
Learning Probabilistic Box Embeddings for Effective and Efficient
Ranking

Lang Mei
Beijing Key Laboratory of Big Data Management and

Analysis Methods, Gaoling School of Artificial Intelligence,
Renmin University of China

Beijing, China
meilang2013@ruc.edu.cn

Jiaxin Mao∗
Beijing Key Laboratory of Big Data Management and

Analysis Methods, Gaoling School of Artificial Intelligence,
Renmin University of China

Beijing, China
maojiaxin@gmail.com

Gang Guo
Beijing Key Laboratory of Big Data Management and

Analysis Methods, Gaoling School of Artificial Intelligence,
Renmin University of China

Beijing, China
guogang@ruc.edu.cn

Ji-Rong Wen
Beijing Key Laboratory of Big Data Management and

Analysis Methods, Gaoling School of Artificial Intelligence,
Renmin University of China

Beijing, China
jrwen@ruc.edu.cn

ABSTRACT
Ranking has been one of the most important tasks in information
retrieval. With the development of deep representation learning,
many researchers propose to encode both the query and items
into embedding vectors and rank the items according to the inner
product or distance measures in the embedding space. However, the
ranking models based on vector embeddings may have shortages in
effectiveness and efficiency. For effectiveness, they lack the intrinsic
ability tomodel the diversity and uncertainty of queries and items in
ranking. For efficiency, nearest neighbor search in a large collection
of item vectors can be costly. In this work, we propose to use the
recently proposed probabilistic box embeddings for effective and
efficient ranking, in which queries and items are parameterized as
high-dimensional axis-aligned hyper-rectangles. For effectiveness,
we utilize probabilistic box embeddings to model the diversity and
uncertainty with the overlapping relations of the hyper-rectangles,
and prove that such overlapping measure is a kernel function which
can be adopted in other kernel-based methods. For efficiency, we
propose a box embedding-based indexing method, which can safely
filter irrelevant items and reduce the retrieval latency. We further
design a training strategy to increase the proportion of irrelevant
items that can be filtered by the index. Experiments on public
datasets show that the box embeddings and the box embedding-
based indexing approaches are effective and efficient in two ranking
tasks: ad hoc retrieval and product recommendation.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512073

KEYWORDS
Embeddings, Dense Retrieval, Probabilistic Box Embedding, Index-
ing, Ranking, Recommendation

ACM Reference Format:
Lang Mei, Jiaxin Mao, Gang Guo, and Ji-Rong Wen. 2022. Learning Proba-
bilistic Box Embeddings for Effective and Efficient Ranking. In Proceedings
of the ACMWeb Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event,
Lyon, France. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3485447.3512073

1 INTRODUCTION
The ranking task, such as document ranking, recommendation
systems, is one of the basic tasks in information retrieval (IR). In
general, the ranking model aims to match queries with items (i.e.
documents, products) from a large set of candidate collections, and
produce a ranking list by computing numeric scores to measure
the relevance between the queries and items.

Recently, with the development of deep representation learning
[8, 34], many researchers propose to encode queries and items into
dense vector embeddings in a low-dimensional Euclidean space
to better model the semantic relations between them. Based on
the learned vector embeddings, the Euclidean distances or inner
products between vector embeddings of queries and items can
be utilized to measure their relevance in ranking. Previous work
has demonstrated that dense vector embeddings-based methods
achieve convincing performance on many IR-related tasks [21].
Furthermore, ANNS (Approximate Nearest Neighbor Search) al-
gorithms [12, 17, 18] can leverage a precomputed ANNS index to
efficiently retrieve the approximate top 𝐾 items that are similar to
a given query, from a large collection of items. However, vector
embedding-based learning and indexing methods may have some
problems in both effectiveness and efficiency, respectively. For ef-
fectiveness, vector embeddings (i.e. a single point in the embedding
space) may be a suboptimal choice to model the semantic diversity
and uncertainty of queries and items. Figure 1 shows an example
in recommendation where the "queries" and "items" correspond
to the user preference and products respectively. From this figure,

https://doi.org/10.1145/3485447.3512073
https://doi.org/10.1145/3485447.3512073
https://doi.org/10.1145/3485447.3512073

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Lang Mei, Jiaxin Mao, Gang Guo, and Ji-Rong Wen

Figure 1: Two dimensional examples in recommendation to
explain the diversity and uncertainty of queries and items.

we can see that a user may have some acceptable ranges of price
and style for the products, and a product may also be associated
with the price fluctuation and several styles due to its versatile
attributes. The user usually chooses a product based on the partial
matching of her preference and the item’s attributes. Similarly, for
ad hoc search, the short query can be ambiguous and be relevant to
several subtopics, a document may cover diverse topics and thus be
relevant to queries with disparate information needs. It is hard to
model the semantic diversity and uncertainty of queries and items
with a single point in the vector space. For efficiency, the exact
nearest neighbor search in a high-dimensional vector space can
be prohibitively time-consuming for a large corpus. Therefore, a
variety of ANNS algorithms [7, 18, 25, 32] are utilized to improve
the retrieval efficiency. However, as the ANNs algorithms can only
retrieve the approximate top-k nearest neighbors, there is a trade-
off between the speedup brought by the ANNS and the retrieval
accuracy.

Recently, a series of geometric-inspired embedding models [6, 9,
22, 23, 28, 33, 35–37] have been proposed and drawn much atten-
tion from researchers. Probabilistic box embeddings [6, 23, 33, 36],
which is a typical variants of these models, has demonstrated its
superior representation ability to model the hierarchical [9, 28] and
transitive relations [6, 22, 23, 33, 35, 36], entailments [23], and the
uncertainty [37]. As the probabilistic box embedding model repre-
sents objects (i.e. queries, items) as multi-dimensional axis-aligned
hyper-rectangles, we believe that it can improve the effectiveness
and efficiency for ranking tasks. For effectiveness, from the exam-
ple shown in Figure 1, we can see that after mapping the queries
and items to box representation, probabilistic box embeddings can
naturally model the semantic diversity and uncertainty of queries
or items. The volume of the overlapping box between query box
and item box can be use as an intuitive similarity measure for the
queries and items. For efficiency, as shown in Figure 1, we can easily
judge whether a query box and an item box have overlapping in
space. If two boxes are disjoint with each other, it means that they

are not relevant. After representing the query and documents as
boxes, we can leverage this property to efficiently filter irrelevant
items, which will reduce the time needed in searching for relevant
items.

Therefore, in this work, we propose to improve effectiveness and
efficiency for ranking by probabilistic box embeddings. First, we
utilize the box embeddings to better represent queries and items in
ranking tasks, and propose to use the volume of the overlapping
box between the query and item as a similarity measure. We further
prove that this similarity measure is in fact a kernel function which
can be adopted in other kernel-based methods. Second, we incor-
porate two efficient-oriented constraints in the training process of
box embeddings. These two constraints will encourage the learned
box representations of the irrelevant items to be disjoint with the
representation of the query. Third, after obtaining the learned box
embeddings, we propose a box embedding-based indexing method,
which can filter irrelevant items and reduce the visiting times with-
out sacrificing the retrieval accuracy. We conduct experiments on
real-world datasets of both passage ranking and recommendation
tasks. Experimental results show that the proposed method can
outperform existing vector embedding-based approaches in both
effectiveness and efficiency.

2 RELATEDWORK
In passage retrieval tasks, conventional algorithms such as BM25
[31] utilize the features from exact keyword matching, which can
lead to the vocabulary mismatch problem if there exist different
terms sharing the same meaning. Dense Retrieval model represents
queries and items as vector embeddings during the online stage,
and builds the document index during the offline stage. For the
training process in the online stage, negative sampling methods are
used to train dense retrieval models. Huang et al. [15] randomly
samples negative documents from the whole corpus. Karpukhin
et al. [21] adopts In-Batch negatives, which use other queries’ pos-
itive documents in the same mini-batch as negatives. Gao et al.
[11], Karpukhin et al. [21] utilizes top-retrieval documents from
BM25 model as hard negatives. Xiong et al. [38] retrieve the top
documents as hard negatives by using a warm-up dense retrieval
model, and during training they refresh the document index to
update the hard negatives, which are inferred by the current pa-
rameters of the model. Zhan et al. [40] proposes to consider both
hard negatives and random negatives, which can better optimize
for the ranking metrics. For the indexing process in the offline stage,
ANNS (Approximate Nearest Neighbor Search) algorithms [12, 17]
are utilized to build document index as pre-computed form, which
can efficiently retrieve the approximate top 𝐾 items given a query.

In recommendation tasks, two-tower architectures based on deep
neural networks have been widely adopted in industrial recom-
mender systems to capture personalized information [14, 16, 20].
After obtaining the learned vector embedding of user preferences
and item features, the index can be constructed and the inner prod-
uct is utilized to perform efficient searching. Huang et al. [16] learns
the relevance based on the inner product between user features
and item features. Hidasi et al. [14] applies GRU network to model
the user interaction sequence. Kang and McAuley [20] adopts the

Learning Probabilistic Box Embeddings for Effective and Efficient Ranking WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

self-attention mechanism to better capture the users’ dynamic in-
terests.

Recently, probabilistic box embeddings [6, 23, 33, 36] are pro-
posed to model objects by high dimensional axis-aligned hyper-
rectangles. While box embeddings have a good representation ca-
pacity, especially for transitive relations, it is difficult to optimize
the box embeddings with the standard gradient descent approach.
To improve the optimization of box embeddings, Li et al. [23] use
Gaussian convolution to smooth the edges and thus avoid the zero
gradient problem. Dasgupta et al. [6] utilizes Gumbel distribution to
alleviate the problems of local identifiability. Motivated by the box
embeddings, real-world applications, such as knowledge graphs
[30], recommendation [26, 41], have been proposed. Ren et al. [30]
adopt box embeddings for logical reasoning in knowledge graphs,
and encode queries and entities as boxes. For the recommendation
task Zhang et al. [41] proposes to represent the user as a multi-
dimensional hypercuboid, the edges of the hypercuboid is used to
describe the ranges of preferences, which enhance the representa-
tion capacity in capturing the diversity of preferences. Mei et al.
[26] propose to embed users and items as high dimensional latent
space, in which hypercuboid representation is a simplified variant.

3 BACKGROUND
In this section, we give a brief introduction of vector embeddings
and probabilistic box embeddings.

3.1 Vector Embeddings
In the general settings of vector embedding, given 𝑛 arbitrary ob-
jects 𝑋1, 𝑋2, ..., 𝑋𝑛 , they are embedded as 𝑑-dimensional vectors
𝒀1, 𝒀2, ..., 𝒀𝒏 in space. When optimizing the vector embedding-
based models, we require the pairwise distances | |𝒀𝒊 − 𝒀𝒋 | |2 or

the inner product (or cosine similarity 𝒀𝑇
𝒊 𝒀𝒋

| |𝒀𝒊 | | | |𝒀𝒋 | |) 𝒀
𝑇
𝒊 𝒀𝒋 to be ap-

proximately equal to the ground truth distances 𝑑𝑋
(
𝑋𝑖 , 𝑋 𝑗

)
or the

similarity 𝑠𝑖𝑚𝑋 (𝑋𝑖 , 𝑋 𝑗) between𝑋𝑖 and𝑋 𝑗 , respectively. After train-
ing the vector embedding model (i.e. a mapping function from 𝑋𝑖

to 𝒀𝒊), we can use the distances | |𝒀𝒊 − 𝒀𝒋 | |2 or inner products 𝒀𝑇𝒊 𝒀𝒋
between vector embeddings to model the similarity relation of be-
tween the objects𝑋𝑖 and𝑌𝑖 , and then build the index based on these
learned vector embeddings.

3.2 Probabilistic Box Embeddings
3.2.1 Notion. In probabilistic box embeddings, given an object
𝑋 , an 𝑑-dimensional axis-aligned hyper-rectangle (or box) is used
to represent it, in which the parameters contain two vectors that
correspond to the lower and upper boundaries of the box in 𝑑
dimensions.

𝑏𝑜𝑥 (𝑋) =
〈[
𝑋 𝑙1, 𝑋

𝑢
1

]
, ...,

[
𝑋 𝑙
𝑑
, 𝑋𝑢
𝑑

]〉
(1)

After associating the object 𝑋 with a 𝑑-dimensional box, 𝑏𝑜𝑥 (𝑋),
the interval lengths of the 𝑑-dimensional boundaries are utilized to
compute the volume of 𝑏𝑜𝑥 (𝑋),

𝑉 (𝑏𝑜𝑥 (𝑋)) =
𝑑∏
𝑘=1

(
𝑋𝑢
𝑘
− 𝑋 𝑙

𝑘

)
(2)

Furthermore, given the box representations 𝑏𝑜𝑥 (𝐴) and 𝑏𝑜𝑥 (𝐵)
of any two objects 𝐴 and 𝐵, we can obtain the overlapping region,
a 𝑑-dimensional box, 𝑏𝑜𝑥 (𝐴 ∧ 𝐵). Similarly, the lower and upper
boundaries of 𝑏𝑜𝑥 (𝐴 ∧ 𝐵) can be calculated by:

𝑏𝑜𝑥 (𝐴) ∧ 𝑏𝑜𝑥 (𝐵) = 𝑏𝑜𝑥 (𝐴 ∧ 𝐵) =
= ⟨𝐴1 ∧ 𝐵1, ..., 𝐴𝑑 ∧ 𝐵𝑑 ⟩

(3)

Specifically,𝐴𝑘 ∧𝐵𝑘 =

[
max

(
𝐴𝑙
𝑘
, 𝐵𝑙
𝑘

)
,min

(
𝐴𝑢
𝑘
, 𝐵𝑢
𝑘

)]
are the lower

and upper boundaries of 𝑏𝑜𝑥 (𝐴 ∧ 𝐵) for dimension 𝑘 . If two boxes
are disjoint, it means there always exist at least one dimension 𝑗
such that max

(
𝐴𝑙
𝑗
, 𝐵𝑙
𝑗

)
> min

(
𝐴𝑢
𝑗
, 𝐵𝑢
𝑗

)
.

3.2.2 Overlapping Volume. Based on the boundaries of the over-
lapping region 𝑏𝑜𝑥 (𝐴 ∧ 𝐵), we can also calculate the its volume.
Noticing that𝑚𝑖𝑛(𝐴𝑢

𝑗
, 𝐵𝑢
𝑗
) can be smaller than𝑚𝑎𝑥 (𝐴𝑙

𝑗
, 𝐵𝑙
𝑗
) but the

volume of overlapping box should be non-negative. Therefore, we
use the following formula to compute the volume of 𝑏𝑜𝑥 (𝐴 ∧ 𝐵):

𝑉 (𝑏𝑜𝑥 (𝐴 ∧ 𝐵)) =
𝑑∏
𝑘=1

max (0, |𝐴𝑘 ∧ 𝐵𝑘 |) =

𝑑∏
𝑘=1

max
(
0,min

(
𝐴𝑢
𝑘
, 𝐵𝑢
𝑘

)
−max

(
𝐴𝑙
𝑘
, 𝐵𝑙
𝑘

)) (4)

Where |·| refers to the interval length in single dimension. We adopt
the overlapping volume to model the relation between the object 𝐴
and 𝐵. Specially, we prove the property of such overlapping volume
by the following theorem, and the details are given in Appendix A.
Theorem 1. The overlapping volume function 𝑉 (𝑏𝑜𝑥 (𝐴 ∧ 𝐵)) is
a kernel function.

3.2.3 Learning Box Embeddings. It is challenging to directly
optimize the above vanilla box embeddings because, when two
boxes are disjoint, it would be difficult to make them overlap with
each other by a gradient-based training method (i.e. the gradients
with respect to this training pair would be zero.). Dasgupta et al.
[6] introduce a random latent variable approach GumbelBox to
overcome these problems, it models the box embedding parame-
ters based on the assumption of independent Gumbel distribution,
which allows all parameters to involve the gradient updating in
different training situations.

In GumbelBox, based on the lower and upper boundaries of
𝑏𝑜𝑥 (𝐴) and 𝑏𝑜𝑥 (𝐵), Gumbel distributions are utilized to gener-
ate the lower and upper boundaries ⟨𝐴1 ∧ 𝐵1, ..., 𝐴𝑑 ∧ 𝐵𝑑 ⟩ of the
overlapping box 𝑏𝑜𝑥 (𝐴 ∧ 𝐵).

𝑓 (𝑥 ; `, 𝛽) = 1
𝛽
exp

(
−𝑥 − `

𝛽
− 𝑒−

𝑥−`
𝛽

)
(5)

Where 𝛽 is the temperature parameter of Gumbel distribution. For
any dimension 𝑘 , 𝐴𝑘 ∧ 𝐵𝑘 = [min (𝐴𝑘 ∧ 𝐵𝑘) ,max (𝐴𝑘 ∧ 𝐵𝑘)] is
given by:

min (𝐴𝑘 ∧ 𝐵𝑘) ∼ 𝐺𝑢𝑚𝑏𝑒𝑙
(
−𝛽𝑙𝑛

(
𝑒
−

𝐴𝑙
𝑘
𝛽 + 𝑒−

𝐵𝑙
𝑘
𝛽

)
, 𝛽

)
(6)

max (𝐴𝑘 ∧ 𝐵𝑘) ∼ 𝐺𝑢𝑚𝑏𝑒𝑙
(
𝛽𝑙𝑛

(
𝑒

𝐴𝑢
𝑘
𝛽 + 𝑒

𝐵𝑢
𝑘
𝛽

)
, 𝛽

)
(7)

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Lang Mei, Jiaxin Mao, Gang Guo, and Ji-Rong Wen

Through calculating the expected volumes of overlapping box
𝑏𝑜𝑥 (𝐴 ∧ 𝐵), the expected 𝐴𝑘 ∧ 𝐵𝑘 can be obtained, and serve as
the final estimation of 𝐴𝑘 ∧ 𝐵𝑘 ,

`−
𝑘
:= 𝐸 (min (𝐴𝑘 ∧ 𝐵𝑘)) = −𝛽𝐿𝑜𝑔𝑆𝑢𝑚𝐸𝑥𝑝

(
−
𝐴𝑙
𝑘

𝛽
,−
𝐵𝑙
𝑘

𝛽

)
(8)

`+
𝑘
:= 𝐸 (max (𝐴𝑘 ∧ 𝐵𝑘)) = 𝛽𝐿𝑜𝑔𝑆𝑢𝑚𝐸𝑥𝑝

(
𝐴𝑢
𝑘

𝛽
,
𝐵𝑢
𝑘

𝛽

)
(9)

𝑉𝑔 (𝑏𝑜𝑥 (𝐴 ∧ 𝐵)) := 𝐸 (𝑉 (𝑏𝑜𝑥 (𝐴 ∧ 𝐵)))

=
∏
𝑘

𝛽 log

(
1 + exp

(
`+
𝑘
− `−

𝑘

𝛽
− 2𝛾

))
(10)

Where 𝛾 is the Euler-Mascheroni constant.

4 LEARNING
In this section, we first give the formulation of how to represent
queries and items as box embeddings and how to compute the
ranking score with the box representations. Then we introduce
how to train the box embeddings in ranking tasks. Specifically,
we introduce two the additional constraints in the loss function,
which can enhance the model to better distinguish the relevant and
irrelevant items and benefit the online retrieval efficiency.

4.1 Formulation
For a set of queries𝑄 and a set of items 𝐼 , each query 𝑞 ∈ 𝑄 usually
have a relevant item subset 𝐼𝑞 ∈ 𝐼 (|𝐼𝑞 | is usually much smaller than
|𝐼 |). Given a query 𝑞 ∈ 𝑄 or an item 𝑖 ∈ 𝐼 , we can represent them
as 𝑑-dimensional axis-aligned hyper-rectangles (or boxes) 𝑏𝑜𝑥 (𝑞)
and 𝑏𝑜𝑥 (𝑖).

𝑏𝑜𝑥 (𝑞) =
〈[
𝑞𝑙1, 𝑞

𝑢
1

]
, ...,

[
𝑞𝑙
𝑑
, 𝑞𝑢
𝑑

]〉
(11)

𝑏𝑜𝑥 (𝑖) =
〈[
𝑖𝑙1, 𝑖

𝑢
1

]
, ...,

[
𝑖𝑙
𝑑
, 𝑖𝑢
𝑑

]〉
(12)

Using the Gumbel distribution-based overlapping volume measure
𝑉𝑔 (𝑏𝑜𝑥 (𝑞 ∧ 𝑖)) given in Eqn. (10) between 𝑏𝑜𝑥 (𝑞) and 𝑏𝑜𝑥 (𝑖), we
can model the relevance between query 𝑞 and item 𝑖 .

4.2 Training for Ranking
4.2.1 Ranking Loss. For the ranking tasks, given a query 𝑞 ∈ 𝑄 ,
the goal is optimizing model to rank the positive items 𝑖+𝑞 higher
than the negative items 𝑖−𝑞 , which are produced by the sampling
strategy. Let 𝑓 (𝑞, 𝑖) be the relevance score between query 𝑞 and
item 𝑖 predicted by the model, which equals to 𝑉𝑔 (𝑏𝑜𝑥 (𝑞 ∧ 𝑖))
mentioned above. We adopt the pairwise ranking loss as the opti-
mization objective, which is defined as:

𝐿𝑟 = log
(
1 + exp𝑓

(
𝑞,𝑖−𝑞

)
−𝑓

(
𝑞,𝑖+𝑞

))
(13)

4.2.2 Volume Regularization. In box embeddings, the volume
of boxes can reflect the magnitude of the diversity and uncertainty
of the queries and items. We introduce this regularization measure
by penalizing the volumes of boxes when they become greater than

a fixed value, which can give a reasonable bound for the measure
of uncertainty.

𝐿𝑣 =
∑︁
𝑞

1[𝑉𝑔 (𝑏𝑜𝑥 (𝑞))>𝜏]𝑉𝑔 (𝑏𝑜𝑥 (𝑞))

+
∑︁

𝑖∈
{
𝑖+𝑞

}
∪
{
𝑖−𝑞

} 1[𝑉𝑔 (𝑏𝑜𝑥 (𝑖))>𝜏]𝑉𝑔 (𝑏𝑜𝑥 (𝑖)) (14)

4.3 Overlapping Constraints for More Efficient
Indexing and Retrieval

Through box representations we can easily judge whether query
box 𝑏𝑜𝑥 (𝑞) and item box 𝑏𝑜𝑥 (𝑖) have a non-empty overlapping
region. If two boxes are disjoint with each other, (i.e. there exist
at least one dimension 𝑗 such that

��𝑞 𝑗 ∧ 𝑖 𝑗 �� < 0.), the overlapping
volume 𝑉 (𝑏𝑜𝑥 (𝑞 ∧ 𝑖)) must be zero, indicating that the item is
irrelevant to the query. Therefore, we can leverage this property to
safely filter irrelevant items, which can reduce the visiting times on
the whole set of items, and thus, improve the searching efficiency.

If most of the irrelevant boxes are indeed disjoint, then we can
get a large improvement in efficiency via this filtering strategy.
Therefore, we introduce two constraints to enable the model to bet-
ter distinguish the positive items 𝑖+𝑞 and negative items 𝑖−𝑞 , and most

importantly, make 𝑏𝑜𝑥 (𝑞) and 𝑏𝑜𝑥
(
𝑖−𝑞

)
more likely to be disjoint

with each other. In detail, given the lower and upper boundaries of
𝑏𝑜𝑥

(
𝑞 ∧ 𝑖+𝑞

)
and 𝑏𝑜𝑥

(
𝑞 ∧ 𝑖−𝑞

)
,

𝑏𝑜𝑥

(
𝑞 ∧ 𝑖+𝑞

)
=

〈
𝑞1 ∧

(
𝑖+𝑞

)
1
, ..., 𝑞𝑑 ∧

(
𝑖+𝑞

)
𝑑

〉
(15)

𝑏𝑜𝑥

(
𝑞 ∧ 𝑖−𝑞

)
=

〈
𝑞1 ∧

(
𝑖−𝑞

)
1
, ..., 𝑞𝑑 ∧

(
𝑖−𝑞

)
𝑑

〉
(16)

We find theminimumof interval lengths of𝑏𝑜𝑥
(
𝑞 ∧ 𝑖+𝑞

)
and𝑏𝑜𝑥

(
𝑞 ∧ 𝑖−𝑞

)
.

min𝑏𝑜𝑥
(
𝑞 ∧ 𝑖+𝑞

)
= min

𝑘

���𝑞𝑘 ∧ (
𝑖+𝑞

)
𝑘

��� (17)

min𝑏𝑜𝑥
(
𝑞 ∧ 𝑖−𝑞

)
= min

𝑘

���𝑞𝑘 ∧ (
𝑖−𝑞

)
𝑘

��� (18)

Noted that whether such minimum interval lengths are positive
implies whether two boxes overlap with each other. Therefore, we
require min𝑏𝑜𝑥

(
𝑞 ∧ 𝑖+𝑞

)
> 0 and min𝑏𝑜𝑥

(
𝑞 ∧ 𝑖−𝑞

)
< 0, which can

help the model to better distinguish the negative items from the
positive ones based on the disjointness of box representations. The
two overlapping constraints are formalized as below,

𝐿𝑐 = max
(
0, 𝛿 −min𝑏𝑜𝑥

(
𝑞 ∧ 𝑖+𝑞

))
+max

(
0, 𝛿 +min𝑏𝑜𝑥

(
𝑞 ∧ 𝑖−𝑞

)) (19)

Where 𝛿 is the margin value of the constraints. Combining the
ranking loss, volume regularization, and overlapping constraints,
the final training loss are given by,

𝐿 = 𝐿𝑟 + _𝑣𝐿𝑣 + _𝑐𝐿𝑐 (20)

Where _𝑣 and _𝑐 correspond to the weights of loss 𝐿𝑣 and 𝐿𝑐 ,
respectively.

Learning Probabilistic Box Embeddings for Effective and Efficient Ranking WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Figure 2: Values of probability p on different |𝐼𝑞 |
|𝐼 | and dimen-

sion d.

5 INDEXING AND SEARCHING METHODS
In this section, we first analyze how to design an efficient indexing
and searching methods based on the learned box embeddings. Then
we introduce the details of index building and search algorithm
(Algorithm 1).

5.1 Analysis
After the training stages, we can obtain the learned box embed-
dings of every query 𝑞 ∈ 𝑄 and item 𝑖 ∈ 𝐼 through the model
inference. Theoretically, under the assumption of independent ran-
dom distribution, query box 𝑏𝑜𝑥 (𝑞) have the average probability
𝑝 to overlap with each item box 𝑏𝑜𝑥 (𝑖) in each dimension (i.e. the
average probability 1 − 𝑝 to disjoint). Through the joint filtering of
all 𝑑 dimension, the expected size of the remaining relevant item
set 𝐼𝑞 follows this equation:

|𝐼 |𝑝𝑑 = |𝐼𝑞 | ⇔ 𝑝 =

(|𝐼𝑞 |
|𝐼 |

) 1
𝑑

(21)

In practice, as shown in Figure 2, the embedding size in learning
process usually make 𝑝 close to 1, which means that in single dimen-
sion, the items disjoint with the query are the minority. Inspired
by this finding, we can obtain the relevant items by filtering the
irrelevant items in each dimension.

5.2 Building Indexing
As mentioned above, the box representations of irrelevant items are
usually disjoint with query box 𝑏𝑜𝑥 (𝑞) on at least one dimension.
As shown in Figure 3, for a single dimension 𝑗 , one of the following
situations happens,

• The lower bound 𝑞𝑙
𝑗
of query box 𝑏𝑜𝑥 (𝑞) is larger than the

upper bound 𝑖𝑢
𝑗
of item box 𝑏𝑜𝑥 (𝑖).

• The upper bound 𝑞𝑢
𝑗
of query box 𝑏𝑜𝑥 (𝑞) is smaller than the

lower bound 𝑖𝑙
𝑗
of item box 𝑏𝑜𝑥 (𝑖).

As shown in the step 1 of Algorithm 1, for item set 𝐼 and each
dimension 𝑗 , we sort the items in 𝐼 based on the lower and upper

Figure 3: The situations of disjointedness in single dimen-
sion.

boundaries of box representation respectively. The sorted item sets
[𝐼]𝑙𝑗 and [𝐼]𝑢𝑗 are given as,

[𝐼]𝑙𝑗 =
{
𝑖𝑙𝑗,1, ..., 𝑖

𝑙
𝑗, |𝐼 |

}
(22)

[𝐼]𝑢𝑗 =
{
𝑖𝑢𝑗,1, ..., 𝑖

𝑢
𝑗, |𝐼 |

}
(23)

The sorted lower and upper bounds are formalized as below,

[𝑏𝑜𝑥 (𝐼)]𝑙𝑗 =
{(
𝑖𝑙𝑗,1

)𝑙
𝑗
, ...,

(
𝑖𝑙
𝑗, |𝐼 |

)𝑙
𝑗

}
(24)

[𝑏𝑜𝑥 (𝐼)]𝑢𝑗 =
{(
𝑖𝑢𝑗,1

)𝑢
𝑗
, ...,

(
𝑖𝑢
𝑗, |𝐼 |

)𝑢
𝑗

}
(25)

In our model, these sorted sets are used to serve as box embedding-
based index.
Time Complexity. By adopting the classical sorting algorithm
on 𝑑 dimension box embeddings of |𝐼 | items, the time cost can be
inferred as 𝑂 (𝑑 |𝐼 | log |𝐼 |).

5.3 Searching Relevant Items
As shown in the step 2-3 of Algorithm 1, given the query box
𝑏𝑜𝑥 (𝑞), we initialize a bitarray 𝐵, which are valued by 1 and have a
length of |𝐼 |. Bitarray 𝐵 is utilized to mark whether the item box of
𝑖 ∈ 𝐼 overlaps with 𝑏𝑜𝑥 (𝑞). 𝐵 [𝑖] = 1 indicates that item 𝑖 overlaps
with 𝑞 and otherwise 𝐵 [𝑖] = 0.

5.3.1 Binary search. For each dimension 𝑗 , the lower bound 𝑞𝑙
𝑗

and upper bound 𝑞𝑢
𝑗
of the query box are used as the key in the

binary search on the sorted upper bounds [𝑏𝑜𝑥 (𝐼)]𝑢𝑗 and lower
bound [𝑏𝑜𝑥 (𝐼)]𝑙𝑗 of the item sets 𝐼 , respectively, which will return
two position indexes 𝑒+ and 𝑒− to filter the irrelevant items before
𝑒+ and after 𝑒−. We can formalize the filtered irrelevant item set
𝐼
𝑞−
𝑗

as below,

𝐼
𝑞−
𝑗

=

{
𝑖𝑢𝑗,1, ..., 𝑖

𝑢
𝑗,𝑒+

}
∪

{
𝑖𝑙𝑗,𝑒− , ..., 𝑖

𝑙
𝑗, |𝐼 |

}
(26)

Time Complexity. The general binary search algorithm on 𝑑
dimension box embeddings of |𝐼 | sorted items requires the time
cost 𝑂 (𝑑 log |𝐼 |).

5.3.2 Bit-level Operation. After the binary search on all 𝑑 di-
mension, the final irrelevant item set are remained as,

𝐼𝑞− =

{
𝐼
𝑞−
𝑗

}
, 𝑗 = 1, ..., 𝑑 (27)

As shown in the step 4-5 of Algorithm 1, for each irrelevant item in
𝐼𝑟𝑟𝑞 , we check the value of corresponding position in the bitarray
𝐵, and update the value to 0 if the current value are 1. Then we can
visit the whole bitarray 𝐵 to return the relevant items 𝐼𝑞 , which has
the value 1.

𝐼𝑞+ =
{
𝑖 | 𝐵 [𝑖] = 0,∀𝑖 ∈ 𝑁 𝑖 < |𝐼 |

}
(28)

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Lang Mei, Jiaxin Mao, Gang Guo, and Ji-Rong Wen

Time Complexity. The time cost contains three parts:

• Checking operation: The time cost is decided by the expected
size of 𝐼𝑟𝑟𝑞 , which will spend,

𝑂 (𝑑 |𝐼 | (1 − 𝑝)) ⇔ 𝑂

(
𝑑 |𝐼 |

(
1 −

(|𝐼𝑞 |
|𝐼 |

) 1
𝑑

))
(29)

• Updating operation: The repeated updating are not needed,
and the time cost depends on the size of irrelevant item set,
which spend 𝑂

(
|𝐼 | − |𝐼𝑞 |

)
.

• Visiting operation: Visiting the |𝐼 |-length bitarray 𝐵 and
finding the position with value 1 will cost 𝑂 (|𝐼 |).

Note that such operations are all bit operations, and can be pro-
cessed very fast in practice.

5.4 Calculating Scores of Relevant Items
As shown in the step 6 of Algorithm 1, after returning the relevant
item set 𝐼𝑞 , we can infer the scores 𝑓 (𝑞, 𝑖) through inputing the
query box 𝑏𝑜𝑥 (𝑞) and each item box 𝑏𝑜𝑥 (𝑖) , 𝑖 ∈ 𝐼𝑞 to our model.
The final ranking list are produced according to the scores.
Time Complexity. The above calculation on 𝑑 dimension box
embeddings of a query and |𝐼𝑞 | relevant items requires 𝑂

(
𝑑 |𝐼𝑞 |

)
time .

5.5 Discussion
We also considered using the spatial index methods that support
range query (e.g. R-tree [13], R*-tree [2], X-tree [3], and Priority
R-tree [1]) for this problem. These methods can find the geom-
etry objects efficiently and achieve a sublinear time complexity.
However, existing spatial index usually suffer from the curse of
dimensionality and the searching efficiency can drop to 𝑂 (𝑑 |𝐼 |)
with the increase of dimension (𝑑 > 10). Such problems limit the
application of high dimensional spatial index, so we don’t adopt
the spatial index as the indexing methods of box embeddings.

6 EXPERIMENTS
We conduct experiments on the two tasks of document ranking,
recommendation to demonstrate the improvement in both effec-
tiveness and efficiency.

6.1 Passage Retrieval
6.1.1 Datasets and Metrics. We adopt the corpus of the passage
retrieval task in TREC 2019 Deep Learning (DL) Track [4], which
contains 8,841,823 passages, 502,939 training queries, and 6,980 test
queries. For effectiveness, we use the widely-used metrics MRR@10
and Recall@100 to evaluate the top-ranking performance. For effi-
ciency, we report the ratios of remained items

|𝐼𝑞+ |
|𝐼 | , and the average

latency of the searching process.

6.1.2 Baselines.
Sparse Retrieval & Cascade IR. We report several important
results according to the TREC [4], the leaderboard on MSMARCO
dataset [10, 27] and cascade systems: BM25 (classic traditional re-
trieval method) [39], DeepCT (BERT weighted BM25) [5], the best
BERT model [29], which use BM25 as the first-stage retriever.

Algorithm 1 Indexing and searching methods based on box em-
beddings.
Input: |𝐼 |-length bitarray 𝐵 with initial value 1, 𝑑-dimensional

lower and upper boundaries of all |𝐼 | item boxes and a query
box of 𝑞.

Output: The scores of |𝐼𝑞 | relevant items.
1: Sort the lower and upper boundaries of all |𝐼 | item boxes.
2: Search the irrelevant items of query 𝑞 on each dimension, based

on the sorted boundaries of |𝐼 | item boxes.
3: Merge the irrelevant items of query 𝑞 on all 𝑑 dimension.
4: Check and update the 1-value in bitarray 𝐵 to 0, according to

the index of the merged irrelevant items.
5: Visit bitarray 𝐵 to find the |𝐼𝑞 | relevant items valued by 1.
6: Compute the scores of the |𝐼𝑞 | relevant items.

Dense Retrieval. There are several baselines of dense retrieval,
which the difference between them mainly lie in the negative sam-
pling strategy of training.

• Random negative sampling: Rand Neg [15] randomly sam-
ples negatives from the entire corpus, In-Batch Neg [21]
utilize other queries’ relevant documents in the same mini-
batch as negative documents to extend the training data.

• Static hard negative sampling: BM25 Neg [11] uses the BM25
top-retrieved results as the negative documents, ANCE [38]
refreshes the document index and retrieves the static hard
negatives under the parameters of current model.

• Hybrid negative sampling: STAR [40] utilizes both random
sampling negatives and the static hard negatives to train
model, and reuses the document embeddings in the same
batch.

6.1.3 Implementation Details. Following the settings in [40],
all dense retrieval models adopt the RoBERTabase [24] model as
the encoder of queries and documents. The inner product is used
to calculate the relevance score, and we adopt the Faiss [19] to
perform the efficient searching. We build the index of the accurate
inner product (IndexFlatIP), and process the exact search to find
the nearest vectors, which is aligned with the exact search in our
methods that find the overlapped boxes. The top-200 documents
are used as the hard negatives. More details have been elaborated
in [40].

For box retrieval model, we adopt the same training settings as
STAR, except utilizing two feed-forward neural networks tomap the
768-dimensional dense vectors to 384-dimensional minimum and
maximum coordinates of the box embeddings. We compute the rele-
vance score based on box representations. We test the 𝛽 in Gumbel-
Box ∈ [0.001, 0.01, 0.1, 1], _𝑣 weight of loss 𝐿𝑣 ∈ [0.001, 0.01, 0.1, 1],
and _𝑐 weight of loss 𝐿𝑐 ∈ [0.01, 0.1, 1], margin value _ = 1. Af-
ter obtaining the learned box embeddings, we build the index and
search the relevant documents as mentioned above.

We use Numba 1 to parallelize our searching process on different
dimensions, and calculate the scores of the relevant documents by
Pytorch. In practice, Numba has no bit-level data type, we adopt the
Numba’s smallest data type np.bool (size = np.int8). As the major

1http://numba.pydata.org/

Learning Probabilistic Box Embeddings for Effective and Efficient Ranking WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 1: Metrics of all baselines on MSMARCO Dev Passage. We use paired t-test with p-value threshold of 0.05 on the test
dataset. ∗ (or #) indicates significant difference between baselines and Box+STAR (or Box+STAR+Constraint).

Models MRR@10 Recall@100 Latency (ms/Per Query) ratios |𝐼𝑞 |
|𝐼 | (%)

Sparse Retrieval & Cascade IR - -
BM25 0.187∗# 0.670∗# 36 -

Best TREC Trad Retrieval 0.240∗# - - -
Best DeepCT 0.243∗# 0.760∗# - -
BERT Reranker 0.365∗# - - -
Dense Retrieval 293
In-Batch Neg 0.264∗# 0.837∗# - -
Rand Neg 0.301∗# 0.853∗# - -
BM25 Neg 0.309∗# 0.813∗# - -
ANCE 0.338 0.862 - -
STAR 0.340 0.867 - -

Box Retrieval - -
Box + STAR 0.3407 (+0.2%) 0.859 (-0.9%) 2783 40.27

Box + STAR + Constraint 0.3418 (+0.59%) 0.856 (-1.27%) 137 0.93

bottleneck of retrieval lies in the memory access step, we believe
that much more improvement on efficiency can be brought if we
use the 8 times smaller bit-level data type to process the searching
step.

Noticing that in the test step, all the calculation are processed
on the CPU.

6.1.4 Results and Analysis. Experimental results are given in
Table 1.
Effectiveness. We can see that under the same negative sampling
methods STAR, box embedding-based models achieve better rank-
ing performance than all the vector embedding-based models, indi-
cating that the box embedding models have a good representation
ability to capture semantic diversity and uncertainty in document
ranking tasks. We also observe a little drop in the Recall@100 mea-
sure. This is because that our box embedding model may filter some
false negative documents in searching stage and lead to a drop in
recall.
Efficiency.We can observe that compared with the dense retrieval
models, we achieve the better average retrieval latency, because we
can filter a large proportion of irrelevant documents (> 99%) with
fast bit-level operations. It demonstrate efficiency of the proposed
box embedding-based indexing methods.
Ablation Study. We investigate the effect of the overlapping con-
straints on filtering the irrelevant documents and improving the
ranking performance. From the results we can see that , without
the constraints, a substantial proportion of the documents (about
40%) will not be filtered out by the indexing and searching algo-
rithm, which results in a unacceptable retrieval latency (2.783s
per query). We also note that the constraints slightly improve the
ranking performance (from a MRR@10 of 0.3407 to 0.3418). This is
because the constraints can help the model better distinguish the
positive and negative documents.

6.2 Recommendation
6.2.1 Datasets and Metrics. We experiment with two publicly
available datasets: MovieLens-1M, andAmazon books. The statistics

of the two datasets are summarized in Table 1. For effectiveness, we
we report the NDCG@10, and Hit@10 of the top-retrieved results
on both the 100 random sampled negative items and the full item
set. For efficiency, we report the ratios of remained items

|𝐼𝑞+ |
|𝐼 | , and

the average latency of the recommendation process.

Table 2: Statistics of datasets in recommendation task.

Dataset #User #Item #Interaction
MovieLens-1M 6,040 3,706 1,000,209
Amazon Books 351,356 393,801 6,271,511

6.2.2 Baselines. We compare our box embedding model with the
following three representative two-tower models.

• DSSM [16] employs vector embeddings to represent users
and items. The relevance score is calculated based on the
inner product between the user vector and the item vector.

• GRU4REC [14] applies GRU network to model user interac-
tion sequence for session-based recommendation.

• SASREC [20] is a self-attention based sequential recommen-
dation model, which uses the multi-head attention mecha-
nism to recommend the next item.

6.2.3 Implementation Details. We implement the baselines and
our model using the Recbole [42], a python package that contains
many advanced recommended models. We follow the training set-
tings in [42] including the automatic parameter fine-tuning. For pre-
processing, we filter the two datasets that retained only users with
at least 20 interactions. For training the vector embedding-based
model, we encode the features of users and items to 128-dimensional
vectors. We adopt the Faiss to perform the efficient searching, and
build the index of the accurate inner product (IndexFlatIP). More
details have been demonstrated in [42].

For box embedding-based model, we utilize two feed-forward
neural networks tomap the 128-dimensional vectors to 128-dimensional

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Lang Mei, Jiaxin Mao, Gang Guo, and Ji-Rong Wen

Table 3: Metrics of all baselines on MovieLens by testing random 100 negative items and full items. We use paired t-test
with p-value threshold of 0.05 on the test dataset. +, * and # indicate significant difference over DSSM, GRU4Rec and SASrec,
respectively.

Models random 100 full
NDCG@10 Hit@10 NDCG@10 Hit@10 Latency (ms) ratios |𝐼𝑞 |

|𝐼 | (%)
Vector Framework 0.24

DSSM 0.2238 0.4142 0.0203 0.0441 - -
GRU4Rec 0.5147 0.7760 0.0989 0.1972 - -
SASrec 0.5347 0.7887 0.1018 0.2005 - -

Box Framework
Box + DSSM + Constraint 0.3652+ (+63.2%) 0.6368+ (+53.7%) 0.0374+ (+84.2%) 0.0709+ (+60.8%) 0.19 5.3

Box + GRU4rec + Constraint 0.5377∗ (+4.7%) 0.7835∗ (+1.0%) 0.1072∗ (+8.4%) 0.2116∗ (+7.3%) 0.15 4.5
Box + SASRec + Constraint 0.5438# (+2.6%) 0.7960# (+0.9%) 0.1094# (+7.5%) 0.2139# (+6.7%) 0.21 5.6

Table 4: Metrics of all baselines on Amazon Books by testing random 100 negative items and full items. We use paired t-test
with p-value threshold of 0.05 on the test dataset. +, * and # indicate significant difference over DSSM, GRU4Rec and SASrec,
respectively.

Models random 100 full
NDCG@10 Hit@10 NDCG@10 Hit@10 Latency (ms) ratios |𝐼𝑞 |

|𝐼 | (%)
Vector Framework 2.6

DSSM 0.3650 0.4210 0.0032 0.0064 - -
GRU4Rec 0.6095 0.8533 0.0114 0.0302 - -
SASrec 0.6288 0.8707 0.0119 0.0316 - -

Box Framework
Box + DSSM + Constraint 0.4044+ (+10.8%) 0.5332+ (+26.7%) 0.005+ (+56.3%) 0.0075+ (+17.2%) 1.2 3.4

Box + GRU4Rec + Constraint 0.6159∗ (+1.0%) 0.8604∗ (+0.8%) 0.0125∗ (+9.6%) 0.0325∗ (+7.6%) 0.9 2.6
Box + SASRec + Constraint 0.6341# (+0.8%) 0.8797# (+1.0%) 0.0129# (+8.4%) 0.0337# (+6.6%) 1.4 4.9

box embeddings. We compute the relevance score based on box
representations. We test the 𝛽 in GumbelBox ∈ [0.001, 0.01, 0.1, 1],
_𝑣 weight of loss 𝐿𝑣 ∈ [0.001, 0.01, 0.1, 1], and _𝑐 weight of loss 𝐿𝑐
∈ [0.01, 0.1, 1], margin value _ = 1.

We adopt the same testing methods as document ranking tasks.

6.2.4 Results and Analysis. Experimental results are given in
Table 3 and Table 4.
Effectiveness. We can see that under the same baseline models,
box embedding framework can enhance the ranking performance,
demonstrating a superior representation ability of box embed-
dings in recommendation tasks. For simple models like DSSM, our
framework gain more improvement. For the sequential models
GRU4RREC and SASREC, we also observe a consistent improve-
ment in ranking performance. However, as these two models al-
ready achieved a good performance, the relative improvement is
not as large as the improvement over DSSM.
Efficiency.We can observe that comparedwith the three two-tower
models, we achieve the better average latency for single query,
which benefit from the filtering operation in searching step, which
again demonstrate the efficiency of the box embedding models and
the proposed indexing and searching algorithm.

7 CONCLUSION
In this paper, we propose to improve effectiveness and efficiency
for ranking tasks by incorporating the recently proposed proba-
bilistic box embeddings. For effectiveness, the box embeddings can
better represent the semantic diversity and uncertainty. The over-
lapping constraints are introduced to enhance the model to better
distinguish the relevant and irrelevant items. After obtaining the
learning box embeddings, a box embedding-based indexing method
are designed, which can filter irrelevant items and reduce the visit-
ing times without losing the relevance accuracy in top-retrieved
results. We conduct experiments on real-world datasets of ranking
tasks. The experimental results show that the proposed method can
outperform existing vector embedding-based approaches both in
effectiveness and efficiency.

ACKNOWLEDGMENTS
This research was supported by the Natural Science Foundation of
China (61902209, U2001212), and Beijing Outstanding Young Sci-
entist Program (NO. BJJWZYJH012019100020098) and Intelligent
Social Governance Platform, Major Innovation & Planning Interdis-
ciplinary Platform for the "Double-First Class" Initiative, Renmin
University of China.". We thank Zhewei Wei and Feng Zhang from
the Renmin University of China for the discussion on the efficient
indexing method.

Learning Probabilistic Box Embeddings for Effective and Efficient Ranking WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] Lars Arge, Mark De Berg, Herman Haverkort, and Ke Yi. 2008. The priority

R-tree: A practically efficient and worst-case optimal R-tree. ACM Transactions
on Algorithms (TALG) 4, 1 (2008), 1–30.

[2] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-tree: An efficient and robust access method for points and rectangles.
In Proceedings of the 1990 ACM SIGMOD international conference on Management
of data. 322–331.

[3] Stefan Berchtold, Daniel A Keim, and Hans-Peter Kriegel. 1996. The X-tree: An
index structure for high-dimensional data. In Very Large Data-Bases. 28–39.

[4] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M
Voorhees. 2020. Overview of the trec 2019 deep learning track. arXiv preprint
arXiv:2003.07820 (2020).

[5] Zhuyun Dai and Jamie Callan. 2019. Context-aware sentence/passage term
importance estimation for first stage retrieval. arXiv preprint arXiv:1910.10687
(2019).

[6] Shib Sankar Dasgupta, Michael Boratko, Dongxu Zhang, Luke Vilnis, Xiang Lor-
raine Li, and Andrew McCallum. 2020. Improving Local Identifiability in Proba-
bilistic Box Embeddings. arXiv preprint arXiv:2010.04831 (2020).

[7] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab SMirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry. 253–262.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[9] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. 2018. Hyperbolic en-
tailment cones for learning hierarchical embeddings. In International Conference
on Machine Learning. PMLR, 1646–1655.

[10] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit Exact Lexical
Match in Information Retrieval with Contextualized Inverted List. arXiv preprint
arXiv:2104.07186 (2021).

[11] Luyu Gao, Zhuyun Dai, Tongfei Chen, Zhen Fan, Benjamin Van Durme, and Jamie
Callan. 2020. Complementing lexical retrieval with semantic residual embedding.
arXiv preprint arXiv:2004.13969 (2020).

[12] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization for approximate nearest neighbor search. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2946–2953.

[13] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.
In Proceedings of the 1984 ACM SIGMOD international conference on Management
of data. 47–57.

[14] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[15] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin,
Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-
based retrieval in facebook search. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2553–2561.

[16] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management. 2333–2338.

[17] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[18] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. arXiv preprint arXiv:1702.08734 (2017).

[19] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with gpus. IEEE Transactions on Big Data (2019).

[20] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[21] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. arXiv preprint arXiv:2004.04906 (2020).

[22] Alice Lai and Julia Hockenmaier. 2017. Learning to predict denotational prob-
abilities for modeling entailment. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics: Volume 1, Long
Papers. 721–730.

[23] Xiang Li, Luke Vilnis, Dongxu Zhang, Michael Boratko, and Andrew McCallum.
2018. Smoothing the geometry of probabilistic box embeddings. In International
Conference on Learning Representations.

[24] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[25] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[26] Lang Mei, Jun He, Hongyan Liu, and Xiaoyong Du. 2019. Latent path connected
space model for recommendation. In Asia-Pacific Web (APWeb) and Web-Age
Information Management (WAIM) Joint International Conference on Web and Big
Data. Springer, 163–172.

[27] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A human generated machine reading
comprehension dataset. In CoCo@ NIPS.

[28] Maximillian Nickel and Douwe Kiela. 2017. Poincaré embeddings for learning
hierarchical representations. Advances in neural information processing systems
30 (2017), 6338–6347.

[29] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

[30] Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020. Query2box: Reasoning
over knowledge graphs in vector space using box embeddings. arXiv preprint
arXiv:2002.05969 (2020).

[31] Stephen E Robertson and Steve Walker. 1994. Some simple effective approxi-
mations to the 2-poisson model for probabilistic weighted retrieval. In SIGIR’94.
Springer, 232–241.

[32] Malcolm Slaney and Michael Casey. 2008. Locality-sensitive hashing for finding
nearest neighbors [lecture notes]. IEEE Signal processing magazine 25, 2 (2008),
128–131.

[33] Sandeep Subramanian and Soumen Chakrabarti. 2018. New embedded repre-
sentations and evaluation protocols for inferring transitive relations. In The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval. 1037–1040.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[35] Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. 2015. Order-
embeddings of images and language. arXiv preprint arXiv:1511.06361 (2015).

[36] Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew McCallum. 2018. Probabilistic
embedding of knowledge graphs with box lattice measures. arXiv preprint
arXiv:1805.06627 (2018).

[37] Luke Vilnis and Andrew McCallum. 2014. Word representations via gaussian
embedding. arXiv preprint arXiv:1412.6623 (2014).

[38] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate nearest neighbor nega-
tive contrastive learning for dense text retrieval. arXiv preprint arXiv:2007.00808
(2020).

[39] Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini: Reproducible ranking
baselines using Lucene. Journal of Data and Information Quality (JDIQ) 10, 4
(2018), 1–20.

[40] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.
2021. Optimizing Dense Retrieval Model Training with Hard Negatives. arXiv
preprint arXiv:2104.08051 (2021).

[41] Shuai Zhang, Huoyu Liu, Aston Zhang, Yue Hu, Ce Zhang, Yumeng Li, Tan-
chao Zhu, Shaojian He, and Wenwu Ou. 2021. Learning User Representations
with Hypercuboids for Recommender Systems. In Proceedings of the 14th ACM
International Conference on Web Search and Data Mining. 716–724.

[42] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Kaiyuan Li, Yushuo Chen,
Yujie Lu, Hui Wang, Changxin Tian, Xingyu Pan, Yingqian Min, Zhichao Feng,
Xinyan Fan, Xu Chen, Pengfei Wang, Wendi Ji, Yaliang Li, Xiaoling Wang, and
Ji-Rong Wen. 2020. RecBole: Towards a Unified, Comprehensive and Efficient
Framework for Recommendation Algorithms. arXiv preprint arXiv:2011.01731
(2020).

APPENDIX A
Lemma. The overlapping volume function𝑉 (𝑏𝑜𝑥 (𝐴 ∧ 𝐵)) is a ker-
nel function.

Proof. First we begin with the situation that 𝐾 = 1.

𝑉 (𝑏𝑜𝑥 (𝐴 ∧ 𝐵)) = max
(
min

(
𝐴𝑢1 , 𝐵

𝑢
1
)
−max

(
𝐴𝑙1, 𝐵

𝑙
1

)
, 0

)
(30)

Let 𝜙 (𝑥, 𝑎, 𝑏) be the mapping functions defined as:

𝜙 (𝑥, 𝑎, 𝑏) =
{

1, 𝑖 𝑓 𝑎 ≤ 𝑥 ≤ 𝑏
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (31)

𝑉 (𝑏𝑜𝑥 (𝐴 ∧ 𝐵)) function can associate with the inner product mea-
sure, which is a kernel function:

𝑉 (𝑏𝑜𝑥 (𝐴 ∧ 𝐵)) =
∫ +∞

−∞
𝜙

(
𝑥,𝐴𝑙1, 𝐴

𝑢
1

)
·𝜙

(
𝑥, 𝐵𝑙1, 𝐵

𝑢
1

)
𝑑𝑥 (32)

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Lang Mei, Jiaxin Mao, Gang Guo, and Ji-Rong Wen

Considering that the product of two kernel function is still kernel
function:

(𝐾1 ⊗ 𝐾2)
(
(𝑥1, 𝑥2) ,

(
𝑥
′
1, 𝑥

′
2

))
= 𝐾1

(
𝑥1, 𝑥

′
1

)
· 𝐾2

(
𝑥2, 𝑥

′
2

)
(33)

we can infer that for dimension 𝐾 > 1, 𝑉 (𝑏𝑜𝑥 (𝐴 ∧ 𝐵)) is still
kernel function.

𝑉 (𝑏𝑜𝑥 (𝐴 ∧ 𝐵)) =
𝐾∏
𝑘=1

𝑉 (𝑏𝑜𝑥 (𝐴𝑘 ∧ 𝐵𝑘)) (34)

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Vector Embeddings
	3.2 Probabilistic Box Embeddings

	4 Learning
	4.1 Formulation
	4.2 Training for Ranking
	4.3 Overlapping Constraints for More Efficient Indexing and Retrieval

	5 Indexing and Searching Methods
	5.1 Analysis
	5.2 Building Indexing
	5.3 Searching Relevant Items
	5.4 Calculating Scores of Relevant Items
	5.5 Discussion

	6 Experiments
	6.1 Passage Retrieval
	6.2 Recommendation

	7 Conclusion
	Acknowledgments
	References

