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Abstract
Recent theoretical studies illustrated that kernel
ridgeless regression can guarantee good generaliza-
tion ability without an explicit regularization. In
this paper, we investigate the statistical properties
of ridgeless regression with random features and
stochastic gradient descent. We explore the effect
of factors in the stochastic gradient and random fea-
tures, respectively. Specifically, random features
error exhibits the double-descent curve. Motivated
by the theoretical findings, we propose a tunable
kernel algorithm that optimizes the spectral density
of kernel during training. Our work bridges the in-
terpolation theory and practical algorithm.

1 Introduction
In the view of traditional statistical learning, an explicit reg-
ularization should be added to the nonparametric learning
objective [Caponnetto and De Vito, 2007; Li et al., 2018],
i.e. an 2-norm penalty for the kernelized least-squares prob-
lems, known as kernel ridge regression (KRR). To ensure
good generalization (out-of-sample) performance, the mod-
ern models should choose the regularization hyperparame-
ter λ to balancing the bias and variance, and thus avoid
overfitting. However, recent studies empirically observed
that neural networks still can interpolate the training data
and generalize well when λ = 0 [Zhang et al., 2021;
Belkin et al., 2018]. But also, for many modern models
including neural networks, random forests and random fea-
tures, the test error captures a ’double-descent’ curve as the
increase of features dimensional [Mei and Montanari, 2019;
Advani et al., 2020; Nakkiran et al., 2021]. Recent empiri-
cal successes of neural networks prompted a surge of theo-
retical results to understand the mechanism for good general-
ization performance of interpolation methods without penalty
where researchers started with the statistical properties of
ridgeless regression based on random matrix theory [Liang
and Rakhlin, 2020; Bartlett et al., 2020; Jacot et al., 2020;
Ghorbani et al., 2021].

However, there are still some open problems to settle
down: 1) In the theoretical front, current studies focused
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on the direct bias-variance decomposition for the ridgeless
regression, but ignore the influence from the optimization
problem, i.e. stochastic gradient descent (SGD). Meanwhile,
the connection between kernel regression and ridgeless re-
gression with random features are still not well established.
Further, while asymptotic behavior in the overparameterized
regime is well studied, ridgeless models with a finite number
of features are much less understood. 2) In the algorithmic,
there is still a great gap between statistical learning for ridge-
less regression and algorithms. Although the theories explain
the double-descent phenomenon for ridgeless methods well,
a natural question is whether the theoretical studies helps to
improve the mainstream algorithms or design new ones.

In this paper, we consider the Random Features (RF) model
[Rahimi and Recht, 2007] that was proposed to approximate
kernel methods for easing the computational burdens. In
this paper, we investigate the generalization ability of ridge-
less random features, of which we explore the effects from
stochastic gradient algorithm and random features. And then,
motivated by the theoretical findings, we propose a tunable
kernel algorithm that optimizes the spectral density of kernel
during training, reducing multiple trials for kernel selection
to just training once. Our contributions are summarized as:

1) Stochastic gradients error. We first investigate the
stochastic gradients error influenced the factors from SGD,
i.e. the batch size b, the learning rate γ and the iterations
t. The theoretical results illustrate the tradeoffs among these
factors to achieve better performance, such that it can guide
the set of these factors in practice.

2) Random features error. We then explore the difference
between ridgeless kernel predictor and ridgeless RF predictor.
In the overparameterized setting M > n, the ridgeless RF
converges to the ridgeless kernel as the increase number of
random features, where M is the number of random features
and n is the number of examples. In the underparameterized
regime M ≤ n, the error of ridgeless RF also exhibit an in-
teresting ”double-descent” curve in Figure 2 (a), because the
variance term explores near the transition point M = n.

3) Random features with tunable kernel algorithm.
Theoretical results illustrate the errors depends on the trace
of kernel matrix, motivating us to design a kernel learning al-
gorithm which asynchronously optimizes the spectral density
and model weights. The algorithm is friend to random initial-
ization, and thus easing the problem of kernel selection.



2 Related Work
Statistical Properties of Random features. The general-
ization efforts for random features are mainly in reducing
the number of random features to achieve the good perfor-
mance. [Rahimi and Recht, 2007] derived the appropriate
error bound between kernel function and the inner product
of random features. And then, the authors proved O(

√
n)

features to obtain the error bounds with convergence rate
O(1/

√
n) [Rahimi and Recht, 2008]. Rademacher complex-

ity based error bounds have been proved in [Li et al., 2019;
Li et al., 2020]. Using the integral operator theory, [Rudi and
Rosasco, 2017; Li and Liu, 2022] proved the minimax opti-
mal rates for random features based KRR.

In contrast, recent studies [Hastie et al., 2019] make ef-
forts on the overparameterized case for random features to
compute the asymptotic risk and revealed the double-descent
curve for random ReLU [Mei and Montanari, 2019] features
and random Fourier features [Jacot et al., 2020].
Double-descent in Ridgeless Regression. The double-
descent phenomenon was first observed in multilayer net-
works on MNIST dataset for ridgeless regression [Advani et
al., 2020]. It then been observed in random Fourier features
and decision trees [Belkin et al., 2018]. [Nakkiran et al.,
2021] extended the double-descent curve to various models
on more complicated tasks. The connection between double-
descent curve and random initialization of the Neural Tangent
Kernel (NTK) has been established [Geiger et al., 2020].

Recent theoretical work studied the asymptotic error for
ridgeless regression with kernel models [Liang and Rakhlin,
2020; Jacot et al., 2020] or linear models [Bartlett et al., 2020;
Ghorbani et al., 2021].

3 Problem setup
In the context of nonparametric supervised learning, given
a probability space X × Y with an unknown distribution
µ(x, y), the regression problem with squared loss is to solve

min
f
E(f), E(f) =

∫
X×Y

(f(x)− y)2dµ(x, y). (1)

However, one can only observe the training set (xi, yi)
n
i=1

that drawn i.i.d. from X × Y according to µ(x, y), where
xi ∈ Rd are inputs and yi ∈ R are the corresponding labels.

3.1 Kernel Ridgeless Regression.
Suppose the target regression f∗(x) = E(y|x = x) lie in
a Reproducing Kernel Hilbert Space (RKHS) HK , endowed
with the norm ‖·‖K and Mercer kernelK(·, ·) : X ×X → R.
Denote X = [x1, · · · ,xn]> ∈ Rn×d the input matrix
and y = [y1, · · · , yn]> the response vector. We then let
K(X,X) = [K(xi,xj)]

n
i,j=1 ∈ Rn×n be the kernel matrix

and K(x,X) = [K(x,x1), · · · ,K(x,xn)] ∈ R1×n.
Given the data (X,y), the empirical solution to (1) admits

a closed-form solution:

f̂(x) = K(x,X)K(X,X)†y, (2)

where † is the Moore-Penrose pseudo inverse. The above so-
lution is known as kernel ridgeless regression.

3.2 Ridegeless Regression with Random Features
The Mercer kernel is the inner product of feature mapping in
HK , stated as K(x,x′) = 〈Kx,Kx′〉, ∀x,x′ ∈ X , where
Kx = K(x, ·) ∈ HK is high or infinite dimensional.

The integral representation for kernel is K(x,x′) =∫
X ψ(x,ω)ψ(x′,ω)dπ(ω), where π(ω) is the spectral den-

sity and ψ : X × X → R is continuous and bounded func-
tion. Random features technique is proposed to approximate
the kernel by a finite dimensional feature mapping

K(x,x′) ≈ 〈φ(x), φ(x′)〉, with

φ(x) =
1√
M

(ψ(x,ω1), · · · , ψ(x,ωM )) ,
(3)

where φ : X → RM and ω1, · · · ,ωM are sampled indepen-
dently according to π. The solution of ridgeless regression
with random features can be written as

f̂M (x) = φ(x)
[
φ(X)>φ(X)

]†
φ(X)>y, (4)

where φ(X) ∈ Rn×M is the feature mapping matrix over X
and φ(x) ∈ R1×M is the feature mapping over x.

3.3 Random Features with Stochastic Gradients
To further accelerate the computational efficiency, we con-
sider the stochastic gradient descent method as bellow

f̂M,b,t(x) = 〈wt, φ(x)〉, with

wt+1 = wt −
γt
b

bt∑
i=b(t−1)+1

〈wt, φ(xi)〉 − yi)φ(xi),
(5)

where wt ∈ RM , w0 = 0, b is the mini-batch size and γt
is the learning rate. When b = 1 the algorithm reduces to
SGD and b > 1 is the mini-batch version. We assume the
examples are drawn uniformly with replacement, by which
one pass over the data requires dn/be iterations.

Before the iteration, the compute of φ(X) consumes
O(nM) time. The time complexity is O(Mb) for per iter-
ation and O(MbT ) after T iterations. Thus, the total com-
plexities are O(nM) for the one pass case and O(MbT ) for
the multiple pass case, respectively.

4 Main Results
In this section, we study the statistical properties of estimators
f̂M,b,t (5), f̂M (3) and f̂ (2). Denote Eµ[·] the expectation
w.r.t. the marginal x ∼ µ and

‖g‖2L2(µ) =

∫
g2(x)dµ(x) = Eµ[g2(x)], ∀g ∈ L2(µ).

The squared integral norm over the space L2(µ) = {g : X →
R|
∫
g2(x)dµ(x) < ∞} and f∗ ∈ L2(µ). Combing the

above equation with (1), one can prove that E(f)− E(f∗) =
‖f − f∗‖2L2(µ),∀f ∈ L2(µ). Therefore we can decompose

the excess risk of E(f̂M,b,t)− E(f∗) as bellow

E(f̂M,b,t)− E(f∗)

≤ ‖f̂M,b,t − f̂M‖+ ‖f̂M − f̂‖+ ‖f̂ − f∗‖.
(6)



The excess risk bound includes three terms: stochastic gradi-
ent error ‖f̂M,b,t− f̂M‖, random feature error ‖f̂M − f̂‖, and
excess risk of kernel ridgeless regression ‖f̂ − f∗‖, which
admits the bias-variance form. In this paper, since the ridge-
less excess risk ‖f̂ − f∗‖ has been well-studied [Liang and
Rakhlin, 2020], we focus on the first two bounds and ex-
plore the factors in them, respectively. Throughout this paper,
we assume the true regression f∗(x) = 〈f∗,Kx〉 lies in the
RKSH of the kernel K, i.e., f∗ ∈ HK .
Assumption 1 (Random features are continuous and
bounded). Assume that ψ is continuous and there is a κ ∈
[1,∞), such that |ψ(x, ω)| ≤ κ,∀x ∈ X , ω ∈ Ω.

Assumption 2 (Moment assumption). Assume there exists
B > 0 and σ > 0, such that for all p ≥ 2 with p ∈ N,∫

R
|y|pdρ(y|x) ≤ 1

2
p!Bp−2σ2. (7)

The above two assumptions are standard in statistical learn-
ing theory [Smale and Zhou, 2007; Caponnetto and De Vito,
2007; Rudi and Rosasco, 2017]. According to Assumption
1, the kernel K is bounded by K(x,x) ≤ κ2. The moment
assumption on the output y holds when y is bounded, sub-
gaussian or sub-exponential. Assumptions 1 and 2 are stan-
dard in the generalization analysis of KRR, always leading to
the learning rate O(1/

√
N) [Smale and Zhou, 2007].

4.1 Stochastic Gradients Error
We first investigate the approximation ability of stochastic
gradient by measuring ‖f̂M,b,t − f̂M‖2L2(µ), and explore the
effect of the mini-batch size b, the learning rate γ and the
number of iterations t.
Theorem 1 (Stochastic gradient error). Under Assumptions
1, 2, let t ∈ [T ], γ ≤ n

9T log nδ
∧ 1

8(1+log T ) and n ≥ 32 log2 2
δ ,

the following bounded holds with high probability

‖f̂M,b,t − f̂M‖ .
γ

b
+
‖f∗‖K
γt

.

The first term in the above bound measures the similarity
between mini-batch gradient descent estimator and full gradi-
ent descent estimator ‖f̂M,b,t − f̂M,t‖, which depends on the
mini-batch size b and the learning rate γ. The second term re-
flects the approximation between the gradient estimator and
the random feature estimator ‖f̂M,t − f̂M,b,t‖, which is de-
termined by the number of iterations t and the step-size γ,
leading to a sublinear convergence O(1/t).
Corollary 1. Under the same assumptions of Theorem 1, one
of the following cases and the time complexities

1) b = 1, γ ' 1√
n

and T = n ⇒ O(nM)

2) b =
√
n, γ ' 1 and T =

√
n ⇒ O(nM)

3) b = n, γ ' 1 and T =
√
n ⇒ O(n

√
nM)

is sufficient to guarantee with high probability that

‖f̂M,b,t − f̂M‖ .
1√
n
.

In the above corollary, we give examples for SGD, mini-
batch gradient, and full gradient, respectively. It shows the
computational efficiency of full gradient descent is usually
worse than stochastic gradient methods. The computational
complexities O(nM) are much smaller than that of random
features O(nM2 + M3). All these cases achieve the same
learning rate O(1/

√
n) as the exact KRR. With source con-

dition and capacity assumption in integral operator literature
[Caponnetto and De Vito, 2007; Rudi and Rosasco, 2017],
the above bound can achieve faster convergence rates.
Remark 1. [Carratino et al., 2018] also studied the approx-
imation of mini-batch gradient descent algorithm, but the
random features estimator is defined with noise-free labels
f∗(X) and with ridge regularization, which failed to directly
capture the effect of stochastic gradients. Note that this work
provides empirical estimators f̂M,b,t, f̂M , and f̂ with noise
labels y and ridgeless, which makes the proof techniques
quite different from [Carratino et al., 2018]. The technical
difference can be found by comparing the proofs of Theorem
1 in this paper and Lemma 9 in [Carratino et al., 2018].

4.2 Random Features Error
The redgeless RF predictor (3) characterizes different behav-
iors depending on the relationship between the number of ran-
dom features M and the number of samples n.
Theorem 2 (Overparameterized regime M ≥ n). When
M ≥ n, the random features error can be bounded by

E E(f̂M )− E(f̂) .
(α+ c1)‖f∗‖2K

M
,

where the constant α ∝ M
M−n .

In the overparameterized case, the ridgeless RF predictor is
an unbiased estimator of the ridgeless kernel predictor and RF
predictors can interpolate the dataset. The error term in the
above bound is the variance of the ridgeless RF predictor. As
shown in Figure 1 (a), the variance of ridgeless RF estimator
explodes near the interpolation as M → n, leading to the
double descent curve that has been well studied in [Mei and
Montanari, 2019; Jacot et al., 2020].

Obviously, a large number of random features in the over-
parameterized domain can approximate the kernel method
well [Rahimi and Recht, 2007; Rudi and Rosasco, 2017],
but it introduces computational challenges, i.e. O(nM) time
complexity for M > n. To reach good tradeoffs between sta-
tistical properties and computational cost, it is rather impor-
tant to investigate the approximation of ridgeless RF predictor
in the underparameterized regime.
Theorem 3 (Underparameterized regime M < n). When
M < n, under Assumption 1, the ridgeless RF estimator
f̂M approximates a kernel ridge regression estimator f̂λ =

K(x,X) (K + λnI)
−1

y by

E E(f̂M )− E(f̂λ) .
Tr(K)4‖f∗‖2K

M6
+

(α+ c1)‖f∗‖2K
M

,

where K = K(X,X) is the kernel matrix, α ∝ n
n−M and

the regularization parameter λ is the unique positive number
satisfying

Tr
[
K(K + λnI)−1

]
= M/n.



The above bound estimates the approximation between
the ridgeless RF estimator f̂M and the ridge regression f̂λ,
such that the ridgeless RF essentially imposes an implicit
regularization. For the shift-invariant kernels K(x,x′) =
h(‖x − x′‖), i.e. Gaussian kernel K(x,x′) = exp(−‖x −
x′‖2/(2σ2)), the trace of matrix is a constant Tr(K) = n.
The number of random features needs M = Ω(n0.75) to
achieve the convergence rate O(1/

√
n) for Theorem 3. Note

that Ñ (λ) := Tr
[
K(K + λnI)−1

]
is known as the empir-

ical effective dimension, which has been used to control the
capacity of hypothesis space [Caponnetto and De Vito, 2007]
and sample points via leverage scores [Rudi et al., 2018].
Theorem 3 states the implicit regularization effect of random
features, of which the regularizer parameter is related to the
features dimensional M .

Together with Theorem 2, Theorem 3 and Figure 1 (a), we
discuss the influence from different feature dimensionsM for
ridgeless RF predictor f̂M :

1) In the underparameterized regime M < n, the regu-
larization parameter is inversely proportional to the feature
dimensional λ ∝ 1/M . The effect of implicit regularity be-
comes greater as we reduce the features dimensional, while
the implicit regularity reduces to zero as M → n. As the in-
crease of M , the test error drops at first and then rises due to
overfitting (or explored variance).

2) At the interpolation threshold M = n, the condition
Tr
[
K(K + λI)−1

]
= M leads to λ = 0. Thus, M = n not

only split the overparameterized regime and the underparam-
eterized regime, but also is the start of implicit regularization
for ridgeless RF. At this point, the variance of ridgeless RF
predictor explodes, leading to double descent curve.

3) In the overparameterized case M > n, the ridgeless RF
predictor is an unbiased estimator ridgeless kernel predictor,
but the effective ridge goes to zero. As the number of random
features increases, the test error of ridgeless RF drops again.
Remark 2 (Excess risk bounds). From (6), one can derive the
entire excess risk bound for ridgeless RF-SGD ‖f̂M,b,t− f∗‖
by using the existing ridge regression bound ‖f̂λ − f∗‖ in
[Bartlett et al., 2005; Caponnetto and De Vito, 2007] for
Theorem 3, and ridgeless regression bound ‖f̂ − f∗‖ in
[Liang and Rakhlin, 2020] for Theorem 2. These risk bounds
usually characterized the bias-variance decomposition with
‖f − f∗‖2L2(µ) ≤ B + V , ∀f ∈ L2(µ), where the bias

usually can be bounded by B . 1
n

√
Tr(K). For the con-

ventional kernel methods, the kernel matrix is fixed and thus
Tr(K) is a constant.

5 Random Features with Tunable Kernels
By noting that Tr(K) play a dominate role in random fea-
tures error in Theorem 3 and bias, we thus design a tunable
kernel learning algorithm by reducing the trace Tr(K). We
first transfer the trace to trainable form by random features

Tr(K) ≈ Tr
(
φ(X)φ(X)>

)
= ‖φ(X)‖2F ,

where φ : X → RM depends on the spectral density π ac-
cording to (3) and ‖ · ‖2F is the squared Frobenius norm for a

Algorithm 1 Ridgeless RF with Tunable Kernels (RFTK)

Input: Training data (X,y) and feature mapping φ : Rd →
RD. Hyparameters σ2, β, T, b, γ, η and s.

Output: The ridgeless RF model wT and the learned Ω.
1: for t = 1, 2, · · · , T do
2: Sample a batch examples (xi, yi)

b
i=1 ∈ (X,y).

3: Update RF model weights wt = wt−1 − γ ∂L(w,Ω)
∂w

4: if t%s == 0 then
5: Optimize frequency matrix Ωt = Ωt−1−η ∂L(w,Ω)

∂Ω
6: end if
7: end for

matrix. Since ‖ · ‖2F is differentiable w.r.t. Ω, we thus can op-
timize the kernel density with backpropagation. For example,
considering the random Fourier features [Rahimi and Recht,
2007], the feature mappings can be written as

φ(x) =
1√
M

cos(Ω>x + b), (8)

where the frequency matrix Ω = [ω1, · · · ,ωM ] ∈ Rd×M
composed M vectors drawn i.i.d. from a Gaussian distribu-
tionN (0, 1

σ2 I) ∈ Rd. The phase vectors b = [b1, · · · , bM ] ∈
RM are drawn uniformly from [0, 2π].

Theoretical findings illustrate that smaller trace of kernel
matrix Tr(K) can lead to better performance. We first pro-
pose a bi-level optimization learning problem

min
w

1

n

n∑
i=1

(
w>φ(xi)− yi

)2
s.t. Ω∗ = arg min

Ω
‖φ(X)‖2F .

(9)

The above objective includes two steps: 1) given a cer-
tain kernel, i.e. the frequency matrix Ω = [ω1, · · · ,ωM ] ∼
π(w), the algorithm train the ridgeless RF model w; 2) given
a trained RF model w, the algorithm optimize the spectral
density (the kernel) by updating the frequency matrix Ω.

To accelerate the solve of (9), we optimize w and Ω jointly
by minimize the the following objective

L(w,Ω) =
1

n

n∑
i=1

(f(xi)− yi)
2

+ β‖φ(X)‖2F , (10)

where β is a hyperparameter to balance the effect between
empirical loss and the trace of kernel matrix. Here, the update
of w is still only dependent on the squared loss (thus it is still
ridgeless), but the update of Ω is related to both the squared
loss and Frobenius norm.

Therefore, the time complexity for update w once is
O(Mb). However, since the trace is defined on all data, the
update of Ω is relevant to all data and time complexity is
O(nMd), which is infeasible to update in every iterations.
Meanwhile, the kernel needn’t to update frequently, and thus
we apply an asynchronous strategy for optimizing the spectral
density. As shown in Algorithm 1, the frequency matrix Ω is
updated after every s iterations for the update of w. The total
complexity for the asynchronous strategy is O(nMdT/s).
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Figure 2: (a) Test errors of the RF predictors (solid lines) and kernel predictors (dashed lines) w.r.t. different regularization. Note that, the
ridgeless RF predictors exhibit a double descent curve. (b) Test accuracies of the compared methods on the MNIST dataset. (c) Training loss
(solid lines) and the trace of kernel Tr(K) (dashed lines) of the RF predictors on the MNIST dataset.

6 Experiments
We use random Fourier feature defined in (8) to approximate
the Gaussian kernel K(x,x′) = exp(−σ2‖x − x′‖2/2).
Note that, the corresponding random Fourier features (8) is
with the frequency matrix Ω ∼ N (0, σ2). We implement
all code based Pytorch and tune the hyperparameters over
σ2 ∈ {0.01, 0.1, · · · , 1000}, λ = {0.1, 0.01, · · · , 10−5} by
grid search for every datasets.

6.1 Numerical Validations
Factors of Stochastic Gradient Methods
We start with a nonlinear problem y = min(−w>x,w>x)+
ε, where ε ∼ N (0, 0.2) is the label noise, and x ∼ N (0, I).
Setting d = 10, we generate n = 10000 samples for training
and 2500 samples for testing. The optimal kernel hyperpa-
rameter is σ2 = 100 after grid search.

As stated in Theorem 1, the stochastic gradients error is
determined by the batch size b, learning rate γ and the it-
erations t. To explore effects of these factors, we evaluate
the approximation between the ridgeless RF-SGD estimator
f̂M,b,t and the ridgeless RF estimator f̂M on the simulated
data. Given a batch size b, we tune the learning rate γ w.r.t.
the MSE over γ ∈ {101, 100, · · · , 10−4}. As shown in Fig-
ure 1 (b), (c), give the b, γ, we estimate the ideal iterations
t = # Epoch ∗ 10000/b after which the error drops slowly As
the step size b increases, the learning rates γ become larger
while the iterations reduces. This coincides with the tradeoffs

among these factors b/γ + 1/(γt) in Theorem 1, where the
balance between b/γ and 1/γt leads to better performance.

Comparing Figure 1 (b) and (c), we find that: 1) After the
same passes over the data (same epoch), the stochastic gradi-
ent error and MSE of the algorithms with smaller batch sizes
are smaller with faster drop speeds. 2) The stochastic error
still decreases after the MSE converges, where the other error
terms dominates the excess risk, i.e. bias of predictors.

Double Descent Curve in Random Features
To characterize different behaviors of the random features er-
ror w.r.t. M , we fixed the number of training examples n and
changes the random features dimensional M . Figure 2 (a) re-
ports test errors in terms of different ratios M/n, illustrating
that: 1) Kernel methods with smaller regularization lead to
smaller test errors, and the reason may be regularization hurts
the performance when the training data is ”clean”. 2) Test
errors of RF predictors converges to the corresponding kernel
predictors, because a larger M have better approximation to
the kernel. This coincides with Theorem 2 and 3 that a larger
M reduces the random features error. 3) When the regular-
ization term λ is small, the predictors leads to double descent
curves and M = n is the transition point dividing the un-
derparamterized and overparameterized regions. The smaller
regularity, the more obvious curve the RF predictor exhibits.

In the overparameterized case, the error of RF predictor
converges to corresponding kernel predictor as M increases,



Kernel Ridge Kernel Ridgeless RF RF-SGD RFTK
dna 52.83±1.66 49.67±18.54 52.83±1.66 51.33±1.89 92.92±0.89
letter 96.54±0.25 96.40±0.15 95.33±0.32 91.74±0.46 96.17±0.29
pendigits 97.46±0.42 90.67±4.75 96.91±0.43 46.04±5.62 98.64±0.43
segment 82.99±1.85 56.71±10.71 83.44±1.69 37.75±9.11 94.55±1.52
satimage 90.43±0.48 88.79±0.77 87.67±0.89 90.33±1.36 90.79±1.23
usps 92.49±0.70 87.47±7.38 94.38±0.60 49.81±3.52 97.29±0.61
svmguide2 81.90±2.78 70.13±4.91 66.20±4.64 81.65±4.25 82.78±4.84
vehicle 63.00±2.80 79.35±2.89 75.94±2.88 74.24±3.92 80.06±4.49
wine 39.17±6.27 48.89±13.68 91.11±19.40 43.89±6.19 98.33±1.36
shuttle / / 79.08±26.76 98.94±0.48 99.63±0.19
Sensorless / / 32.92±8.22 17.72±3.84 86.10±0.73
MNIST / / 95.52±0.16 96.61±0.11 98.09±0.07

Table 1: Classification accuracy (%) for classification datasets. We bold the results with the best method and underline the ones
that are not significantly worse than the best one.

Methods Time Density Regularizer
Kernel Ridge O(n3) Assigned Ridge
Kernel Ridgeless O(n3) Assigned Ridgeless
RF O(nM2 +M3) Assigned Ridgeless
RF-SGD O(MbT ) Assigned Ridgeless

RFTK O(nMbT/s) Learned Ridgeless +
‖φ(X)‖2F

Table 2: Compared algorithms.

verifying the results in Theorem 2 that the variance term re-
duces given more features when M > n. In the underparam-
terized regime, the errors of RF predictors drop first and then
increase, and finally explodes at M = n. These empirical re-
sults validates theoretical findings in Theorem 3 that the vari-
ance term dominates the random features near M = n and it
is significantly large as shown in Figure 1 (a).

Benefits from Tunable Kernel
Motivated by the theoretical findings that the trace of kernel
matrix Tr(K) influences the performance, we design a tun-
able kernel method RFTK that adaptively optimizes the spec-
tral density in the training. To explore the influence of fac-
tors upon convergence, we evaluate both test accuracy and
training loss on the MNIST dataset. Compared with the ex-
act random features (RF) and random features with stochastic
gradients (RF-SGD), we conduct experiments on the entire
MNIST datasets. From Figure 2 (b), we find there is a signif-
icant accuracy gap between RF-SGD and RFTK. Figure 2 (c)
indicates the trace of kernel matrix term takes affects after the
current model fully trained near 100 epochs, and it decrease
fast. Specifically, since the kernel is continuously optimized,
more iterations can still improve the its generalization perfor-
mance, while the accuracy of RF-SGD decreases after 100
epochs because of the overfitting to the given hypothesis.

Figure 2 (b) and (c) explain the benefits from the penalty of
Tr(K) that optimizes the kernel during the training, avoiding
kernel selection. Empirical studies shows that smaller Tr(K)
guarantees better performance, coinciding with the theoreti-
cal results in Theorem 1 and Theorem 3 that both stochastic

gradients error and random features error depends on Tr(K).

6.2 Empirical Results
Compared with related algorithms listed in Table 2, we eval-
uate the empirical behavior of our proposed algorithm RFTK
on several benchmark datasets. Only the kernel ridge regres-
sion makes uses of the ridge penalty ‖w‖22, while the others
are ridgeless. For the sake of presentation, we perform regres-
sion algorithms on classification datasets with one-hot encod-
ing and cross-entropy loss. We set b = 32 and 100 epochs for
the training, and thus the stop iteration is T = 100n/32. Be-
fore the training, we tune the hyperparameters σ2, λ, γ, β via
grid search for algorithms on each dataset. To obtain stable
results, we run methods on each dataset 10 times with ran-
domly partition such that 80% data for training and 20% data
for testing. Further, those multiple test errors allow the esti-
mation of the statistical significance among methods.

Table 1 reports the test accuracies for compared methods
over classification tasks. It demonstrates that: 1) In some
cases, the proposed RFTK remarkably outperforms the com-
pared methods, for example dna, segment and Sensorless.
That means RFTK can optimize the kernel even with a bad
initialization, which makes it more flexible than the schema
(kernel selection + learning). 2) For many tasks, the accura-
cies of RFTK are also significantly higher than kernel predic-
tors, i.e. dna, because the learned kernel is more suitable for
these tasks. 3) Compared to kernel predictors, RFTK leads
to similar or worse results in some cases. The reason is that
kernel hyperparameter σ2 has been tuned and in these cases
they are near the optimal one, and thus the spectral density is
changed a little by RFTK.

7 Conclusion
We study the generalization properties for ridgeless regres-
sion with random features, and devise a kernel learning algo-
rithm that asynchronously tune spectral kernel density during
the training. Our work filled the gap between the generaliza-
tion theory and practical algorithms for ridgeless regression
with random features. The techniques presented here pro-
vides theoretical and algorithmic insights for understanding
of neural networks and designing new algorithms.
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