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Abstract
Incomplete multi-view clustering is a significant
but challenging task. Although jointly imput-
ing incomplete samples and conducting cluster-
ing has been shown to achieve promising perfor-
mance, learning from both complete and incom-
plete data may be worse than learning only from
complete data, particularly when imputed views
are semantic inconsistent with missing views. To
address this issue, we propose a novel framework
to reduce the clustering performance degradation
risk from semantic inconsistent imputed views.
Concretely, by the proposed bi-level optimization
problem, the missing views are dynamically im-
puted from the learned semantic neighbors, and
the imputed samples are automatically selected
for training. In theory, the empirical risk of the
model is no higher than learning only from com-
plete data, and the model is never worse than
learning only from complete data in terms of ex-
pected clustering risk with high probability. Com-
prehensive experiments demonstrate that the pro-
posed method achieves superior performance and
efficient safe incomplete multi-view clustering.

1. Introduction
Multi-view data, containing modalities from multiple do-
mains, exists widely in real-world application scenarios. For
example, multiple type of information is provided by sensors
attached in the autonomous vehicle, which are treated as
multiple views. Due to the expensive cost of collecting large
amount of data with manual annotations, numerous studies
(Nie et al., 2016; Zhang et al., 2017; Peng et al., 2019; Liu
et al., 2021c; Pan & Kang, 2021; Xu et al., 2022b) have been
developed in multi-view clustering, which demonstrate that
mining the complementary information of multiple views
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yields promising clustering performance.

The aforementioned studies are based on the assumption
that instances contain the same number of views, which
may not be satisfied in real-world applications. Taking
autonomous driving as an example, some type of infor-
mation from sensors is missing due to hardware faults or
interference signals, leading to the incompleteness of multi-
view data. Recent years have witnessed the development of
incomplete multi-view clustering (IMVC) approaches (Li
et al., 2014; Shao et al., 2015; Zhao et al., 2016; Hu & Chen,
2018; Guo & Ye, 2019; Wen et al., 2020; Lin et al., 2021;
Xu et al., 2022a), and most of them fall into imputation
approaches that jointly fill incomplete instance and con-
duct clustering. However, learning from both complete and
filled samples is sometimes worse than learning only from
complete data. Intuitively, the model attempts to recover
the missing views without ground-truth information, which
may affect the quality of imputed views. Cluster-oriented
imputed samples are semantic consistent with the missing
samples that boost the clustering performance, yet the se-
mantic inconsistency between the imputed views and the
other views disturbs the intrinsic common semantics of mul-
tiple views and leads to the difficulty of learning consistent
cluster assignments and degenerated clustering performance.
Therefore, incomplete multi-view clustering should focus
on the following two challenges at the same time, namely (i)
how to achieve semantic consistency between the imputed
views and missing views? and (ii) how to reduce the risk
of clustering performance degradation caused by semantic
inconsistency between the imputed views and the missing
view? Although many techniques have been explored to
learn imputations with high semantic consistency, efforts to
simultaneously address these two challenges, particularly
reducing the cluster performance degradation risk caused
by semantic inconsistent imputed views, are still limited.

To this end, we propose a novel IMVC framework named
Deep Safe Incomplete Multi-View Clustering (DSIMVC)
to achieve safe incomplete multi-view clustering, namely,
learning from both complete and incomplete data is no
worse than learning only from complete data. Towards
this goal, a weighting function is introduced to automati-
cally assign weights to the incomplete samples. On the one
hand, the weighting function is optimized to minimize the
empirical clustering risk of the learner on complete data.
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On the other hand, the model is trained from complete data
and weighted incomplete data, which reduces the negative
effects from low-quality imputed views, especially with
semantic inconsistency. These two learning processes are
cast as a unified bi-level optimization framework. Besides,
DSIMVC dynamically mines the k-nearest neighbors based
on learned semantic features, from which the missing views
are imputed. By this means, the learned representation
features guide neighbors searching and missing views im-
putation, which further promote the model to learn better
representation features. In theory, on complete data, the em-
pirical clustering risk of DSIMVC is no higher than learning
only from complete data. Also, the generalization clustering
risk of DSIMVC is no higher than learning only from com-
plete data with high probability. Experimental results on
public datasets demonstrate the superiority and effectiveness
of the proposed learning schema.

2. Related Work
In this section, we briefly introduce the recent development
of the topics related to our work, including IMVC and safe-
ness studies in machine learning.

Incomplete Multi-view Clustering. Existing incomplete
multi-view clustering methods can be divided into tradi-
tional methods (Liu et al., 2020; Zhang et al., 2021; Li et al.,
2022) and deep learning based methods (Xu et al., 2019;
Wang et al., 2021a; Zhang et al., 2022; Yang et al., 2022).
In (Li et al., 2014), common latent subspace is mined via
non-negative matrix factorization technique. In (Wen et al.,
2019), latent features from multiple views are aligned, and
the common local structure is exploited via a consensus
graph. Collaboratively imputing incomplete kernel matri-
ces and conducting clustering are first introduced in (Liu
et al., 2020). By a well-designed self-paced learning based
framework, the work (Wen et al., 2020) reduces the negative
influence of the marginal samples. Motivated from the infor-
mation theory, a unified framework is proposed in (Lin et al.,
2021) to jointly learn consistent representation and recover
the missing view by maximizing the mutual information
while minimizing the conditional entropy of multiple views.
The work (Liu et al., 2021b) proposes to impute the incom-
plete base matrix from multiple views with a learned con-
sensus matrix regularized by prior knowledge. A one-stage
late fusion method is introduced in (Zhang et al., 2021) that
incorporates the imputation of missing views and clustering.
The work (Wang et al., 2021b) proposes to generate the
missing views via graph neural network based on the inter-
instance relationships that are transferred from other views.
Learnable latent representation is introduced in (Zhang et al.,
2022) to mine the common semantics from multiple views.
The authors in (Yang et al., 2022) establish a unified frame-
work to address view-aligned and sample-missing problems.

The differences between previous approaches and our work
are as follows. First, the neighbors are mined from the
learned representation features and updated dynamically,
in contrast to (Wang et al., 2021b) where the relationship
are based on raw input and remain unchanged. Second, the
proposed framework is theoretically guaranteed to achieve
no degraded clustering performance.

Safeness Studies in Machine Learning. Safeness studies
in machine learning aim to reduce the risk of performance
degradation. For semi-supervised and weakly supervised
learning, safeness means that the performance of a learner
does not degrade by using unlabeled data. In (Li & Zhou,
2014), multiple low-density separators are utilized to ap-
proximate the ground-truth decision boundary. The work (Li
et al., 2017) proposes a geometric projection based frame-
work to learn prediction from multiple semi-supervised re-
gressors. Further, in (Li et al., 2019), a unified learning
schema is proposed where the ground-truth label assign-
ment is approximated by a convex linear combination of
base weakly supervised learners. In (Guo et al., 2020),
a deep learning based framework that tackles the perfor-
mance degradation caused by class mismatch via bi-level
optimization is presented. For unsupervised learning, the
work (Tao et al., 2018) establishes a min-max optimization
based framework to guarantee that multi-view methods are
no worse than a given single-view method. Recent work
(Tang & Liu, 2022) achieves multi-view safeness where the
number of views dynamically increases. The differences
between previous studies and our work are summarized as
follows. First, works (Li & Zhou, 2014; Li et al., 2017;
2019) focus on semi-supervised or weakly supervised learn-
ing where partial ground-truth labels are available, while our
work focus on clustering where all ground-truth labels are
not available. Second, different from the work (Tao et al.,
2018) that relies sample completeness assumption, the pro-
posed framework is feasible to data with missing views.
This work is inspired by (Ren et al., 2018; Shu et al., 2019;
Guo et al., 2020). It should be pointed out that the goal of
(Guo et al., 2020) is eliminating performance degradation
caused by class mismatch in semi-supervised scenarios, yet
our work aims to provide not degenerated performance for
model learning from both complete and incomplete data
in IMVC scenarios. Another main difference lies in the
theoretical results, i.e., we demonstrate that learning with
complete and imputed samples is not worse than learning
only with complete data in terms of expected risk with high
probability under the proposed framework.

3. The Proposed Method
In this section, we first give the notations and definitions
used in this paper. Then we detail the proposed deep safe
incomplete multi-view clustering framework. After that, we
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Figure 1. Overview of the DSIMVC framework. Each row represents a sample and different shapes indicate multiple views. Edges of
available and missing views are indicated by solid and dashed lines, respectively.

present the theoretical analysis of our framework, including
convergence analysis and its mechanism to achieve safe
incomplete multi-view clustering.

3.1. Notations and Definition

The incomplete multi-view dataset with n samples across
m views is denoted as D = {xp

1, . . . ,x
p
n}mp=1, which is

sampled i.i.d. from a certain distribution µ over input space
X . To be specific, the existence of views are described by
an indicator matrix M ∈ {0, 1}n×m, where Mip = 1 de-
notes the p-th view of the i-th sample is available, otherwise
Mip = 0.

(
n
2

)
denotes the combination number. The num-

ber of complete and incomplete samples are denoted as nc

and ne, respectively. Let K be the number of categories
that is known in advance. To reduce the risk of clustering
performance degradation from incomplete data, the cluster-
ing performance of the model learning from both complete
and incomplete data should be no worse than learning only
from complete data. However, due to all the ground-truth
labels are not available, it is hard to measure the cluster-
ing performance of the model. According to the empirical
risk minimization, the model should minimize the empirical
clustering risk on complete data that contains complete com-
mon semantic information. With this observation in mind,
we present the following definition.

Definition 3.1 (Safe Incomplete Multi-view Clustering).
For a given multi-view dataset, if the empirical clustering
risk on the complete data of the model learning from both
complete and incomplete data is no higher than learning only
from complete data, this model is said to achieve empirical
safe incomplete multi-view clustering. Further, a model
is defined to achieve expected safe incomplete multi-view
clustering if its expected clustering risk is no higher than
learning only from complete data with high probability.

Thus, our goal is to build a new incomplete multi-view
clustering framework with theoretical guarantee to achieve
the defined safe incomplete multi-view clustering.

3.2. Deep Safe Incomplete Multi-view Clustering

Let f : X → RD × RK denotes the function that maps
input samples into semantic features and cluster assignment
probability. In this work, f is implemented by a deep neu-
ral network with parameters w. Then, for a given sample
xp
i , its semantic features and cluster assignment probabil-

ity are denoted as fZ(x
p
i ;w) ∈ RD and fQ(x

p
i ;w) ∈ RK ,

respectively. Due to the superior ability of deep neural
networks in learning representation, the geometric relation-
ships of feature vectors reflect the semantic relationships of
samples to some extent (Van Gansbeke et al., 2020). That
is, thees samples may belong to the same category if the
feature vectors of a sample pair are close to each other in
feature space, which motivates us to recover the missing
views from neighbors inferred by features. Note that with
the increase of iterations, features with more semantic in-
formation are learned and more reliable neighbors can be
mined. Thus, neighbors are dynamically updated to better
describe the intrinsic relationships of samples. Inspired by
(Zhong et al., 2021), the semantic features of the available
view xp

i (i.e., Mip = 1) in the t-th iteration is updated in a
moving-average manner:

zp,ti =
(1− γ)zp,t−1

i + γfZ(x
p
i ;w)

∥(1− γ)zp,t−1
i + γfZ(x

p,t
i ;w)∥2

,

where γ is the trade-off coefficient. Based on the fact that
multiple views of a sample have common semantic infor-
mation, the neighbors of the other views serve as comple-
mentary information to find the neighbors of the current
view. Thus, semantic neighbors of the sample xp

i in the t-th
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iteration are defined as

N p,t
i :=

m⋃
q=1,q ̸=p

{
xp
j

∣∣∣j ∈ Ψq,t
i

}
, (1)

with

Ψq,t
i :=

{
j
∣∣∣zq,tj ∈ N k(zq,ti ),Mip = Mjq = Mjp = 1

}
,

where Ψq,t
i denotes the neighbors’ indices of xp

i that inferred
from xq

i in the t-th iteration, and N k(zq,t) represents the k-
nearest neighbors of the semantic features zq,t . By this way,
the semantic information learned from features among all
views is utilized to find more reliable neighbors, from which
the missing are imputed. In this work, we simply impute the
missing views with the average of semantic neighbors, i.e.,

x̂p,t
i =

1

|N p,t
i |

∑
xp∈Np,t

i

xp. (2)

After that, imputed views and other views are constructed as
an subset De := {x̃p,t

1 , . . . , x̃p,t
ne

}mp=1, where x̃p,t
i = x̂p,t

i if
Mip = 0, otherwise x̃p,t

i = xp
i . That is, for an incomplete

sample, missing views are imputed while other views are
retained. It is worth noticing that De is updated in each iter-
ation to improve the semantic consistency between imputed
views and missing views. Since imputed views are inferred
from learned neighbors, the semantic consistency between
imputed views and missing views depends on the reliability
of learned neighbors. To learn common semantic features
from multiple views, we propose the following objective
based on spectral contrastive loss (HaoChen et al., 2021) to
achieve the alignment among views:

LF (f(Dc;w)) =

m∑
p=1

m∑
q=p+1

[
− 2

nc

nc∑
i=1

fZ(x
p
i ;w)⊤fZ(x

q
i ;w)

+
1

2
(
nc
2

) nc∑
i=1

∑
j ̸=i

(
fZ(x

p
i ;w)⊤fZ(x

q
j ;w)

)2]
.

Besides, since multiple views contains common semantic
features, the cluster assignment probability among multiple
views should be consistent. Thus, the following objective is
utilized to align the predictions from multiple views:

LC(f(Dc;w)) =− 1

K

m∑
p=1

m∑
q=p+1

K∑
j=1

[
log

eQ
p⊤
j Qq

j∑
s ̸=j e

Qp⊤
j Qp

s

+ log
eQ

p⊤
j Qq

j∑
s ̸=j e

Qq⊤
j Qq

s

]
,

where Qp = [fQ(x
p
i ;w)

⊤; · · · ; fQ(xp
nc
;w)⊤] ∈ Rnc×K

and Qp
j is the j-th column of Qp. Following (Huang et al.,

2020; Van Gansbeke et al., 2020; Zhong et al., 2021), a

regularization term is jointly optimized to prevent the trivial
solution, which is formulated as

LR(f(Dc;w)) =

m∑
p=1

K∑
j=1

Q̄p
j log Q̄

p
j ,

where Q̄p
j = 1

nc

∑nc

i=1 Q
p
ij . The clustering loss on complete

data is

L(f(Dc;w) =LF (f(D;w)) + LC(f(D;w))

+ LR(f(D;w)).

The clustering loss L(f(De;w) on filled incomplete data
is defined accordingly by substituting x for x̃. However,
the model may still face the risk of performance degrada-
tion when the inferred neighbors are semantic inconsistent
with the missing views. Towards this end, DSIMVC dynami-
cally selects incomplete samples for training via a weighting
function g : X → R+ with parameters ϕ. To achieve the
empirical safe incomplete multi-view clustering in Defini-
tion 3.1, we propose the following bi-level optimization
problem:

min
ϕ,w

L(f(Dc;w)) s.t. w ∈ S(ϕ)

S(ϕ) = argmin
w

L(f(Dc;w)) + L(f(De;w), g(De;ϕ)),
(3)

where

L(f(De;w), g(De;ϕ))

:=

ne∑
i=1

g(x̃i;w)

[
− 2

ne

m∑
p=1

m∑
q=p+1

fZ(x̃
p
i ;w)⊤fZ(x̃

q
i ;w)

+
1

2
(
ne
2

) ∑
j ̸=i

(
fZ(x̃

p
i ;w)⊤fZ(x̃

q
j ;w)

)2
+ LC(f(De;w)) + LR(f(De;w))

]
.

Dc := {xp
1, . . . ,x

p
nc
}mp=1 is the subset of D with complete

samples, and L : RD × RK → R represents the clustering
loss. Eq. (3) is a bi-level optimization problem that contains
two levels of optimization tasks (Sinha et al., 2017), i.e.,
the lower-level and the upper-level optimization problems.
Concretely, the lower-level problem can be regarded as a
traditional multi-view clustering problem that aims to find
the best multi-view model f learning from both complete
data and incomplete data with weights given by g(ϕ). In the
upper-level optimization problem, the weighting function
g is optimized such that the model returned by the lower-
level optimization task achieves the lowest empirical risk on
complete data, by which cluster-beneficial filled incomplete
instances are selected. Solving Eq. (3) is challenging since
the global optima is arduous to obtain (Liu et al., 2021a;
Bao et al., 2021). To this end, we assume that the lower-
level singleton condition holds (Franceschi et al., 2018; Ren
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et al., 2018), which implies that the optimal solution of
the upper level optimization task is unique and reduces the
difficulty in solving the bi-level optimization problem. With
this assumption, Eq. (3) is reformulated as

min
ϕ,w

L(f(Dc;w∗(ϕ)))

w∗(ϕ) = argmin
w

L(f(Dc;w)) + L(f(De;w), g(De;ϕ)).
(4)

Eq. (4) can be solved by gradient based optimization ap-
proach (Shu et al., 2019). Specifically, in each training
iteration, the optimal solution of the lower-level optimiza-
tion problem (i.e., w∗(ϕ)) is approximated by the one-step
iterative value ŵ(t)(ϕ) towards the gradient descent direc-
tion, namely,

ŵ(t)(ϕ) =w(t) − ηw∇wL(f(Dc;w(t)))

− ηw∇wL(f(De;w(t)), g(De;ϕ)).

After that, the approximate solution of the lower-level op-
timization problem is transmitted into the upper-level op-
timization problem to guide the update of the weighting
network parameters, i.e.,

ϕ(t+1) = ϕ(t) − ηϕ∇ϕL(f(Dc; ŵ(t)(ϕ(t)))). (5)

In this step, the weighting network automatically changes
the weights of incomplete samples to minimize the empirical
risk of the learner f on complete samples. Based on the new
weighted incomplete samples, parameters of the learner f
are updated by

w(t+1) =w(t) − ηw∇wL(f(Dc;w(t)))

−∇wL(f(De;w(t)), g(De;ϕ(t+1))).
(6)

By this mechanism, those high-quality imputed incomplete
samples (i.e., semantic consistent samples) are selected and
those low-quality incomplete samples (i.e., semantic incon-
sistent samples) are discarded, which reduces the clustering
performance degradation risk caused by semantic incon-
sistency. The overall learning process is summarized in
Algorithm 1.

3.3. Theoretical Analysis

We first analyze the convergence of the proposed framework.
To simplify the notations, the objective of the upper-level
optimization problem in Eq. (4) is denoted as L(w(ϕ)).
According to the aforementioned optimization procedure,
we have the following theorem.
Theorem 3.2. Suppose that g(·;ϕ) and loss function
L(·, ·;w) are twice differential with bound gradients and
Hessians. Suppose that the learning rate ηw satisfies
ηw = min{1, k

T } for some k > 0 such that k
T < 1 and

ηϕ = min{ 1
L ,

C√
T
} for some C > 0, such that

√
T
C ≥ L.

Then the proposed bi-level optimization problem can achieve
min0≤t≤T E[∥∇L(ŵ(t)(ϕ(t)))∥22] ≤ ϵ in O(1/ϵ2) steps.

Algorithm 1 Deep Safe Incomplete Multi-view Clustering
Input: Incomplete multi-view data {xp

1, . . . ,x
p
n}mp=1,

number of cluster K, learning rate ηw and ηϕ, max it-
erations T .
Output: Cluster assignments ŷ.
Initialize the parameters of f , g, semantic features
{zp,0}mp=1, and semantic neighbors {N p,0}mp=1.
for t = 0 to T − 1 do

Impute the incomplete views by Eq. (2).
Sample a random mini-batch complete data from Dc

and incomplete data from De.
Compute the lower-level objective by Eq. (4).
Update ϕ by Eq. (5).
Update w by Eq. (6).
Update semantic neighbors according to Eq. (1).

end for
Compute the overall cluster assignment probability matrix
by Q = 1

m

∑m
p=1 Qp.

Compute cluster assignments by ŷi = argmaxj Qij .

Proofs of theorems in this paper are provided in the ap-
pendix due to space limit. Theorem 3.2 demonstrates that
the optimization algorithm theoretically converges to the
(local) optima. Next, to see that the proposed framework
can achieve empirical safe multi-view clustering, we ana-
lyze the empirical clustering risk of DSIMVC and obtain
the following theorem.

Theorem 3.3. Let L̂(f(D;w)) be the empirical cluster-
ing risk on complete data Dc. The parameters of the
multi-view model learning only from complete data and
the optimal solution of Eq. (4) are denoted as w∗ =
argminw∈W L̂(f(Dc;w)) and ϕ̂ respectively. We can prove
that L̂(f(Dc;w∗(ϕ̂)) ≤ L̂(f(Dc;w∗)).

Theorem 3.3 reveals that the multi-view learner is theo-
retically guaranteed to achieve empirical safe incomplete
multi-view clustering in Definition 3.1 under the proposed
bi-level optimization framework, i.e., the empirical cluster-
ing risk of DSIMVC is no higher than that of the model
learning only from complete data. We further analyze the
ability of DSIMVC to achieve safe incomplete multi-view
clustering on unseen data. Let L̂(f(Dc;w∗(ϕ̂)) be the em-
pirical clustering risk of DSIMVC and L̂(f(Dc;w∗)) be the
empirical clustering risk of the model learning only from
complete data. The expectation of L̂(f(Dc;w∗(ϕ̂)) and
L̂(f(Dc;w∗)) are denoted as L(f(w∗(ϕ̂))) and L(f(w∗)),
respectively. The family of f is defined as F . Recent works
(Liu, 2021; Li & Liu, 2021) establish pioneering theoreti-
cal analysis for sharper generalization bound of clustering
approaches. Inspired by these studies, we obtain the follow-
ing theorem by analyzing the generalization bound of the
proposed DSIMVC method.
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Theorem 3.4. Suppose that ∥fZ(xp)∥∞ ≤ E hold for
all {xp}mp=1 ∈ X , where E > 0 is a constant. For any
0 < δ < 1, with at least probability 1 − δ for any f ∈ F ,
the following inequality holds

L(f(w∗(ϕ̂))) + ε ≤ L(f(w∗)) +
c1√
nc

+ c2

√
log 6/δ

nc
,

where c1 and c2 are constants dependent on D,E,K,m. ε
is formulated as ε := L̂(f(D;w∗))− L̂(f(D;w∗(ϕ̂)).

According to Theorem 3.2, we have ε ≥ 0. Theorem 3.4
shows that the proposed framework can achieve expected
safe incomplete multi-view clustering in Definition 3.1.
That is, with high probability 1 − δ, the expected clus-
tering risk on the complete part of DSIMVC is no higher
than learning only from complete data. To summarize, the
proposed framework is theoretically guaranteed to achieve
safe incomplete multi-view clustering in terms of both em-
pirical and generalization clustering risk, which may be
the best guarantee for safe incomplete clustering where all
ground-truth labels are not available.

4. Experiments
4.1. Experimental Setup

Datasets. The experiments are conducted on several widely
used benchmark multi-view datasets. BDGP (Cai et al.,
2012) is a drosophila embryos image dataset with 2,500
samples of 5 objects, where each sample is described by
1750-D visual feature and 79-D textual feature. MNIST-
USPS (Peng et al., 2019) contains 5,000 samples of 10
categories, where the first view and the second view are
sampled from the popular MNIST (LeCun et al., 1998) and
USPS handwritten digit datasets, respectively. Columbia
Consumer Video (CCV) (Jiang et al., 2011) is composed of
6,773 samples from 20 categories. 5,000-D STIP features,
5,000-D SIFT, and 4,000-D MFCC features extracted from
YouTube videos are treated as three views. Multi-Fashion
(Xu et al., 2021) is a multi-view version of the Fashion-
MNIST dataset (Xiao et al., 2017), where the original image
and the randomly sampled image from the same category
are constructed as two views.

Baseline Methods. We compare the proposed framework
with the following baselines: best single view clustering
(BSV), PVC (Li et al., 2014), UEAF (Wen et al., 2019),
CDIMC-net (Wen et al., 2020), MKKM-IK (Liu et al., 2020)
COMPLETER (Lin et al., 2021), EE-R-IMVC (Liu et al.,
2021b), and OS-IF-IMVC (Zhang et al., 2021). Followed
(Zhao et al., 2016), missing views are first imputed by the
average value of available views and then the best results
obtained by k-means among all views are reported in BSV.

Evaluation Metrics. The clustering performance is evalu-
ated by three metrics, including clustering accuracy (ACC),

normalized mutual information (NMI), and purity. For all
these metrics, a higher value means better performance. The
experiment on each dataset is repeated 10 times indepen-
dently and the average values and the standard deviations
are reported.

Implementation Details. For each dataset, we generate
incomplete samples by randomly removing a part of views
under the condition that there is at least one view remained
in the sample. The ratio of incomplete sample sizes to
overall sample sizes is denoted as p, which ranges from
0.1 to 0.7 with 0.2 as interval in the experiments. The
implementation is based on PyTorch (Paszke et al., 2019)
platform. Please refer to the appendix for the experiment
details and the results of purity comparison.

4.2. Experimental Results

Clustering Performance Comparison. The ACC and NMI
comparison is presented in Table 1. From this table, we
obtain the following observations: (i) Overall, the other
IMVC methods perform better than BSV, which indicates
that the imputed views inferred by other IMVC methods
contain more semantic information than the average vectors
and thus alleviate the clustering risk degradation risk caused
by semantic inconsistency. (ii) The proposed DSIMVC sig-
nificantly outperforms the other methods on all datasets,
especially with high dimensional input features and more
incomplete views. For example, on CCV with a missing
ratio of 0.7, it exceeds the second best one by about 7.5%
and 9.2% in terms of ACC and NMI, respectively. This re-
sult demonstrates the superiority of jointly mining semantic
imputed views and reducing the clustering performance risk.
(iii) When the missing ratio increased from 0.5 to 0.7 on
BDGP, compared with the second best one that decreased
by 10.2% in terms of ACC, our method decreased by only
3.2%, which demonstrates the effectiveness of the proposed
learning schema to achieve safe incomplete multi-view clus-
tering by automatically weighting imputed samples. These
observations demonstrate the superiority of DSIMVC in
IMVC due to the well-designed bi-level optimization based
learning schema reducing negative effects from semantic
inconsistent filled views.

Convergence Analysis and Visualization. In Figure 2, we
plot the objective value and the values of evaluation metrics
with iterations to verify its convergence. One can observe
that the objective value decreases rapidly and then continu-
ously decrease until convergence. Also, the values of ACC,
NMI, and purity firstly increase with iterations and then
keep fluctuation in a narrow range. These results demon-
strate the convergence of DSIMVC, which is consistent with
the theoretical analysis in Theorem 3.2. Afterward, to verify
the effectiveness of DSIMVC in mining semantic neighbors,
we further calculated the proportion of semantic consistent
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Table 1. Clustering accuracy (ACC) and normalized mutual information (NMI) comparison (mean±std) of different methods on all
benchmark datasets with different missing ratios. Best results are shown in bold.

ACC NMI

Dataset Method\p 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

B
D

G
P

BSV 59.64±1.43 54.67±1.34 44.49±0.59 35.96±0.32 47.21±1.54 42.53±1.40 32.24±0.63 22.97±0.37
PVC 55.64±2.48 54.99±0.13 68.33±7.49 59.87±0.26 29.37±2.43 31.53±0.12 46.69±6.97 42.25±0.51
UEAF 90.66±0.57 89.32±0.00 87.08±0.00 76.88±0.00 74.87±1.33 71.99±0.00 67.15±0.00 53.75±0.00
CDIMC-net 80.47±0.82 74.67±0.53 67.71±1.05 56.11±4.80 70.08±0.36 67.64±0.78 54.51±1.12 39.70±4.85
MKKM-IK 65.01±0.03 59.80±0.00 52.56±0.00 43.84±0.00 49.62±0.51 35.22±0.00 24.55±0.00 14.58±0.00
EE-R-IMVC 65.28±0.00 57.36±0.00 42.48±0.00 34.85±2.48 43.82±0.00 31.79±0.00 21.39±0.00 11.87±1.99
COMPLETER 40.91±7.04 38.51±8.21 41.54±7.64 39.63±2.78 33.19±4.33 32.91±12.67 32.62±5.58 27.47±3.37
OS-LF-IMVC 82.78±2.18 74.34±1.16 59.71±3.22 45.34±1.39 60.25±4.69 48.27±2.33 30.56±3.97 18.54±1.31
DSIMVC 98.40±0.26 96.93±0.45 95.29±0.37 92.14±0.84 94.67±0.91 90.34±1.13 86.11±0.92 79.37±1.56

M
N

IS
T-

U
SP

S

BSV 49.15±1.76 42.57±1.70 35.62±1.67 26.67±1.04 45.15±0.69 39.17±0.78 31.73±0.94 23.62±0.41
PVC 64.57±2.73 63.04±3.69 52.56±1.14 50.24±2.84 58.74±1.66 55.63±1.03 46.35±0.47 44.34±1.33
UEAF 71.27±0.97 66.08±1.26 61.94±0.00 54.18±0.00 66.75±1.81 58.04±2.14 57.84±0.00 49.77±0.00
CDIMC-net 52.23±4.52 49.72±1.10 47.97±1.13 31.78±1.68 61.45±2.74 64.40±2.42 56.62±0.87 34.79±0.83
MKKM-IK 72.25±0.61 64.44±0.00 49.74±1.04 35.70±0.00 61.64±0.18 52.01±0.00 37.67±0.59 24.68±0.00
EE-R-IMVC 75.07±0.50 58.86±0.00 45.58±0.00 28.02±0.00 64.27±0.17 49.47±0.00 34.15±0.00 16.97±0.00
COMPLETER 96.87±1.04 96.56±0.82 93.66±5.63 83.8±6.05 93.94±1.29 92.31±1.18 90.51±2.71 81.18±2.94
OS-LF-IMVC 62.29±1.80 46.58±2.93 32.83±1.45 23.70±0.86 49.14±2.42 33.98±2.11 22.22±0.82 13.96±0.66
DSIMVC 98.88±0.09 97.89±0.14 96.78±0.25 93.34±0.64 96.91±0.21 94.50±0.36 91.98±0.55 85.64±0.93

C
C

V

BSV 18.91±0.37 17.55±0.41 15.74±0.26 14.46±0.27 17.22±0.15 15.61±0.20 13.44±0.15 11.46±0.10
PVC 16.48±0.40 15.54±0.27 14.75±0.33 14.01±0.24 13.86±0.36 10.12±0.28 9.67±0.27 8.66±0.18
UEAF 26.38±0.00 24.82±0.00 22.63±0.00 14.92±3.20 23.64±0.00 23.10±0.00 21.34±0.00 10.42±3.66
CDIMC-net 18.53±1.10 18.20±1.24 17.41±0.56 14.53±0.98 15.88±0.68 14.89±0.72 13.45±1.06 9.28±1.12
MKKM-IK 19.71±0.38 18.29±0.00 15.46±0.00 14.13±0.00 14.78±0.06 12.61±0.00 10.30±0.00 8.00±0.00
EE-R-IMVC 25.29±0.04 23.03±0.00 17.87±0.00 14.78±0.00 21.43±0.10 17.53±0.00 12.35±0.00 7.48±0.00
COMPLETER 21.72±1.30 20.62±0.48 18.38±0.73 17.35±0.69 22.57±0.96 19.59±0.66 17.33±0.80 13.73±0.79
OS-LF-IMVC 20.47±0.74 17.15±0.63 14.21±0.50 12.37±0.46 15.34±0.56 12.23±0.36 9.5±0.37 7.05±0.46
DSIMVC 30.90±1.22 29.33±1.24 27.07±0.81 24.87±0.49 29.76±0.71 28.18±0.65 25.72±0.61 22.96±0.56

M
ul

ti-
Fa

sh
io

n

BSV 49.81±2.60 42.97±2.01 34.83±1.32 26.59±0.83 48.32±0.99 40.85±0.60 32.46±0.64 23.73±0.41
PVC 45.69±0.44 40.77±1.50 42.01±2.61 40.55±0.79 44.98±0.33 39.32±1.07 39.78±1.12 39.2±0.71
UEAF 57.07±0.67 50.88±2.88 48.96±0.88 30.34±0.00 57.15±1.72 48.79±4.78 44.04±4.03 24.13±0.00
CDIMC-net 51.00±4.89 44.73±2.23 42.10±3.00 37.61±3.68 62.52±1.94 54.67±1.94 44.85±4.19 46.05±1.29
MKKM-IK 70.08±0.12 59.96±0.00 46.38±0.00 29.84±0.00 61.29±0.13 50.52±0.00 38.25±0.00 20.64±0.00
EE-R-IMVC 72.83±0.97 63.32±0.00 51.16±0.00 20.24±0.00 65.78±0.36 57.28±0.00 43.50±0.00 14.61±0.00
COMPLETER 78.63±0.33 71.68±3.70 70.76±5.62 69.33±4.51 82.23±1.18 77.12±0.57 74.76±1.35 70.23±2.73
OS-LF-IMVC 62.54±1.01 50.10±2.68 37.47±1.38 27.67±1.25 52.36±1.11 38.74±2.05 30.04±1.48 19.98±1.70
DSIMVC 89.60±0.89 87.47±1.23 83.79±1.40 75.71±1.69 84.47±0.70 81.76±1.07 77.82±0.73 71.53±1.45

Figure 2. The objective value and clustering performance of DSIMVC with the increase of iterations on BDGP, MNIST-USPS, and CCV.

samples to available samples in each view of MNIST-USPS,
where semantic consistent sample means its category is the
same as the average of inferred neighbors’ categories. As
can be observed in Figure 4(a), due to the proposed frame-
work dynamically assigning semantic inconsistent with a
higher score and semantic inconsistent imputations with

lower scores, the quality of learned representation is im-
proved and thus lead to an increasing number of semantic
consistent samples. Besides, the learned features with in-
creasing iterations are visualized by t-SNE (Van der Maaten
& Hinton, 2008). As shown in Figure 3, the cluster struc-
ture becomes more compact and separated with increasing
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(a) Iteration 50 (b) Iteration 100 (c) Iteration 150 (d) Iteration 200

Figure 3. t-SNE visualization of the learned features on MNIST-USPS with increasing training iterations.

(a) (b) (c)

Figure 4. Model analysis. (a) Semantic consistency ratio of the learned neighbors with the increase of iterations; (b) Performance in terms
of ACC of DSIMVC and its variant with different missing ration; (c) Parameters sensitivity analysis.

iterations, which corresponds to a higher semantic consis-
tency ratio. The aforementioned observations verify that
the proposed framework alleviates the clustering degrada-
tion risk from semantic inconsistent imputed views and thus
improves the clustering quality.

Parameter Analysis and Ablation Study. In this part, we
first conduct experiments to evaluate the effect of the hyper-
parameters on clustering performance, and then evaluate
the effectiveness of the proposed framework to achieve safe
incomplete multi-view clustering. The hyper-parameters
of DSIMVC include the number of neighbors k and the
trade-off coefficient γ. Figure 4(c) presents the NMI of
DSIMVC by varying k from 3 to 7 and γ from 0.3 to 0.7.
As observed, the clustering performance of DSIMVC is
insensitive with both k and γ in a wide range, which indi-
cates that our framework is insensitive to the variation of the
hyper-parameters. Thus, γ and k are empirically set to 0.5
and 3 in this work, respectively. Besides, we evaluate a spe-
cial variant of DSIMVC that learns only from complete data
(denoted as DSIMVC (complete)) on BDGP with different
missing ratios, and the clustering performance on complete
samples are presented in Figure 4(b). One can find that the
clustering performance of DSIMVC is no worse than its
variant on complete data, which is consistent with theoreti-
cal results. Observations on other datasets are similar apart
from some cases where the performance is affected by the
approximations adopted in solving the bi-level problem and

inferior local optima. These observations demonstrate that
the proposed bi-level optimization based framework reduces
the clustering performance degradation risk effectively.

5. Conclusion
In this paper, we propose a unified framework with theoreti-
cal guarantee to simultaneously mining semantic consistent
imputations and reduce the clustering performance degra-
dation risk from semantic inconsistent imputations. By the
proposed bi-level optimization framework, missing views
are dynamically imputed from semantic neighbors, and the
incomplete samples are automatically selected for learning.
In theory, the empirical clustering risk on complete data
of the proposed framework is never higher than learning
only from complete data. Also, with high probability, the
proposed framework is no worse than learning only from
complete data in terms of generalization risk. Experimental
results on public datasets demonstrate the effectiveness of
the proposed framework in achieving safe incomplete multi-
view clustering. We hope our work could bring new insights
to recover high-quality imputed views and improve the ro-
bustness of multi-view learners on incomplete data. Our
future work includes developing new approaches to solve the
proposed bi-level optimization problem and extending the
proposed framework to more challenging scenarios where
each sample contains missing views.
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A. Proofs.
In this appendix, we provide the detailed proofs of the theoretical results.

A.1. Proof of Theorem 3.2

The proof is motivated by (Shu et al., 2019). For concise, the multi-view sample is denoted as z. We first show that the
upper-level objective as a function of ϕ is Lipschitz smooth. The update of w is formulated as
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p=1

m∑
q=p+1

(
fZ(x̃

p
i ;w)⊤fZ(x̃

q
j ;w)

)
×

[
∇wfZ(x̃

p
i ;w)⊤fZ(x̃

q
j ;w) +∇wfZ(x̃

q
j ;w)⊤fZ(x̃

p
i ;w)

]
∇wℓ

(2)(z̃i;w) :=
1

K

m∑
p=1

m∑
q=p+1

K∑
l=1

[
− 2

(
f l
Q(x̃p

i ;w)∇wf
l
Q(x̃q

i ;w) + f l
Q(x̃q

i ;w)∇wf
l
Q(x̃p

i ;w)
)

+
1∑

s ̸=j e
Q̃p⊤

j Q̃p
s

∑
k ̸=l

eQ̃
p⊤
l

Q̃p
k

(
f l
Q(x̃p

i ;w)∇wf
k
Q(x̃p

i ;w) + fk
Q(x̃p

i ;w)∇wf
l
Q(x̃p

i ;w)
)

+
1∑

s ̸=j e
Q̃q⊤

j Q̃q
s

∑
k ̸=l

eQ̃
p⊤
l

Q̃p
k

(
f l
Q(x̃q

i ;w)∇wf
k
Q(x̃q

i ;w) + fk
Q(x̃q

i ;w)∇wf
l
Q(x̃q

i ;w)
)]

+

m∑
p=1

K∑
l=1

[
log ¯̃Qp

l + 1
] (

∇wf
l
Q(x̃p

i )
)
.

Since L(z, z′;ϕ,w) is second order differentiable, the gradient of L(z, z′;ϕ,w) w.r.t. ϕ exists, which is formulated as

∇ϕL(zi; ŵ(ϕ))
∣∣∣
ϕ(t)

=− ηw
ne

ne∑
s=1

Gis∇ϕg(z̃s;ϕ)
∣∣∣
ϕ(t)

− ηw
ne(ne − 1)

ne∑
s=1

∑
k ̸=s

Gisk∇ϕg(z̃s;ϕ)
∣∣∣
ϕ(t)

,
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with
Gis :=

(
∇ŵℓ

(1)(zi; ŵ)
∣∣∣⊤
ŵ(t)

+∇ŵℓ
(2)(zi; ŵ)

∣∣∣⊤
ŵ(t)

)
∇wℓ

(1)(z̃s;w)
∣∣∣
ŵ(t)

+

(
∇ŵℓ

(1)(zi; ŵ)
∣∣∣⊤
ŵ(t)

+∇ŵℓ
(2)(zi; ŵ)

∣∣∣⊤
ŵ(t)

)
∇wℓ

(2)(z̃s;w)
∣∣∣
ŵ(t)

,

Gisk :=

(
∇ŵℓ

(1)(zi; ŵ)
∣∣∣⊤
ŵ(t)

+∇ŵℓ
(2)(zi; ŵ)

∣∣∣⊤
ŵ(t)

)
∇wℓ(z̃s, z̃k;w)

∣∣∣
ŵ(t)

,

and

∇ϕL(zi, zj ; ŵ(ϕ))
∣∣∣
ϕ(t)

=− ηw
ne

ne∑
s=1

Gijs∇ϕg(z̃s;ϕ)−
ηw

ne(ne − 1)

ne∑
s=1

∑
k ̸=s

Gijsk∇ϕg(z̃s;ϕ),

with
Gijs :=∇ŵℓ(zi, zj ; ŵ)

∣∣∣⊤
ŵ(t)

(
∇wℓ

(1)(z̃s;w)
∣∣∣
ŵ(t)

+∇wℓ
(2)(z̃s;w)

∣∣∣
ŵ(t)

)
Gijsk :=∇ŵℓ(zi, zj ; ŵ)

∣∣∣⊤
ŵ(t)

∇wℓ(z̃s, z̃k;w)
∣∣∣
ŵ(t)

.

Since L(z, z′;ϕ,w) is second order differentiable with bounded gradient, there exists a constant ρ0 < ∞ such that
∥∇wℓ

(1)(z;w)∥ ≤ ρ0, ∥∇wℓ
(2)(z;w)∥ ≤ ρ0 and ∥∇wℓ(z, z

′;w)∥ ≤ ρ0 hold. Since g(z̃;ϕ) is second order differentiable
with bounded gradient, there exists constants ρ2 < ∞ such that ∥∇ϕg(z̃;ϕ)∥ ≤ ρ1 hold. This implies that |Gis| ≤ 4ρ20,
|Gijs|, |Gisk| ≤ 2ρ20 and |Gijsk| ≤ ρ20 hold. Thus, we have ∥∇ϕLi(ŵ(ϕ))

∣∣
ϕ(t)∥ ≤ 6ηwρ1ρ

2
0 and ∥∇ϕLij(ŵ(ϕ))

∣∣
ϕ(t)∥ ≤

3ηwρ1ρ
1
0. Thus, the upper-level objective L(z, z′;ϕ,w) as a function of ϕ is L = 6ρ1ρ

2
0-Lipschitz continuous. Further, the

gradient of ∇ϕL(zi; ŵ(ϕ))
∣∣
ϕ(t) and ∇ϕL(zi, zj ; ŵ(ϕ))

∣∣
ϕ(t) w.r.t. ϕ are formulated as

∇2
ϕ2L(zi; ŵ(ϕ))

∣∣∣
ϕ(t)

=− ηw
ne

ne∑
s=1

(
∇ϕg(z̃s;ϕ)

∣∣∣
ϕ(t)

∇ϕGis

∣∣∣⊤
ϕ(t)

+Gis∇2
ϕ2g(z̃s;ϕ)

∣∣∣⊤
ϕ(t)

)

− ηw
ne(ne − 1)

ne∑
s=1

∑
k ̸=s

(
∇ϕg(z̃s;ϕ)

∣∣∣
ϕ(t)

∇ϕGisk

∣∣∣⊤
ϕ(t)

+Gisk∇2
ϕ2g(z̃s;ϕ)

∣∣∣⊤
ϕ(t)

)
,

and
∇2

ϕ2L(zi, zj ; ŵ(ϕ))
∣∣∣
ϕ(t)

=− ηw
ne

ne∑
s=1

(
∇ϕg(z̃s;ϕ)

∣∣∣
ϕ(t)

∇ϕGijs

∣∣∣⊤
ϕ(t)

+Gijs∇2
ϕ2g(z̃s;ϕ)

∣∣∣⊤
ϕ(t)

)

− ηw
ne(ne − 1)

ne∑
s=1

∑
k ̸=s

(
∇ϕg(z̃s;ϕ)

∣∣∣
ϕ(t)

∇ϕGijsk

∣∣∣⊤
ϕ(t)

+Gijsk∇2
ϕ2g(z̃s;ϕ)

∣∣∣⊤
ϕ(t)

)
,

where
∇ϕGis =

(
∇2

ŵ2ℓ
(1)(zi; ŵ)

∣∣∣
ŵ(t)

F +∇2
ŵ2ℓ

(2)(zi; ŵ)
∣∣∣
ŵ(t)

F
)⊤

∇wℓ
(1)(z̃s;w)

∣∣∣
ŵ(t)

+
(
∇2

ŵ2ℓ
(1)(zi; ŵ)

∣∣∣
ŵ(t)

F +∇2
ŵ2ℓ

(2)(zi; ŵ)
∣∣∣
ŵ(t)

F
)⊤

∇wℓ
(2)(z̃s;w)

∣∣∣
ŵ(t)

∇ϕGisk =
(
∇2

ŵ2ℓ
(1)(zi; ŵ)

∣∣∣
ŵ(t)

F +∇2
ŵ2ℓ

(2)(zi; ŵ)
∣∣∣
ŵ(t)

F
)⊤

∇wℓ(z̃s, z̃k;w)
∣∣∣
ŵ(t)

∇ϕGijs =
(
∇2

ŵ2ℓ(zi, zj ; ŵ)
∣∣∣
ŵ(t)

F
)⊤ (

∇wℓ
(1)(z̃s;w)

∣∣∣
ŵ(t)

+∇wℓ
(2)(z̃s;w)

∣∣∣
ŵ(t)

)
∇ϕGijsk =

(
∇2

ŵ2ℓ(zi, zj ; ŵ)
∣∣∣
ŵ(t)

F
)⊤

∇wℓ(z̃s, z̃k;w)
∣∣∣
ŵ(t)

,

with

F :=− ηw
ne

ne∑
s=1

(
∇wℓ

(1)(z̃s;w)
∣∣∣
ŵ(t)

∇ϕg(z̃s;ϕ)
∣∣∣⊤
ϕ(t)

+∇wℓ
(2)(z̃s;w)

∣∣∣
ŵ(t)

∇ϕg(z̃s;ϕ)
∣∣∣⊤
ϕ(t)

)

− ηw
ne(ne − 1)

ne∑
s=1

∑
k ̸=s

∇wℓ(z̃s, z̃k;w)
∣∣∣
ŵ(t)

∇ϕg(z̃s;ϕ)
∣∣∣⊤
ϕ(t)

.
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Since L(z, z′;ϕ,w) is second order differentiable with bounded Hessian, there exists a constant ρ2 < ∞ such that
∥∇2

ŵ2ℓ(1)(zi; ŵ)∥ ≤ ρ2, ∥∇2
ŵ2ℓ(2)(zi; ŵ)∥ ≤ ρ2 and ∥∇2

ŵ2ℓ(zi, zj ; ŵ)∥ ≤ ρ2 hold. Since g(z̃;ϕ) is second or-
der differentiable with bounded Hessian, there exists constants ρ3 < ∞ such that ∥∇2

ϕ2g(z̃;ϕ)∥ ≤ ρ3 hold. Thus,
we have ∥F∥ ≤ 3ηwρ0ρ1. This implies that ∥∇ϕGis∥ ≤ 12ηwρ

2
0ρ1ρ2, ∥∇ϕGisk∥, ∥∇ϕGijs∥ ≤ 6ηwρ

2
0ρ1ρ2 and

∥∇ϕGijsk∥ ≤ 3ηwρ
2
0ρ1ρ2 holds. Then we have

∥∇2
ϕ2Li(ŵ(ϕ))

∣∣
ϕ(t)∥ ≤6η2

wρ
2
0(3ρ

2
1ρ2 + ρ3),

∥∇2
ϕ2Lij(ŵ(ϕ))

∣∣
ϕ(t)∥ ≤3η2

wρ
2
0(3ρ

2
1ρ2 + ρ3).

Thus, the upper-level objective L(z, z′;ϕ,w) as a function of ϕ is G = 6η2wρ
2
0(3ρ

2
1ρ2 + ρ3)-Lipschitz smooth. Next, the

update rule of ϕ is formulated as
ϕ(t+1) = ϕ(t) − ηϕ(∇L(ŵ(t)(ϕ(t))) + ζ),

where ζ = ∇L(ŵ(t)(ϕ(t)))|B − ∇L(ŵ(t)(ϕ(t))) and B is a mini-batch data sampled i.i.d. from Dc. This indicates that
E[ζ] = 0 holds. First, we have

L(ŵ(t+1)(ϕ(t+1)))− L(ŵ(t)(ϕ(t)))

=
[
L(ŵ(t+1))(ϕ(t+1)))− L(ŵ(t)(ϕ(t+1)))

]
+
[
L(ŵ(t)(ϕ(t+1)))− L(ŵ(t)(ϕ(t)))

]
≤⟨∇L(ŵ(t)(ϕ(t+1))), ŵ(t+1)(ϕ(t+1))− ŵ(t)(ϕ(t+1))⟩+ ρ2

2
∥ŵ(t+1)(ϕ(t+1))− ŵ(t)(ϕ(t+1))∥22

+ ⟨∇L(ŵ(t)(ϕ(t))), ϕ(t+1) − ϕ(t)⟩+ G

2
∥ϕ(t+1) − ϕ(t)∥22.

According to the definition of ŵ, one can verify that

⟨∇L(ŵ(t)(ϕ(t+1))), ŵ(t+1)(ϕ(t+1))− ŵ(t)(ϕ(t+1))⟩+ ρ2
2
∥ŵ(t+1)(ϕ(t+1))− ŵ(t)(ϕ(t+1))∥22 ≤ 18ηwρ

2
0 + 18ρ2η

2
wρ

2
0.

Besides, we have

⟨∇L(ŵ(t)(ϕ(t))), ϕ(t+1) − ϕ(t)⟩+ G

2
∥ϕ(t+1) − ϕ(t)∥22

=⟨∇L(ŵ(t)(ϕ(t))),−ηϕ[L(ŵ(t)(ϕ(t))) + ζ]⟩+
Gη2

ϕ

2
∥∇L(ŵ(t)(ϕ(t))) + ζ∥22

=− (ηϕ −
Gη2

ϕ

2
)∥∇L(ŵ(t)(ϕ(t)))∥22 +

Gη2
ϕ

2
∥ζ∥22 − (ηϕ −Gη2

ϕ)⟨∇L(ŵ(t)(ϕ(t))), ζ⟩.

Therefore,

(ηϕ −
Gη2

ϕ

2
)∥∇L(ŵ(t)(ϕ(t)))∥22

≤L(ŵ(t)(ϕ(t)))− L(ŵ(t+1)(ϕ(t+1))) + 18ηwρ
2
0 + 18ρ2η

2
wρ

2
0 +

Gη2
ϕ

2
∥ζ∥22 − (ηϕ −Gη2

ϕ)⟨∇L(ŵ(t)(ϕ(t))), ζ⟩.

Taking summation on both sides, we have

T∑
t=1

(ηt −
Gη2

t

2
)∥∇L(ŵ(t)(ϕ(t)))∥22

≤L(ŵ(1)(ϕ(1)))− L(ŵ(T )(ϕ(T ))) + 18ηwρ
2
0T (1 + ηwρ2) +

Gη2
ϕ

2

T∑
t=1

∥ζ∥22 −
T∑

t=1

(ηt −Gη2
t )⟨∇L(ŵ(t)(ϕ(t))), ζ⟩.

Further, taking the expectation with respect to ζ on both sides, one can find that

T∑
t=1

(ηϕ −
Gη2

ϕ

2
)Eζ∥∇L(ŵ(t)(ϕ(t)))∥2

≤L(ŵ(1)(ϕ(1)))− L(ŵ(T )(ϕ(T ))) + 18ηwρ
2
0T (1 + ηwρ2) +

Gη2
ϕ

2

T∑
t=1

∥ζ∥2

≤L(ŵ(1)(ϕ(1)))− L(ŵ(T )(ϕ(T ))) + 18ηwρ
2
0T (1 + ηwρ2) +

Gη2
ϕTσ

2

2
.
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Thus we have

min
t

E∥∇L(ŵ(t)(ϕ(t)))∥2 ≤
∑T

t=1(ηϕ − Lη2
ϕ

2
)Eζ(B)∥∇L(ŵ(t)(ϕ(t)))∥22∑T

t=1(ηϕ −
Lη2

ϕ

2
)

≤
2L(ŵ(1)(ϕ(1)))− 2L(ŵ(T )(ϕ(T ))) + 36ηwρ

2
0T (1 + ηwρ2) +Gη2

ϕTσ
2∑T

t=1(2ηϕ − Lη2
ϕ)

≤
2L(ŵ(1)(ϕ(1)))− 2L(ŵ(T )(ϕ(T ))) + 36ηwρ

2
0T (1 + ηwρ2) +Gη2

ϕTσ
2

Tηϕ

=
2L(ŵ(1)(ϕ(1)))

Tηϕ
− 2L(ŵ(T )(ϕ(T )))

Tηϕ
+

36ηwρ
2
0(1 + ηwρ2)

ηϕ
+Gσ2ηϕ

≤2L(ŵ(1)(ϕ(1)))

T
max{L,

√
T

C
}+ 2|L(ŵ(T )(ϕ(T )))|

T
max{L,

√
T

C
}+ 36min{1, k

T
}max{L,

√
T

C
}ρ20(ηwρ2 + 1)

+Gσ2 min{ 1
L
,
C√
T
}

=O(
1√
T
).

A.2. Proof of Theorem 3.3

Proof. According to the definition in the main paper, the objective of bi-level optimization is formulated as

min
ϕ,w

L(f(Dc;w∗(ϕ)))

w∗(ϕ) = argmin
w

L(f(Dc;w)) + L(f(De;w), g(De;ϕ)).

According to the definition of g, there exists ϕ′ such that g(De;ϕ′) = 0 holds. Thus we have L̂nc(w
∗) = L̂nc(w

∗(ϕ′)).
Since ϕ̂ is the optimal solution, for any ϕ ∈ Φ, the following equality holds

L̂nc(w
∗(ϕ̂)) ≤ L̂nc

(w∗(ϕ)).

Replacing ϕ with ϕ′, we have L̂nc
(w∗(ϕ̂)) ≤ L̂nc

(w∗). This finishes the proof.

A.3. Proof of Theorem Theorem 3.4

To prove Theorem 3.4, we first introduce the following three lemmas.

Lemma A.1. Assume that ∥fZ(xp)∥∞ ≤ E holds for all {xp}mp=1 ∈ X . We define the empirical risk and its expectation as

L̂(f) =
m∑

p=1

m∑
q=p+1

[
− 2

n

n∑
i=1

fZ(x
p
i ;w)

⊤fZ(x
q
i ;w) +

1

n(n− 1)

n∑
i,j=1,i̸=j

(
fZ(x

p
i ;w)

⊤fZ(x
q
j ;w)

)2]
,

and

L(f) =
m∑

p=1

m∑
q=p+1

Exp,xq

[
− 2fZ(x

p;w)⊤fZ(x
q;w) +

(
fZ(x

p;w)⊤fZ(x
q;w)

)2]
.

With probability at least 1− δ, for any f ∈ F , we have

L(f) ≤ L̂(f) + 4D2E4m(m− 1)√
n

+ 4D2E4m(m− 1)

√
1

2n
log

1

δ
.

Proof. This proof is inspired by (Li & Liu, 2021). We first discuss the case where m = 2. Let zi := (xp
i ,x

q
i ) be the

multi-view tuple, then the sample set can be denoted as S := {zi}ni=1. For simplicity, The first and the second part of the loss
are denoted as fZ(zi) := fZ(x

p
i ;w)

⊤fZ(x
q
i ;w) and fZ(zi, zj) := [(f(xp

i ;w)
⊤f(xq

j ;w))
2 + (f(xp

j ;w)
⊤f(xq

i ;w))
2]/2,
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respectively. One can verify that fZ(z, z′) is symmetric function, i.e., fZ(z, z′) = fZ(z
′, z). Then the empirical risk and its

expectation can be formulated as

L̂(f) = − 2

n

n∑
i=1

fZ(zi) +
1

n(n− 1)

n∑
i,j=1,i̸=j

fZ(zi, zj),

and
L(f) = −2EzfZ(z) + Ez,z′fZ(z, z

′).

Let S̄ be the sample set that different from S by only one tuple zr := (x̄p
r , x̄

q
r). The empirical risk on S̄ is denoted as L̂′

n.
We have ∣∣∣∣∣ supf∈F

|L − L̂(f)| − sup
f∈F

|L(f)− L̂′(f)|

∣∣∣∣∣
≤ sup

f∈F
|L̂(f)− L̂′(f)|

≤ sup
f∈F

∣∣∣∣∣− 2

n

(
fZ(zr)− fZ(z̄r)

)∣∣∣∣∣+ sup
f∈F

∣∣∣∣∣ 1

n(n− 1)

∑
i ̸=r

(
fZ(zr, zi)− fZ(z̄r, zi)

)
+
(
fZ(zi, zr)− fZ(zi, z̄r)

)∣∣∣∣∣
≤8D2E4

n
.

Then we analyze the upper bound of the expectation term, i.e., E supf∈F |L̂(f)− L(f)|. First we have

E sup
fZ∈F

|L̂(f)− LS(f)|

=E sup
fZ∈F

∣∣∣∣∣ 2n
n∑

i=1

fZ(zi)− Ez [fZ(z)]

∣∣∣∣∣+ E sup
fZ∈F

∣∣∣∣∣ 1

n(n− 1)

∑
i ̸=j

fZ(zi, zj)− Ez,z′
[
fZ(z, z

′)
] ∣∣∣∣∣

≤E sup
fZ∈F

∣∣∣∣∣ 2n
n∑

i=1

fZ(zi)− Ez [fZ(z)]

∣∣∣∣∣+ E sup
fZ∈F

∣∣∣∣∣ 1

⌊n/2⌋

⌊n/2⌋∑
i=1

fZ(zi, zi+⌊n/2⌋)− Ez,z′
[
fZ(z, z

′)
] ∣∣∣∣∣,

where the last inequality is obtained by the Lemma A.1 in (Clémençon et al., 2008). Let σ1, . . . , σn be i.i.d independent
random variables taking values in {−1, 1} and S̄ := {z̄, . . . , z̄n} be the independent copy of S = {z1, . . . , zn}, the last
term can be bound by

ES,S̄ sup
fZ∈F

∣∣∣∣∣ 2n
n∑

i=1

[fZ(zi)− fZ(z̄i)]

∣∣∣∣∣+ ES,S̄,σ sup
fZ∈F

∣∣∣∣∣ 1

⌊n/2⌋

⌊n/2⌋∑
i=1

fZ(zi, zi+⌊n/2⌋)−
1

⌊n/2⌋

⌊n/2⌋∑
i=1

fZ(z̄i, z̄i+⌊n/2⌋)

∣∣∣∣∣
=ES,S̄,σ sup

fZ∈F

∣∣∣∣∣ 2n
n∑

i=1

σi[fZ(zi)− fZ(z̄i)]

∣∣∣∣∣+ ES,S̄,σ sup
fZ∈F

∣∣∣∣∣ 1

⌊n/2⌋

⌊n/2⌋∑
i=1

σi[fZ(zi, zi+⌊n/2⌋)− fZ(z̄i, z̄i+⌊n/2⌋)]

∣∣∣∣∣
=4ES,σ sup

fZ∈F

∣∣∣∣∣ 1n
n∑

i=1

σifZ(zi)

∣∣∣∣∣+ 2ES,σ sup
fZ∈F

∣∣∣∣∣ 1

⌊n/2⌋

⌊n/2⌋∑
i=1

σifZ(zi, zi+⌊n/2⌋)

∣∣∣∣∣
≤4ES,σ sup

fZ∈F

(
1

n

n∑
i=1

[fZ(zi)]
2

) 1
2

+ 2ES,σ sup
fZ∈F

(
1

⌊n/2⌋

⌊n/2⌋∑
i=1

[fZ(zi, zi+⌊n/2⌋)]
2

) 1
2

≤8D2E4

√
n

,

where the last inequality is obtain by the Khintchine-Kahane inequality (Latała & Oleszkiewicz, 1994). Thus, according to
the McDiarmid inequality (Mohri et al., 2018), with probability at least 1− δ for any f ∈ F , we have

L(f) ≤ L̂(f) + 8D2E4

√
n

+ 8D2E4

√
log 1

δ

2n
.

The case where m > 2, i.e., That is, with probability at least 1− δ for any f ∈ F , we have

L(f) ≤ L̂(f) + 4D2E4m(m− 1)√
n

+ 4D2E4m(m− 1)

√
1

2n
log

1

δ
.
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Lemma A.2. We define the empirical risk and its expectation as

L̂(f) =− 1
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,

and

L(f) = 1

K
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p)fs
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] ]

.

With probability at least 1− δ, the following inequality holds

L(f) ≤ L̂(f) + m(m− 1)(K + 2)

2
√
n

+
m(m− 1)(K + 1)

2

√
1

2n
log

1

δ
.

Proof. We first discuss the case when m = 2. Let zi := (xp
i ,x

q
i ) be the multi-view tuple, then the sample set can be denoted

as S := {zi}ni=1. For simplicity, the first and the second part of the loss are denoted as f l,s
Q (zi) := f l

Q(x
p
i ;w)

⊤fs
Q(x

p
i ;w)

and f l
Q(zi) := f l

Q(x
p
i )f

l
Q(x

q
i ), respectively. Let F l,s

Q and F l
Q be the family of f l,s

Q (zi) and f l
Q(zi), respectively. Then the

empirical risk and its expectation can be formulated as

L̂(f) = 1

nK
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and
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:= L(1)(f) + L(1)(f).

We introduce the following empirical risk L̂(f) and its expectation L(f) to change the log-sum-exp term into a more concise
form,

L̂(f) =
1

nK(K − 1)

K∑
l=1

∑
s ̸=l

n∑
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f l,s
Q (zi),

L(f) =
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.

One can verify that

L̂(f) ≤ L̂(1)(f)− log(K − 1)

n
≤ (K − 1)L̂(f),

L(f) ≤ L(1)(f)− log(K − 1)

n
≤ (K − 1)L(f),

holds. Then we have
|L(1)(f)− L̂(1)| =

∣∣∣∣(L(1)(f)− log(K − 1)

n

)
−
(
L̂(1) − log(K − 1)

n
)

)∣∣∣∣
≤max{|(K − 1)L(f)− L̂(f)|, |L(f)− (K − 1)L̂(f)|}.

Without loss of generality, we assume that max{|(K − 1)L(f)− L̂(f)|, |L(f)− (K − 1)L̂(f)|} = |(K − 1)L(f)− L̂(f)|.
Let S̄ be the sample set that different from S by only one tuple zr := (x̄p

r , x̄
q
r). The empirical risk on S̄ is denoted as L̂′.

We have ∣∣∣∣∣ supf∈F
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Then we analyze the upper bound of the expectation term, i.e., E supf∈F |L̂(f)−L(f)|. Let σ1, . . . , σn be i.i.d independent
random variables taking values in {−1, 1} and S̄ := {z̄1, . . . , z̄n} be the independent copy of S = {z1, . . . , zn}, we have
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According to the Khintchine-Kahane inequality (Latała & Oleszkiewicz, 1994), this term is bound by
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Thus, according to the McDiarmid inequality (Mohri et al., 2018), with probability at least 1− δ/2 for any f ∈ F , we have

sup
f∈F

|(K − 1)L(f)− L̂(f))| ≤ K√
n
+

√
log 2
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2n
.

By the same technique, with probability at least 1− δ/2 for any f ∈ F , we have

sup
f∈F

|L(f)− (K − 1)L̂(f))| ≤ K√
n
+K

√
log 2

δ

2n
.

Note that we have shown |L(1)(f) − L̂(1)
n | ≤ max{|(K − 1)L(f) − L̂n(f)|, |L(f) − (K − 1)L̂n(f)| holds. Thus, with

probability at least 1− δ/2 for any f ∈ F , we have

L(1)(f) ≤ L̂(1)(f) +
K√
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√
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.

According to the derivation of the generalization bound based on Rademacher complexity (Mohri et al., 2018), with
probability 1− δ/2 for any f ∈ F , we have
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Therefore, with probability 1− δ for any f ∈ F , we have
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.

The case where m > 2 is similar, i.e., with probability at least 1− δ for any f ∈ F , we have

L(f) ≤ L̂(f) + m(m− 1)(K + 2)
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Lemma A.3. We define the empirical risk and its expectation as
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With probability at least 1− δ, the following inequality holds
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,

where C is a bounded constant.

Proof. We first discuss the case where m = 1. Let f j
Q(x

p) : X → R denote the function such that f l
Q(x

p) is the j-th
dimension of fQ(xp), and F j

Q be the family of f l
Q. Define g(x) = x log x, according to the Lagrange Mean Theorem, there

exists constant ξ such that |g(x)− g(y)| ≤ | log ξ + 1||x− y|. According to the deviation of generalization bound based on
Rademacher complexity (Mohri et al., 2018), with probability 1− δ for all f ∈ F , we have
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.

where C is a bounded constant. The case where m ≥ 2 is similar. That is, with probability 1− δ for all f ∈ F , we have
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Now we give the proof of Theorem 3.4.

Proof. We define the empirical risk and its expectation as
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According to Lemma A.1, Lemma A.2 and Lemma A.3, with probability at least 1− δ for any f ∈ F , we have
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Table 2. Purity comparison (mean±std) of different methods on all benchmark datasets with different missing ratios. Best results are
shown in bold.

Purity

Data set Method\p 0.1 0.3 0.5 0.7

B
D

G
P

BSV 59.64±1.43 54.67±1.34 44.49±0.59 35.96±0.32
PVC 57.87±2.68 59.01±0.04 69.10±5.04 65.83±1.68
UEAF 90.66±0.57 89.32±0.00 87.08±0.00 76.88±0.00
CDIMC-net 80.37±0.79 75.27±0.43 67.71±1.05 57.76±5.27
MKKM-IK 65.01±0.03 59.80±0.00 52.56±0.00 43.84±0.00
EE-R-IMVC 65.44±0.00 57.52±0.00 42.72±0.00 35.52±2.63
COMPLETER 43.90±4.40 42.23±7.81 45.10±5.95 40.90±2.36
OS-LF-IMVC 82.78±2.18 74.34±1.16 59.71±3.22 45.34±1.39
DSIMVC 98.40±0.26 96.93±0.45 95.29±0.37 92.14±0.84

M
N

IS
T-

U
SP

S

BSV 52.77±0.11 47.66±0.14 38.91±0.11 27.82±0.11
PVC 67.95±1.54 67.83±1.36 55.56±0.57 55.87±1.63
UEAF 72.74±2.08 67.20±1.26 66.7±0.00 58.88±0.00
CDIMC-net 52.25±4.52 51.00±0.23 48.63±0.51 32.44±1.78
MKKM-IK 73.14±0.58 64.64±0.00 49.99±1.11 36.18±0.00
EE-R-IMVC 75.12±0.48 60.38±0.00 45.64±0.00 28.02±0.00
COMPLETER 96.87±1.04 96.59±0.82 94.40±4.14 85.49±4.86
OS-LF-IMVC 63.61±1.18 48.62±1.98 34.95±1.50 25.52±0.12
DSIMVC 98.88±0.09 97.89±0.14 96.78±0.25 93.34±0.64

C
C

V

BSV 21.76±0.25 20.06±0.28 18.52±0.19 16.79±0.16
PVC 20.32±0.71 18.98±0.89 17.77±0.75 19.63±1.10
UEAF 29.47±0.00 28.08±0.00 26.24±0.00 18.32±3.22
CDIMC-net 19.10±0.79 19.96±1.11 18.05±0.66 15.79±0.95
MKKM-IK 22.81±0.31 21.07±0.00 18.31±0.00 17.10±0.00
EE-R-IMVC 28.43±0.19 25.28±0.00 20.12±0.00 16.36±0.00
COMPLETER 24.02±1.10 22.46±0.61 20.82±0.87 18.67±0.75
OS-LF-IMVC 22.99±0.79 20.18±0.48 17.61±0.47 15.55±0.36
DSIMVC 34.66±1.05 33.18±0.98 30.74±0.78 28.59±0.91

M
ul

ti-
Fa

sh
io

n

BSV 54.37±1.21 46.74±0.85 37.05±1.65 28.24±0.68
PVC 47.54±3.02 52.52±1.90 48.87±0.88 51.99±0.46
UEAF 60.71±0.86 54.33±3.17 50.48±1.26 31.12±0.00
CDIMC-net 52.87±3.97 45.38±2.45 44.85±4.19 40.44±2.67
MKKM-IK 70.13±0.03 59.96±0.00 47.18±0.00 30.64±0.00
EE-R-IMVC 72.89±0.99 63.52±0.00 51.40±0.00 20.34±0.00
COMPLETER 81.04±1.32 74.67±2.01 75.20±4.66 71.24±3.44
OS-LF-IMVC 65.78±1.13 52.39±2.32 39.27±1.07 29.51±1.23
DSIMVC 88.76±0.90 85.02±1.73 83.55±2.35 76.55±1.85

where c̃1 := m(m− 1)(8D2E4+K+2C+2)/2 and c̃2 := (8D2E4+K+C+1)m(m− 1)/2. Note that L̂(f(Dc;w∗))

can be rewritten as L̂(f(Dc;w∗)) = L̂(f(Dc;w(ϕ′))), as shown in the proof of Theorem 3.2. Let L(f(w∗(ϕ̂))) and
L(f(w∗(ϕ′))) be the expectation of L̂(f(Dc;w∗(ϕ̂))) and L̂(f(Dc;w∗(ϕ′))), respectively. With probability at least 1− δ

2 ,
we have

L(f(w∗(ϕ̂))) ≤ L̂(f(Dc;w∗(ϕ̂))) +
c̃1√
n
+ c̃2

√
log 12/δ

n
,

and

L̂(f(Dc;w∗(ϕ′))) ≤ L(f(w∗(ϕ′))) +
c̃1√
n
+ c̃2

√
log 12/δ

n
.

According to Theorem 3.2, there exists a constant ε ≥ 0 such that L̂(f(Dc;w∗(ϕ̂))) + ε = L̂(f(Dc;w∗(ϕ′))) hold. Thus,
with probability at least 1− δ, for any f ∈ F , we have

L(f(w∗(ϕ̂))) + ε ≤ L(f(w∗(ϕ′))) +
c1√
n
+ c2

√
log 12/δ

n
,

where ε := L̂(f(Dc;w∗(ϕ′)))− L̂(f(Dc;w∗(ϕ̂))). c1 := 2c̃1 and c2 := 2c̃2 are constants dependent on D,E,K,m. This
finishes the proof.

B. Experiments
In this part, we present implementation details of the proposed method. For MNIST-USPS and Multi-Fashion datasets, the
raw data (i.e., images) are reshaped as vectors. The hidden features are extracted by the fully connected network with the
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Figure 5. Clustering performance comparison in terms of NMI of DSIMVC and its variant on MNIST-USPS, CCV and Multi-Fashion.

same architecture Dp− 500− 500− 2000− 512, where Dp is the dimensionality of the p-th view samples. Then the hidden
features are fed into a two layers MLP with architecture 512− 512− 256 to obtain the semantic features fZ(x). Also, the
cluster assignment probability fQ(x) is obtained from the hidden features by another two-layers MLP with architecture
512− 512−K, where K denotes the number of categories. Following (Shu et al., 2019; Guo et al., 2020), the weighting
function is a one-layer MLP where the number of hidden layer’s neurons is 100 and the activation function of the output
layer is Sigmoid. The activation function of all hidden layers is ReLU. To accelerate the training process, mini-batch
gradient descent with Adam optimizer is adopted, and the batch size is set to 256 for all datasets. As mentioned in the main
paper, the trade-off parameter γ and the number of neighbors k are empirically set to 0.5 and 3, respectively. We adopt the
Faiss library (Johnson et al., 2019) to search for the nearest neighbors based on learned features. The learning rate ηw and
ηϕ are set as 0.0003 and 0.0004. The parameters of the neural network are initialized by pretraining on complete data, and
the neighbors are initialized by the model after pretraining. We report the results of baseline methods obtained by running
the open-source code with default settings .


