevance.

Finally, the relevance probability and the attention probability

can be predicted by 𝑓 (𝒙𝑛 (𝒔) |𝜽𝑛,𝑏) and 𝑝𝑛,𝑏 in Eq.(5), respectively.

Then, from Eq.(3) and Eq.(4), the modified reward at step 𝑏 in the

𝑛-th user session can be expressed by:

𝑟mod

𝑛,𝑏
:= 𝑟𝑛,𝑏

/ [
𝑝𝑛,𝑏 + (1 − 𝑝𝑛,𝑏)/𝑓 (𝒙𝑛 (𝒔𝐼𝑛,𝑏) |𝜽𝑛,𝑏)

]
,

where 𝑟𝑛,𝑏 := 𝑟 (𝒙𝑛 (𝒔𝐼𝑛,𝑏), 𝑐𝑛,𝑏) = 𝑐𝑛,𝑏 denotes the observed reward

for the recommended song 𝒔𝐼𝑛,𝑏 .

4.5 Model Training and Online Recommendation
4.5.1 Offline Training. The model parameter 𝜷 of the user atten-

tion model 𝑔 is updated at the end of each user session, which can

be viewed as a offline training process after collecting the user

listening history and the user feedbacks at one user session. When

conducting the offline training for the neural networks in𝑔, a binary

cross entropy loss is adopted as the objective function that is solved

by Adam optimizer. Since the attention variable 𝑜 is unobservable,

imputed attention variables are used to compute the loss function.

Specifically, if a user skips a song (i.e., 𝑐 = 0), we consider that the

corresponding attention variable should be 𝑜 = 1; if a user plays

more than ten songs without any active user action (i.e., skip), the

corresponding attention variable 𝑜 is considered as 0 until the next

active user action occurs. Although some of the negative samples

(i.e., 𝑜 = 0) may be mislabeled, it is sufficient to provide useful

supervised signals for the training of the attention model.

4.5.2 Online Training. To capture the user’s preference shifts on-

line, we update the relevance prediction model 𝑓 using dueling

bandit [27, 38] in an online manner. More specifically, at step 𝑏 in

the 𝑛-th user session, given the model parameters 𝜽𝑛,𝑏 of 𝑓 , we first

choose a dueling model parameterized by
˜𝜽𝑛,𝑏 through performing

˜𝜽𝑛,𝑏 = 𝜽𝑛,𝑏 +𝛿𝒒, where 𝒒 ∈ R𝑑 is a random vector i.i.d. drawn from

a uniform distribution Us over the unit sphere in Euclidean space,

and 𝛿 > 0 is an exploration parameter. To evaluate the dueling

model, instead of interacting with users using the dueling model

directly, we compute the imputed reward of the dueling model
˜𝜽𝑛,𝑏

by 𝑟 := 𝑟 (˜𝜽𝑛,𝑏) = 1/rank
˜𝜽𝑛,𝑏
(𝒔𝐼𝑛,𝑏), where the function rank𝜽 (𝒔)

outputs the position of 𝒔 in the ranking list in which the candidate

songs in S𝑛,𝑏 are sorted by the descending order of the predicted

relevance probability 𝑓 (𝒙𝑛 (·) |𝜽). Then, if the imputed reward 𝑟

of the dueling model satisfies 𝑟 > 𝑟mod

𝑛,𝑏
(i.e., the dueling model is

the winner with a larger reward), 𝑟 will be used for updating the

parameters of 𝑓 (·|𝜽𝑛,𝑏) as follows:

𝜽𝑛,𝑏 = 𝜽𝑛,𝑏 − 𝛾
(
𝑟 − 𝑟mod

𝑛,𝑏

)
𝒒, (6)

where 𝛾 > 0 is the stepsize, and 𝒒 is the random vector as men-

tioned before. Intuitively, in Eq.(6), a greater winning of a dueling

model (i.e., a larger 𝑟) leads to a larger distance between the current

KDD ’22, August 14–18, 2022, Washington, DC, USA Xiao Zhang et al.

parameters and the updated parameters. Theoretically, the updat-

ing in Eq.(6) is equivalent to minimizing a given loss defined in

Section 5 that measures the difference between 𝑟 and 𝑟mod

𝑛,𝑏
, where

(𝑟 − 𝑟mod

𝑛,𝑏
)𝒒 is an effective gradient estimate of the given loss.

To reduce the variance in Eq.(6), we perform the above updating

process 𝐾 times (i.e., 𝐾 dueling models are explored and used for

training parameters 𝜽𝑛,𝑏).

4.5.3 Online Recommendation. At step 𝑏 in the 𝑛-the user session,

we select a song from the candidate songs S𝑛,𝑏 according to the

predicted relevance: 𝒔𝐼𝑛,𝑏 = argmax𝒔∈S𝑛,𝑏 𝑓 (𝒙𝑛 (𝒔) |𝜽𝑛,𝑏), and rec-

ommend it to the user 𝒖𝑛 . Finally, we summarize the above steps of

model training and online recommendation in Algorithm 1, called

NDB. We can observe that, the time complexity of online training

and online recommendation in NDB is of order 𝑂 (𝐾𝑑𝑀 + 𝑑𝑥𝑑𝑀)
at each step, where𝑀 denotes the maximal number of candidate

songs at one step, 𝑑 the dimension of model parameters in 𝑓 , 𝑑𝑥
the dimension of contexts, and 𝐾 the number of dueling models.

5 DISCUSSION
Regret analysis.When themodified reward 𝑟mod

is close to the im-

puted reward 𝑟 , the model parameters 𝜽 in our recommendation pol-

icy can converge to the optimal model parameters. Letting Ω ∈ R𝑑
be the model parameter space of the relevance prediction model 𝑓 ,

we introduce the loss function ℓ𝑛,𝑏 (𝜽) := max{0, 𝑟 (𝜽) − 𝑟mod

𝑛,𝑏
}, 𝜽 ∈

Ω, to measure the difference between the rewards. To evaluate the

convergence of the proposed neural dueling bandit, assuming that

the batch size 𝐵𝑛 = 𝐵,∀𝑛 ∈ [𝑁], we define the regret as follows:

Reg({𝜽𝑛,𝑏 }𝑛∈[𝑁],𝑏∈[𝐵] , 𝜽 ∗) :=
∑

𝑛∈[𝑁],𝑏∈[𝐵]

[
ℓ𝑛,𝑏 (𝜽𝑛,𝑏) − ℓ𝑛,𝑏 (𝜽 ∗)

]
,

where 𝜽 ∗ ∈ Ω denotes the optimal model parameters satisfying

𝜽 ∗ = argmin𝜽 ∈Ω
∑
𝑛∈[𝑁],𝑏∈[𝐵] ℓ𝑛,𝑏 (𝜽). Next, we prove the regret

upper bound of NDB (Algorithm 1) as follows.

Theorem 5.1 (Regret Upper Bound). Let 𝑇 = 𝐵 × 𝑁 be the
overall number of interaction steps. For any 𝜽 ∈ Ω, assume that 𝑟 (𝜽) is
Lipschitz continuous with Lipschitz constant 𝐿 (not necessarily convex
or differentiable) and ∥𝜽 ∥2

2
≤ 𝐶𝜽 . Let Ub be a uniform distribution

over the Euclidean unit ball, and ℓ̂𝑛,𝑏 (𝜽) := E𝒖∈Ub
[ℓ𝑛,𝑏 (𝜽 + 𝛿𝒖)] be

a differentiable version of ℓ𝑛,𝑏 that has Lipschitz continuous gradients
with constant 𝐿g ≤ 𝛿 . Then, for an arbitrary sequence of contexts,

E
[
Reg({𝜽𝑛,𝑏 }𝑛∈[𝑁],𝑏∈[𝐵] , 𝜽 ∗)

]
≤ 𝑑

2𝛾𝛿
𝐶𝜽 +

𝑑𝛾

𝛿
𝑇 + 2(𝐶𝜽 + 𝐿)𝛿𝑇 .

Remark 1. Setting 𝛾 =
√
𝐶𝜽 /(2𝑇), 𝛿 = 𝑑1/2 (𝐶𝜽 /2)1/4 (2𝐶𝜽 +

3𝐿)−1/2𝑇−1/4, we obtain that the regret bound is of order𝑂 (𝑑1/2𝑇 3/4),
which matches the optimal regret bounds of the classic dueling bandits
for the case that the user attention bias does not exist [28, 38]. The
sub-linear regret bound of NDB indicates the effectiveness of approxi-
mating the optimal policy in streaming recommendation scenarios.

Difference with dueling bandits. Compared to existing duel-

ing bandit approaches for streaming recommendation [21, 27, 38],

NDB has the following striking differences: (1) Instead of directly

applying the observed rewards that may be biased, NDB uses the

modified and unbiased rewards for online training; (2) NDB adopts

Algorithm 1: Neural Dueling Bandit (NDB)

INPUT: Batch sizes {𝐵𝑛}𝑛∈[𝑁] , number of episodes 𝑁 , stepsize

𝛾 , exploration parameter 𝛿 , number of dueling models 𝐾

1: Initialize 𝜷1 with Xavier Normal, 𝜽1,1 ∼ N(0, 1), and D1,0 = ∅
2: for 𝑛 = 1 to 𝑁 do
3: // Online Recommendation and Online Training
4: Receive a user feature vector 𝒖𝑛
5: for 𝑏 = 1 to 𝐵𝑛 do
6: Observe the set of candidate songs S𝑛,𝑏
7: Obtain the contexts 𝒙𝑛 (𝒔) ← [𝒖⊺𝑛 , 𝒔⊺]⊺, ∀𝒔 ∈ S𝑛,𝑏
8: Recommend song 𝒔𝐼𝑛,𝑏 ∈ S𝑛,𝑏 to the user following

𝒔𝐼𝑛,𝑏 ← argmax𝒔∈S𝑛,𝑏 𝑓 (𝒙𝑛 (𝒔) |𝜽𝑛,𝑏)
9: Receive feedback 𝑐𝑛,𝑏 (𝑐𝑛,𝑏 = 0 for skip and 1 for play)

10: D𝑛,𝑏 ← D𝑛,𝑏−1 ∪ {(𝑢𝑛, 𝒔𝐼𝑛,𝑏 , 𝑐𝑛,𝑏)}
11: if 𝑐𝑛,𝑏 = 1 then
12: Set reward 𝑟𝑛,𝑏 ← 1

13: Compute attention probability 𝑝𝑛,𝑏 ← 𝑔(D𝑛,𝑏 | 𝜷𝑛)
14: Estimate𝑤 ← 1/[𝑝𝑛,𝑏 + (1 − 𝑝𝑛,𝑏)/𝑓 (𝒙𝑛 (𝒔𝐼𝑛,𝑏) |𝜽𝑛,𝑏)]
15: Reweight reward 𝑟mod

𝑛,𝑏
← 𝑤 · 𝑟𝑛,𝑏

16: else
17: Compute reward 𝑟mod

𝑛,𝑏
← 0

18: end if
19: for 𝑘 = 1 to 𝐾 do
20: Pick 𝒒 ∼ Us and update

˜𝜽𝑛,𝑏 ← 𝜽𝑛,𝑏 + 𝛿𝒒
21: Compute the imputed reward of recommending song

𝒔𝐼𝑛,𝑏 using
˜𝜽𝑛,𝑏 as 𝑟 ← 𝑟 (˜𝜽𝑛,𝑏) = 1/rank

˜𝜽𝑛,𝑏
(𝒔𝐼𝑛,𝑏)

22: if 𝑟 > 𝑟mod

𝑛,𝑏
then

23: 𝜽𝑛,𝑏 ← 𝜽𝑛,𝑏 − 𝛾 (𝑟 − 𝑟mod

𝑛,𝑏
)𝒒

24: end if
25: end for
26: 𝜽𝑛,𝑏+1 ← 𝜽𝑛,𝑏
27: end for
28: 𝜽𝑛+1,1 ← 𝜽𝑛,𝐵
29: // Offline Training
30: D𝑛+1,0 ← D𝑛,𝐵

31: Update user attention model 𝜷𝑛+1 ← Δ(𝜷𝑛) on D𝑛+1,0
32: end for

neural networks for accurate prediction rather than a simple (gen-

eralized) linear model; (3) the parameter updating process in Eq.(6)

is derived from a potential loss function ℓ𝑛,𝑏 , enjoying a sub-linear

regret guarantee even without the assumption of convex losses.

6 EXPERIMENTS
In this section, we empirically study the proposed NDB by address-

ing the following research questions:

RQ1: How does the proposed NDB perform in comparison with

state-of-the-art baselines?

RQ2: Whether NDB is efficient enough to ensure the real-time

requirement of online recommendations?

RQ3: How is NDB impacted by the number of dueling models 𝐾?

RQ4: What is the impact of major components of NDB on the

recommendation performance?

Counteracting User Attention Bias in Music Streaming Recommendation via Reward Modification KDD ’22, August 14–18, 2022, Washington, DC, USA

0 200 400 600 800
N

0.72

0.74

0.76

0.78

0.80

0.82

0.84

O
nl

in
e

A
ve

ra
ge

 R
ew

ar
d

Subset I

SBUCB
EXP3-B
CDB
SBUCB-C
NDB

0 200 400 600 800
N

0.76

0.78

0.80

0.82

0.84

0.86

0.88

O
nl

in
e

A
ve

ra
ge

 R
ew

ar
d

Subset II

0 200 400 600 800
N

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900

O
nl

in
e

A
ve

ra
ge

 R
ew

ar
d

Subset III

Figure 5: Online average rewards of SBUCB, EXP3-B, CDB, SBUCB-C, and the proposed NDB on first three subsets from
Last.fm 1K dataset. Results of the last three subsets can be found in Appendix B.4.

6.1 Experimental Settings
6.1.1 Dataset. For evaluation, we used the Last.fm 1K dataset [3]
(with multiple subsets), containing approximately 20 million lis-

tening events of 992 distinct Last.fm users between July 2005 and

May 2009
1
. We enriched the original dataset using the Last.fm API

2
,

Spotify API
3
, and MusicBrainz API

4
, by which the missing informa-

tion (e.g., duration) of candidate songs was completed. Specifically,

Last.fm 1K consists of six subsets that each covers six months’

worth of user-song interactions [21, 26], and the interactions col-

lected in 2009 were used for testing the online simulator.

For the observed user feedbacks, following the standard practice

in [21, 22], we used the playrate to distinguish the skip feedbacks

from listening events. Specifically, as in [22], we treated an event

as a negative feedback (i.e., a skip) if the playrate of the song was

less than 90% and others as positive feedbacks (i.e., a play).

Following the settings in [21, 40], we represented each user and

song using low-dimensional features, and the context as a 120-

dimensional vector 𝒙𝑛 (𝒔) defined in Section 3.1, i.e., 𝑑𝑥 = 120.

More details about the dataset and data preparation can be found

in Appendix B.1.

6.1.2 Baselines. NDB was compared with several algorithms that

directly use the unmodified user feedbacks, including:

SBUCB [16] is a batched version of LinUCB [19], which updates

the policy after receiving a batch of feedback data, where LinUCB

is a classic linear contextual bandit approach for recommendation.

EXP3-B [20]: EXP3 is a classic algorithm for adversarial ban-

dits [5], where the agent chooses an action according to a distri-

bution constructed by the exponential weights. The batched and

contextual version of EXP3 is denoted by EXP3-B.

CDB [21] is a state-of-the-art bandit optimization algorithm for

music streaming recommendation that updates the model online

via multiple duels. Moreover, CDB is a personalized model that

learns different recommendation models for different users.

NDB was also compared to SBUCB with Cutoff (SBUCB-C)
that addresses the attention bias by heuristically discarding the user

positive feedbacks that may be false. It is a variant of SBUCB that

equips with a play cutoff technology [25], where only the first two

1
Note that there exist several other readily available datasets for music streaming

recommendation [3, 9, 32]. However, they cannot support the investigations in this

paper because these datasets either did not record listening history in timestamp units

or did not consist of user side information.

2
http://www.last.fm

3
https://developer.spotify.com/documentation/web-api/

4
http://www.musicbrainz.org/

I II III IV V VI
Index of Subset

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

O
nl

in
e

A
ve

ra
ge

 R
ew

ar
d

(o
=1

)

SBUCB
SBUCB-C
EXP3-B
CDB
NDB

Figure 6: Online average reward for the case that the user
attention 𝑜 = 1 on six subsets from the Last.fm 1K dataset.

songs played entirely after the user’s skip action are treated as the

positive user feedbacks, and the rest of user feedbacks are ignored.

6.1.3 Evaluation Protocol. In streaming recommendation, we can-

not guarantee that each recommended song to the user had a cor-

responding feedback in the log data. To address this issue, follow-

ing [18, 25, 40], all the algorithms were tested in simulated online

environments trained on log data accurately. More details regarding

the online environments can be found in Appendix B.2. Briefly, at

each step, the online environment received a song from the recom-

mendation model, and generated the attention and relevance score

to return user feedback (1 = "play", 0 = "skip") according to Table 2.

Following these settings, we conducted online tests on Subset I–

Subset VI to assess the effectiveness and efficiency of the music

streaming recommenders. To this end, we define the online average
reward up to the first 𝑛 episodes as 1

𝑛𝐵

∑𝑛
𝑘=1

∑𝐵
𝑏=1

𝑟𝑘,𝑏 ,where 𝑟𝑘,𝑏 is

the observed user feedback at step 𝑏 in the 𝑘-th episode. In Table 3,

we also reported the online average reward w.r.t. all user sessions.

6.2 Experiment Results and Analyses
This section addresses the four research questions stated earlier.

6.2.1 RQ1: Comparison against Baselines. Figure 5 reports

the average reward of the baselines and the proposed NDB on

the Last.fm 1K dataset. We can observe that NDB achieves the

highest average reward after running about 200 sessions on all

subsets. Table 3 shows the average reward w.r.t. all user sessions

and running time for NDB and the baselines on six subsets. The

proposed algorithm outperformed all the baselines on all six sub-

sets in terms of the rewards, verifying the effectiveness of NDB for

counteracting user attention bias in streaming recommendation.

We also compared all the algorithms in terms of the online aver-

age rewards when users paid attention to the recommended songs

(i.e., attention variable 𝑜 = 1). The results in Figure 6 showed that

KDD ’22, August 14–18, 2022, Washington, DC, USA Xiao Zhang et al.

Table 3: Comparisons of online average reward (w.r.t. all user sessions) and running time for NDB and baselines on six subsets
from Last.fm 1K. ‘∗’: improvements over baselines are statistical significant (𝑡-test, 𝑝-value< 0.05). Recommendation: online
recommendation. The running time of the online process means the time cost of recommendation or training at each step for
one song, while the running time of offline training denotes the time cost of model training at the end of each user session
(i.e., each episode). In particular, Since CDB is a fully-online algorithm, it does not have any time cost of offline training.

Algorithm

Online average reward Running time (sec., mean ± std)

Subset I Subset II Subset III Subset IV Subset V Subset VI Recommendation Online training Offline training

SBUCB [16] 0.7809 0.8062 0.8638 0.8729 0.8893 0.8921 1.96e-4±6.64e-5 2.65e-6±4.79e-7 6.88e-4±1.28e-4
EXP3-B [20] 0.7889 0.8127 0.8664 0.8754 0.8931 0.8953 2.92e-4±8.63e-5 2.55e-6±4.75e-7 8.09e-4±2.48e-4
CDB [21] 0.7892 0.8186 0.8704 0.8792 0.8982 0.9001 2.15e-5±1.94e-5 4.91e-4±6.91e-5 -

SBUCB-C [1, 16] 0.7859 0.8111 0.8673 0.8749 0.8919 0.8945 1.98e-4±7.47e-5 2.69e-6±6.09e-7 6.21e-4±1.42e-4
NDB (Ours) 0.8248∗ 0.8500∗ 0.8963∗ 0.9002∗ 0.9113∗ 0.9153∗ 3.67e-4±7.85e-5 4.38e-3±1.57e-3 1.35e-2±9.12e-4

1 2 3 4 5 6 7 8 9 10
Number of Dueling Models K

0.78
0.79
0.80
0.81
0.82
0.83

O
nl

in
e

A
ve

ra
ge

 R
ew

ar
d

CDB
NDB

Figure 7: Impact of the number of dueling models 𝐾 in NDB
on Subset I, where the shaded area represents the standard
deviation.

NDB also achieved the highest rewards when 𝑜 = 1, indicating that

reward modification can help enhance the prediction accuracy of

user preferences.

6.2.2 RQ2: Running Time. In streaming recommendation sce-

narios, running time is another important metric. We reported the

running time of online and offline processes in Table 3. Note that we

treated a user feedback as a negative one if the playrate of the song

was less than 90%, which means that we had 10% of a song’s dura-

tion to complete online model training and recommendation of the

next song. From the results of NDB, we observed that the running

time of both the online recommendation and the online training

at each step was on the order of milliseconds (ms), indicating that

NDB met the real-time requirements in streaming recommenda-

tions. Besides, the running time of offline training for updating the

attention model after each session was also acceptable.

6.2.3 RQ3: Impact ofNumber ofDuelingModels𝐾 . The num-

ber of dueling models 𝐾 in NDB balanced the effectiveness and

efficiency of the online training process. Specifically, a larger 𝐾

will explore more updating directions of the current relevance pre-

diction model and consequently enhance the effectiveness. On the

other hand, as the number of dueling models increased, the time

consumption of NDB also increased according to the complexity

analysis described in Section 4.5.3. To verify the analyses, we con-

ducted experiments by varying 𝐾 from 1 to 10 on Subset I. Figure 7

illustrated the performances of different 𝐾 in terms of the online

average rewards w.r.t. all user sessions. The results, as expected,

indicated a beneficial influence on effectiveness while raising the

value of 𝐾 . Compared with NDB using one dueling model per user

Table 4: Ablation study on Subset I.

Algorithm Online average reward

NDB w/o RWNN 0.8049

NDB w/o modification 0.8102

NDB 0.8248

feedback (i.e., 𝐾 = 1), NDB with 𝐾 = 10 can get approximately

3% improvement on performance. Besides, we achieved similar ob-

servations on other subsets in experiments. These results further

verified the effectiveness of the online training process with the

modified rewards in NDB.

6.2.4 RQ4: Ablation Study. NDB consists of two important com-

ponents: one is RWNN encoding candidate songs for better predic-

tion of the relevance probability, the other is the reward modifi-

cation component estimating the expected true reward for better

online training. To address the fourth research question, we per-

formed ablation studies by omitting some of the major components

of NDB on Subset I. These NDB variations include: (a) predicting

the relevance probability without using RWNN (denoted by ’NDB

w/o RWNN’), and (b) online training without reward modification

(denoted by ’NDB w/o modification’). From the results reported

in Table 4, we observed that compared with the original NDB, the

performances of both NDB variations dropped, demonstrating the

effectiveness of both components. More importantly, ablation stud-

ies on all other subsets had similar conclusions. These ablation

studies clearly showed that both RWNN and the reward modifica-

tion were crucial parts of the NDB to achieve its potential.

7 CONCLUSION
This paper aims to eliminate the user attention bias and enhance

the recommendation performance in music streaming recommen-

dation. Specifically, we propose an online learning approach called

Neural Dueling Bandit (NDB). The proposed NDB captures the

mechanisms of user attention and users’ music preference using

neural networks, achieves an unbiased estimate of true rewards, and

enjoys a sub-linear regret upper bound against the optimal policy

for online recommendation. Experimental results demonstrated the

effectiveness and efficiency of NDB in steaming recommendation.

Counteracting User Attention Bias in Music Streaming Recommendation via Reward Modification KDD ’22, August 14–18, 2022, Washington, DC, USA

ACKNOWLEDGMENTS
This work was funded by the National Key R&D Program of China

(2019YFE0198200), the National Natural Science Foundation of

China (62006234, 61872338, 61832017), Beijing Outstanding Young

Scientist Program NO. BJJWZYJH012019100020098, Intelligent So-

cial Governance Interdisciplinary Platform, Major Innovation &

Planning Interdisciplinary Platform for the “Double-First Class”

Initiative, Renmin University of China, the Fundamental Research

Funds for the Central Universities and the Research Funds of Ren-

min University of China (No.22XNH027), and Public Policy and

Decision-making Research Lab of Renmin University of China. We

would like to thank Bruno L. Pereira and Ahmed Kachkach for their

valuable suggestion and help of this work.

REFERENCES
[1] Kachkach Ahmed. 2016. Analyzing user behavior and sentiment in music streaming

services. Master’s thesis. KTH Royal Institute of Technology.

[2] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W. Bruce Croft. 2018. Un-

biased learning to rank with unbiased propensity estimation. In Proceedings
of the 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval. 385–394.

[3] áOscar Celma. 2010. Music recommendation and discovery: The long tail, long
fail, and long play in the digital music space. Springer Publishing Company,

Incorporated.

[4] Walid Bendada, Guillaume Salha, and Théo Bontempelli. 2020. Carousel person-

alization in music streaming apps with contextual bandits. In Proceedings of the
14th ACM Conference on Recommender Systems. 420–425.

[5] Ilai Bistritz, Zhengyuan Zhou, Xi Chen, Nicholas Bambos, and Jose Blanchet.

2019. Online EXP3 learning in adversarial bandits with delayed feedback. In

Advances in Neural Information Processing Systems 32. 11349–11358.
[6] Geoffray Bonnin and Dietmar Jannach. 2014. Automated generation of music

playlists: Survey and experiments. Comput. Surveys 47, 2 (2014), 1–35.
[7] Léon Bottou, Jonas Peters, JoaquinQuiñonero Candela, Denis Xavier Charles, Max

Chickering, Elon Portugaly, Dipankar Ray, Patrice Y. Simard, and Ed Snelson. 2013.

Counterfactual reasoning and learning systems: The example of computational

advertising. Journal of Machine Learning Research 14 (2013), 3207–3260.

[8] Léa Briand, Guillaume Salha-Galvan, Walid Bendada, Mathieu Morlon, and Viet-

Anh Tran. 2021. A semi-personalized system for user cold start recommendation

on music streaming apps. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 2601–2609.

[9] Brian Brost, Rishabh Mehrotra, and Tristan Jehan. 2019. The music streaming

sessions dataset. In Proceedings of the 2019 World Wide Web Conference. 2594–
2600.

[10] Zhiyong Cheng, Shen Jialie, and Steven C.H. Hoi. 2016. On effective personalized

music retrieval by exploring online user behaviors. In Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 125–134.

[11] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase

representations using RNN encoder-decoder for statistical machine translation.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing. 1724–1734.

[12] Bruce Ferwerda and Markus Schedl. 2016. Personality-based user modeling for

music recommender systems. In Proceedings of the Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. 254–257.

[13] Abraham Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. 2005. Online

convex optimization in the bandit setting: Gradient descent without a gradient.

In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms.
385–394.

[14] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.

DeepFM: A factorization-machine based neural network for CTR prediction.

arXiv preprint arXiv:1703.04247 (2017).

[15] Kartik Gupta, Noveen Sachdeva, and Vikram Pudi. 2018. Explicit modelling of the

implicit short term user preferences for music recommendation. In Proceedings
of the 40th European Conference on Information Retrieval Research. 333–344.

[16] Yanjun Han, Zhengqing Zhou, Zhengyuan Zhou, Jose H. Blanchet, Peter W.

Glynn, and Yinyu Ye. 2020. Sequential batch learning in finite-action linear

contextual bandits. CoRR abs/2004.06321 (2020).

[17] Elad Hazan. 2016. Introduction to online convex optimization. Foundations and
Trends in Optimization 2, 3-4 (2016), 157–325.

[18] Olivier Jeunen, David Rohde, Flavian Vasile, and Martin Bompaire. 2020. Joint

policy-value learning for recommendation. In Proceedings of the 26th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining. 1223–1233.
[19] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-

bandit approach to personalized news article recommendation. In Proceedings of
the 19th International Conference on World Wide Web. 661–670.

[20] Gergely Neu and Julia Olkhovskaya. 2020. Efficient and robust algorithms for

adversarial linear contextual bandits. In Proceedings of the 33rd Conference on
Learning Theory. 3049–3068.

[21] Bruno L Pereira, Alberto Ueda, Gustavo Penha, Rodrygo LT Santos, and Nivio

Ziviani. 2019. Online learning to rank for sequential music recommendation. In

Proceedings of the 13th ACM Conference on Recommender Systems. 237–245.
[22] Joachim Valdemar Yde Peter Vergerakis. 2020. Exploring skips and long-Term

preferences in session-based music recommendation. Master’s thesis. Aalborg

University.

[23] Ali Rahimi and Benjamin Recht. 2007. Random features for large-scale kernel

machines. In Advances in Neural Information Processing Systems 20. 1177–1184.
[24] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and

Mohammad Rastegari. 2020. What’s hidden in a randomly weighted neural

network?. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 11890–11899.

[25] Reza Reza Aditya Permadi. 2018. Improving recommender systems algorithms for
personalized music video television by incorporating user consumption behaviour
and multiple types of user feedback. Master’s thesis. Delft University of Technol-

ogy.

[26] Noveen Sachdeva, Kartik Gupta, and Vikram Pudi. 2018. Attentive neural archi-

tecture incorporating song features for music recommendation. In Proceedings of
the 12th ACM Conference on Recommender Systems. 417–421.

[27] Anne Schuth, Harrie Oosterhuis, Shimon Whiteson, and Maarten de Rijke. 2016.

Multileave gradient descent for fast online learning to rank. In Proceedings of the
9th ACM International Conference on Web Search and Data Mining. 457–466.

[28] Shai Shalev-Shwartz. 2011. Online learning and online convex optimization.

Foundations and Trends in Machine Learning 4, 2 (2011), 107–194.

[29] Yading Song, Simon Dixon, and Marcus Pearce. 2012. A survey of music recom-

mendation systems and future perspectives. In Proceedings of the 9th International
Symposium on Computer Music Modeling and Retrieval. 395–410.

[30] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller. 2007. Covariate

shift adaptation by importance weighted cross validation. Journal of Machine
Learning Research 8 (2007), 985–1005.

[31] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin

Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng.

2020. Fourier features let networks learn high frequency functions in low di-

mensional domains. Advances in Neural Information Processing Systems 33 (2020),
7537–7547.

[32] Roberto Turrin, Massimo Quadrana, Andrea Condorelli, Roberto Pagano, and

Paolo Cremonesi. 2015. 30Music listening and playlists dataset. In RecSys Posters.
75.

[33] Andreu Vall. 2015. Listener-inspired automated music playlist generation. In

Proceedings of the 9th ACM Conference on Recommender Systems. 387–390.
[34] Aäron van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep

content-based music recommendation. In Advances in Neural Information Pro-
cessing Systems 26. 2643–2651.

[35] Sergey Volokhin and Eugene Agichtein. 2018. Understanding music listening

intents during daily activities with implications for contextual music recommen-

dation. In Proceedings of the 2018 Conference on Human Information Interaction &
Retrieval. 313–316.

[36] Nils Wlömert and Dominik Papies. 2016. On-demand streaming services and

music industry revenues—Insights from Spotify’s market entry. International
Journal of Research in Marketing 33, 2 (2016), 314–327.

[37] Shota Yasui, Gota Morishita, Komei Fujita, and Masashi Shibata. 2020. A feed-

back shift correction in predicting conversion rates under delayed feedback. In

Proceedings of the Web Conference 2020. 2740–2746.
[38] Yisong Yue and Thorsten Joachims. 2009. Interactively optimizing information

retrieval systems as a dueling bandits problem. In Proceedings of the 26th Annual
International Conference on Machine Learning. 1201–1208.

[39] Boxun Zhang, Gunnar Kreitz, Marcus Isaksson, Javier Ubillos, Guido Urdaneta,

Johan A Pouwelse, and Dick Epema. 2013. Understanding user behavior in spotify.

In Proceedings of the IEEE INFOCOM 2013. 220–224.
[40] Xiao Zhang, Haonan Jia, Hanjing Su, Wenhan Wang, Jun Xu, and Ji-Rong Wen.

2021. Counterfactual reward modification for streaming recommendation with

delayed feedback. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 41–50.

[41] Xiao Zhang and Shizhong Liao. 2019. Incremental randomized sketching for

online kernel learning. In Proceedings of the 36th International Conference on
Machine Learning. 7394–7403.

KDD ’22, August 14–18, 2022, Washington, DC, USA Xiao Zhang et al.

A APPENDIX: DETAILED PROOFS
A.1 Proof of Theorem 4.1

Proof of Theorem 4.1. From the definitions of the modified

reward 𝑟mod (𝒙𝑛 (𝒔), 𝑐) in Eq.(3) and the importance weight in Eq.(4),

we have

E𝑐 [𝑟mod (𝒙𝑛 (𝒔), 𝑐)] = 𝑤 · E𝑐 [𝑟 (𝒙𝑛 (𝒔), 𝑐)]
= 𝑤 · Pr {𝑐 = 1| 𝒙𝑛 (𝒔)}

=
Pr {𝑣 = 1| 𝒙𝑛 (𝒔)}
Pr {𝑐 = 1| 𝒙𝑛 (𝒔)}

· Pr {𝑐 = 1| 𝒙𝑛 (𝒔)}

= E𝑣 [𝑟 (𝒙𝑛 (𝒔), 𝑣)] .

□

A.2 Proof of Theorem 5.1
Proof of Theorem 5.1. From lemma 2.1 in [13], we obtain that

∇ℓ̂𝑛,𝑏 (𝜽) =

E𝒒∈Us

{
𝑑
𝛿

[
𝑟 (𝜽 + 𝛿𝒒) − 𝑟mod

𝑛,𝑏

]
𝒒
}

𝑟 (𝜽) > 𝑟mod

𝑛,𝑏
,

0 𝑟 (𝜽) ≤ 𝑟mod

𝑛,𝑏
.

(7)

From the regret analysis of online linear optimization using online

gradient descent [17, 28], we have∑
𝑛∈[𝑁],𝑏∈[𝐵]

〈
[𝑟 (𝜽𝑛,𝑏 + 𝛿𝒒) − 𝑟mod

𝑛,𝑏
]𝒒, 𝜽𝑛,𝑏 − 𝜽 ∗

〉
≤
∥𝜽 ∗∥2

2

2𝛾
+ 𝛾

∑
𝑛∈[𝑁],𝑏∈[𝐵]

[𝑟 (𝜽𝑛,𝑏 + 𝛿𝒒) − 𝑟mod

𝑛,𝑏

]
𝒒
2
2

.

(8)

Multiplying both sides of Eq.(8) by𝑑/𝛿 and taking expectation, from
Eq.(7) we get

E

∑

𝑛∈[𝑁],𝑏∈[𝐵]

〈
∇ℓ̂ (𝜽𝑛,𝑏), 𝜽𝑛,𝑏 − 𝜽 ∗

〉
≤ 𝑑

2𝛾𝛿
∥𝜽 ∗∥2

2
+ 𝑑𝛾
𝛿

∑
𝑛∈[𝑁],𝑏∈[𝐵]

E
[𝑟 (𝜽𝑛,𝑏 + 𝛿𝒒) − 𝑟mod

𝑛,𝑏

]
𝒒
2
2

≤ 𝑑

2𝛾𝛿
𝐶𝜽 +

𝑑𝛾

𝛿

∑
𝑛∈[𝑁],𝑏∈[𝐵]

E
[
𝑟 (𝜽𝑛,𝑏 + 𝛿𝒒) − 𝑟mod

𝑛,𝑏

]
2

≤ 𝑑

2𝛾𝛿
𝐶𝜽 +

𝑑𝛾

𝛿
𝑇 . (9)

From the condition of Lipschitz continuous gradients of ℓ̂ , we obtain

ℓ̂𝑛,𝑏 (𝜽𝑛,𝑏) − ℓ̂𝑛,𝑏 (𝜽 ∗) ≤ ⟨∇ℓ̂𝑛,𝑏 (𝜽𝑛,𝑏), 𝜽𝑛,𝑏 − 𝜽 ∗⟩ +
𝐿g

2

∥𝜽𝑛,𝑏 − 𝜽 ∗∥22
≤ ⟨∇ℓ̂𝑛,𝑏 (𝜽𝑛,𝑏), 𝜽𝑛,𝑏 − 𝜽 ∗⟩ + 2𝛿𝐶𝜽 . (10)

Combining Eq.(10) with Eq.(9) yields

E

∑

𝑛∈[𝑁],𝑏∈[𝐵]

(
ℓ̂𝑛,𝑏 (𝜽𝑛,𝑏) − ℓ̂𝑛,𝑏 (𝜽 ∗)

) ≤
𝑑

2𝛾𝛿
𝐶𝜽 +

𝑑𝛾

𝛿
𝑇 + 2𝛿𝐶𝜽𝑇 .

(11)

Since 𝑟 (𝜽) is Lipschitz continuous with Lipschitz constant 𝐿, we

have |𝑟 (𝜽 +𝛿𝒖) −𝑟 (𝜽) | ≤ 𝐿𝛿 ∥𝒖∥2. Furthermore, when 𝑟 (𝜽) > 𝑟mod

𝑛,𝑏
,

since ∥𝒖∥2 ≤ 1, we obtain

|ℓ𝑛,𝑏 (𝜽 + 𝛿𝒖) − ℓ𝑛,𝑏 (𝜽) | =
���[𝑟 (𝜽 + 𝛿𝒖) − 𝑟mod

𝑛,𝑏
] − [𝑟 (𝜽) − 𝑟mod

𝑛,𝑏
]
���

= |𝑟 (𝜽 + 𝛿𝒖) − 𝑟 (𝜽) |
≤ 𝐿𝛿 ∥𝒖∥2
≤ 𝐿𝛿,

yielding that, when 𝑟 (𝜽) > 𝑟mod

𝑛,𝑏
,

|ℓ̂𝑛,𝑏 (𝜽) − ℓ𝑛,𝑏 (𝜽) | ≤ 𝐿𝛿. (12)

Combining Eq.(11) with Eq.(12) yields

E
[
Reg({𝜽𝑛,𝑏 }𝑛∈[𝑁],𝑏∈[𝐵] , 𝜽 ∗)

]
≤ E

∑

𝑛∈[𝑁],𝑏∈[𝐵]

(
ℓ̂𝑛,𝑏 (𝜽𝑛,𝑏) − ℓ̂𝑛,𝑏 (𝜽 ∗)

) + 2𝐿𝛿𝑇
≤ 𝑑

2𝛾𝛿
𝐶𝜽 +

𝑑𝛾

𝛿
𝑇 + 2(𝐶𝜽 + 𝐿)𝛿𝑇 .

□

B APPENDIX: EXPERIMENT DETAILS
B.1 Data Preparation
As shown in Table 5, Last.fm 1K consists of six subsets that each

covers six months’ worth of user-song interactions (i.e., events) [21,

26], and the interactions collected in 2009 were used for testing the

online simulator. After enrichment and filtering, the pre-processed

Last.fm 1K contained 984 unique users, 584, 194 unique songs and
10,840,109 interactions. User sessions were split as follows: two

consecutive listening events were considered to be in the same user

session if they occurred within 60 minutes of each other.

Each instance in the original Last.fm 1K dataset only contained
the userID, event timestamp, artistID, songID, and song title, and

specific user feedback (play or skip) was not provided. Following

existing empirical studies [21, 22], we used playrate to distinguish

the skip feedback which refers to the proportion of how much

the recommended song had been played (i.e, playtime of a song),

compared to the song’s total duration. To obtain song durations

for computing playrates, we captured the missing information of

data from the Last.fm API
5
, Spotify API

6
and MusicBrainz API

7
.

Specifically, we computed the playrate of a song by comparing the

song’s duration with the number of seconds between the starting

points of the current and the next song. Following standard prac-

tice [22], we treated a user feedback as a negative one (i.e., a skip)

if the playrate of the song is less than 90% or a positive one (i.e., a

play) otherwise.

Following the settings in [21, 40], we represented each user and

song using low-dimensional features for efficient online recommen-

dations. Specifically, we used the feature hashing to mapping ID

type features (such as userID and songID). Besides, the categorical

features were represented as one-hot vectors and then concatenated

to the dense features obtained from the Spotify API (e.g., acoustic-

ness, speechiness, danceability, energy, etc.). Then, by conducting

5
http://www.last.fm

6
https://developer.spotify.com/documentation/web-api/

7
http://www.musicbrainz.org/

Counteracting User Attention Bias in Music Streaming Recommendation via Reward Modification KDD ’22, August 14–18, 2022, Washington, DC, USA

0 200 400 600 800
N

0.750

0.775

0.800

0.825

0.850

0.875

0.900

O
nl

in
e

A
ve

ra
ge

 R
ew

ar
d

Subset IV

SBUCB
EXP3-B
CDB
SBUCB-C
NDB

0 200 400 600 800
N

0.775

0.800

0.825

0.850

0.875

0.900

0.925

O
nl

in
e

A
ve

ra
ge

 R
ew

ar
d

Subset V

0 200 400 600 800
N

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

O
nl

in
e

A
ve

ra
ge

 R
ew

ar
d

Subset VI

Figure 8: Online average rewards of SBUCB, EXP3-B, CDB, SBUCB-C, and the proposed NDB on last three subsets from
Last.fm 1K.

Table 5: Statistics of the pre-processed Last.fm 1K dataset.

Subset Date #Users #Songs #Sessions #Events Skip (%)

I 2006/01-2006/06 418 168,010 63,574 1,288,457 22.89

II 2006/07-2006/12 538 198,353 88,040 1,707,884 18.83

III 2007/01-2007/06 622 222,788 97,863 1,858,454 15.70

IV 2007/07-2007/12 654 250,926 102,988 1,849,446 12.48

V 2008/01-2008/06 706 269,237 108,429 1,977,493 12.12

VI 2008/07-2008/12 759 288,715 117,235 2,158,375 13.11

principal component analysis to these feature vectors and concate-

nating to the hashed features, we obtained a 30-dimensional vector

representation for each user 𝒖𝑛 (𝑑𝑢 = 30) and a 90-dimensional

vector representation for each song 𝒔 (𝑑𝑠 = 90), yielding a 120-

dimensional feature vector 𝒙𝑛 (𝒔) at each step(𝑑𝑥 = 120).

B.2 Simulated Online Environment
In this study, we focused on a streaming playlist generation sce-

nario, where songs were dynamically recommended once at a time

by taking into account the historical user interactions during their

listening session. However, in practice, user feedbacks were only

available for the songs actually consumed by the users when con-

ducting online recommendation. In such an online scenario, we

cannot guarantee that each song recommended by the model to

the user had a corresponding feedback in the log data. Instead,

to ensure our evaluation reliable, following [18, 25, 40], we used

a simulated online environment. More specifically, the simulated

online environment consists of two models: a model for simulating

the user attention and a model for outputting the true user pref-

erence (i.e., the relevance). The user attention simulator was an

exponential decay model in [1], where the user’s attention proba-

bility decayed with time until another active user action happens

(i.e., skip action) or failed to a nil value. We trained the relevance

model by DeepFM [14], which is a popular CTR prediction model

that can return a relevance score given a user and a song. DeepFM

was trained on six filtered subsets and tested on the log data col-

lected in 2009, and its AUCs in testing were over 77%, assuring that

the online environment can provide nearly realistic feedbacks of

users. At each step, the online environment receives a song from

the recommend model, and generate the attention and relevance

Table 6: Ranges of the hyper-parameter tuning in the pro-
posed NDB.

Component Hyper-parameter Range

Attention prediction

Learning rate in Adam optimizer {1e-1, 1e-2, 1e-3, 1e-4}
Weight decay in Adam optimizer {1e-2, 1e-3, 1e-4, 1e-5}
Clipping threshold𝑤min [0.1 : +0.1 : 0.5]

Relevance prediction

Dimension 𝑑 of 𝜽
{
2
𝑖 , 𝑖 = [6 : +1 : 9]

}
Inverse of the standard deviation 1/b

{
2
𝑖 , 𝑖 = [−8 : +1 : 8]

}
Stepsize 𝛾 [0.001 : 100]
Exploration parameter 𝛿 [0.001 : 100]
Number of dueling models 𝐾 [1 : +1 : 10]

score to return user feedback (1 = "play", 0 = "skip") according to

the relations in Table 2.

To evaluate the performances of online recommendation, we

only retained the user sessions with more than 100 user-song in-

teractions in the log data, where the songs were actually played by

the user with realistic feedback (positive or negative). To maintain

the streaming nature of data in streaming recommendation, the

environment kept the order of timestamps for each interaction. In

the candidate song set, following practice in [21], we chose 99 extra

songs at random from a set of 1, 000 songs that were most similar

to the first song in this session. In this way, we reduced the original

problem into a problem of online learning to rank: at each step, the

recommendation model must pick one song from the 100 candidate

songs for generating a list of songs in an online streaming manner.

B.3 More Implementation Details
All the experiments were run on a Linux workstation with the

Intel(R) Xeon(R) CPU E5-2630 v4 (2.20GHz) and a single NVIDIA

Tesla P100 GPU. To enhance the effect of reward modification,

we applied a clipping technique to importance weights in Eq.(4)

as 𝑤 = min {𝑤,𝑤min} , where 𝑤min ∈ (0, 1] denotes the clipping
threshold. For the stepsize 𝛾 and the exploration parameter 𝛿 , we

multiplied 𝛿 and 𝛾 by ∥𝜽1,1∥2, since the theoretical optimal values

of 𝛿 and 𝛾 were proportional to the upper bound of ∥𝜽 ∥2, 𝜽 ∈ Ω,
shown in Remark 1. The ranges of all the hyper-parameter tuning

were listed in Table 6.

B.4 Results of Last Three Subsets
As shown in Figure 8, the proposed NDB still outperformed the

baselines on the last three subsets.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Music Streaming Recommendation (MSR)
	3.2 User Attention Bias in MSR

	4 NDB: The Proposed Approach
	4.1 Approach Overview
	4.2 Reward Modification using Importance Sampling
	4.3 Attention Prediction with GRUs
	4.4 Relevance Prediction using RWNN
	4.5 Model Training and Online Recommendation

	5 Discussion
	6 Experiments
	6.1 Experimental Settings
	6.2 Experiment Results and Analyses

	7 Conclusion
	References
	A Appendix: Detailed Proofs
	A.1 Proof of Theorem 4.1
	A.2 Proof of Theorem 5.1

	B Appendix: Experiment Details
	B.1 Data Preparation
	B.2 Simulated Online Environment
	B.3 More Implementation Details
	B.4 Results of Last Three Subsets

