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Distribution Distance Regularized Sequence
Representation for Text Matching

in Asymmetrical Domains
Weijie Yu , Chen Xu, Jun Xu , Member, IEEE, Liang Pang, and Ji-Rong Wen

Abstract—Projecting the input text pair into a common semantic
space where the matching function can be readily learned is an
essential step for asymmetrical text matching. In the practice,
it is often observed that the feature vectors from asymmetrical
texts show a tendency to be gradually undistinguishable in the
semantic space as the model is trained. However, the phenomenon
is overlooked in existing studies. As a result, the feature vectors are
constructed without any regularization, which inevitably hinders
the learning of the downstream matching functions. In this paper,
we first exploit the phenomenon and propose DDR-Match, a novel
matching framework tailored for asymmetrical text matching.
Specifically, in DDR-Match, a distribution distance-based regular-
izer is devised to accelerate the fusion of sequence representations
corresponding to different domains in the semantic space. Then,
we provide three instances of DDR-Match and make a comparison
among them. DDR-Match is compatible with existing text matching
methods by incorporating them as the underlying matching model.
Four popular text matching methods are exploited in the paper.
Extensive experimental results based on five publicly available
benchmarks showed that DDR-Match consistently outperformed
its underlying methods.

Index Terms—Text matching, sequence representation, natural
language processing.

I. INTRODUCTION

A SYMMETRICAL text matching, which computes the rel-
evance score between textual documents from different
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domains, is a widely researched area in natural language pro-
cessing (NLP) and information retrieval (IR). The wide interest
of asymmetrical text matching covers a broad spectrum of real-
world applications. For example, in natural language inference
(NLI), text matching is used to determine whether a hypothesis
is an entailment, contradiction, or neutral given a premise [2].
In question answering (QA), text matching is used to determine
whether an answer can answer the given question [3], [4]. In
IR, text matching is widely used to measure the relevance of a
document to a query.

Typical Deep Neural Network-based approaches for asym-
metrical text matching are projecting the text sequences from
different domains into a common latent space as feature vec-
tors where the matching functions can be readily defined and
learned, since these feature vectors have identical dimensions.
This type of approach covers a wide range of existing popular
matching models, such as DSSM [5], DecAtt [6], RE2 [7],
and Sentence-BERT [8]. In real-world matching practices, it
is often observed that learning a matching model is a fusion
process of the projected sequence vectors in the semantic space.
For example, Fig. 1 depicts the distribution of the feature vec-
tors generated by RE2. During the training of RE2 on SciTail
dataset [9], it is observed that at the early stage of the training,
the feature vectors corresponding to different domains are sepa-
rately distributed (according to the visualization by tNSE [10])
(Fig. 1(a)). As the model is trained, these separated feature
vectors gradually mix together and finally be indistinguishable
(Fig. 1(b) and (c)).

The phenomenon can be explained as follows. Given two
text sequences from asymmetrical domains (e.g., NLI), the
first sequence (e.g., premise) and the second sequence (e.g.,
hypothesis) are heterogeneous and there exists a lexical gap that
needs to be bridged between them [11], similar to that of learning
cross-modal matching model. Existing studies [12]–[15] have
shown that it is critical for the projection network to generate
modal-invariant features. That is, the global distributions of
feature vectors should be similar in a common subspace such
that their origins cannot be discriminated. This goal is based on
the assumption that information concerning modality is noise
for tasks requiring only the semantic content of the input. The
invariant mappings aim at reducing the modality gap and help
capture underlying commonalities and correlated features as
aligned projections on the shared subspace. The phenomenon is
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Fig. 1. t-SNE visualization of the projected feature vectors, based on the RE2 models trained on SciTail dataset. Subfigure (a), (b), and (c) respectively illustrates
the vector distributions at epochs 1, 10, and 20. The blue ‘X’ and red ‘Y’ correspond to the premise and the hypothesis respectively.

not unique but recurs in the experiments based on other matching
models and other datasets.

However, existing text matching models ignore this phe-
nomenon and lack constraints or regularizations to ensure that
the projected vectors are well distributed for matching. To ad-
dress this issue, we present a novel learning to match frame-
work, called DDR-Match, to explicitly ensure and accelerate
the fusion of the sequence representations corresponding to
different domains. Specifically, DDR-Match consists of three
components: (1) a feature projection component which jointly
projects each pair of text sequences into a latent semantic space,
as a pair of feature vectors; (2) a regularizer component which
estimates the distance between two distributions corresponding
to two sequence representations from asymmetrical domains; (3)
a matching component which conducts the matching, also on the
same set of projected features. To investigate the effectiveness
of the proposed framework, we provide three instances of DDR-
Match: the Jensen-Shannon divergence version, the Max Mean
Discrepancy version, and the Wasserstein distance version.

The training of DDR-Match amounts to repeatedly interplays
between two branches: a regularizer branch that estimates the
distribution distance between two sequence representations, and
a matching branch that minimizes the distribution distance of
sequence representations regularized matching loss. In this way,
the minimization of the loss function leads to a learning method
not only to minimize the matching loss, but also to well distribute
the feature vectors in the semantic space for better matching.

To summarize, this paper makes the following main contri-
butions:
� We highlight the critical importance of the global distri-

bution of the projected feature vectors in matching texts
between asymmetrical domains, which has not yet been
seriously studied in existing models.

� We propose a new learning to match framework called
DDR-Match, in which the text matching model is learned
by minimizing distribution distance of sequence represen-
tations regularized matching loss. Moreover, we provide
three types of instances of DDR-Match and make a com-
parison among these instances from the theoretical and the
practical perspectives.

� We conducted empirical studies on five large-scale bench-
marks and incorporated four popular text matching meth-
ods into DDR-Match as its underlying models. Experimen-
tal results demonstrated that DDR-Match achieved better
performance than its underlying models across datasets.
Extensive analysis showed the effects of the sequence
representations distribution distance-based regularizer in
terms of guiding the distributions of feature vectors and
improving the matching accuracy.

II. RELATED WORK

In this section, we first review the sequence representation
in text matching, then introduce three types of measures of
distribution distance including the Jensen–Shannon divergence,
the Max Mean Discrepancy, and the Wasserstein distance and
their applications.

A. Sequence Representation in Text Matching

Sequence representation lies in the core of text match-
ing. Early works inspired by Siamese architecture assign re-
spective neural networks to encode two input sequences into
high-level representations. For example, DSSM [5] is one of
the classic representation-based matching approaches to text
matching which uses feed-forward neural networks to project
a text sequence. To capture the local word-level interaction,
CDSSM [16], ARC-I [17] and CNTN [18] change sequence
encoder to a convolutional neural network which shares pa-
rameters in a fixed size sliding window. To further capture the
long-term dependence of a text sequence, a group of recurrent
neural network based methods were proposed, including RNN-
LSTM [19] and MV-LSTM [20]. Recently, with the help of
attention mechanism [6] and graph neural network, the sequence
representation is obtained by aligning the sequence itself and
the other sequence in the input pairs. For example, CSRAN [21]
performs multi-level attention refinement with dense connec-
tions among multiple levels. DRCN [22] stacks encoding layers
and attention layers, then concatenates all previously aligned
results. RE2 [7] introduces a consecutive architecture based on
augmented residual connection between convolutional layers
and attention layers. These models yield strong performance
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on several benchmarks. MUSE [23] represented the interac-
tion between questions and answers on the semantic relations
graph. To combine the advantages of aforementioned methods,
Enhanced-RCNN [24] first applies BiGRU and CNN to encode
sequence, then utilizes soft attention alignment, concatenation,
and mean/ max pooling to interact sequence representations,
finally exploits the fusion layer to output the prediction. Pre-
trained language models, represented by BERT [25], are also
widely used in text matching tasks. These models first pre-
trained on large corpus, and then can be fine-tuned a specific
text matching task in order to learn domain specific knowledge.

B. Measures of Distribution Distance

1) Jensen–Shannon Divergence (JSD) [26] is a distribution
similarity measurement widely used in natural language process-
ing since is a symmetrized and smoothed version of Kullback-
Leibler divergence. JSD For example, JSD has been used to
compare social media posts from different social groups [27],
[28] or articles from pairs of different years [29], [30], measure
letter distribution difference between two display names from an
individual across Online Social Networks [31], [32]. However,
the Jensen-Shannon divergence is not the true metrics. This
metric does not satisfy the triangle inequality. In this way,
these methods cannot preserve the transitivity to get effective
representations for distributions.

2) Max Mean Discrepancy (MMD) [33] aims at minimizing
the differences of certain statistics between the source and target
distributions. Usually, the statistic can be written as the norm of
the difference between distribution feature means in the repro-
ducing kernel Hilbert space (RKHS). MMD has been widely
applied in the domain adaptation literature. [34]–[36] extended
MMD to comparing distributions in a deep neural network,
by introducing an adaptation layer and an additional domain
confusion loss to learn representations that is both semantically
meaningful and domain invariant. MMD has also been exploited
in many other applications. For example, [37] provided a
comprehensive evaluation setup by comparing graph statistics
such as the degree distribution, clustering coefficient distribution
and motif counts for two sets of graphs based on variants
of MMD. Tran et al. [38] propose a novel application of the
Maximum Mean Discrepancy (MMD) approach to information
retrieval, which attempts to bridge the gap between the global
data distribution and the data distribution for a given individual
enterprise.

3) Wasserstein Distance (WD) [39] is a metric based on
the theory of optimal transport. It gives a natural measure of
the distance between two probability distributions. WD has
been successfully used in the Generative Adversarial Net-
works(GAN) [40] framework. Arjovsky et al. [41] propose
WGAN which uses the Wasserstein-1 metric as a way to improve
the original framework of GAN, to alleviate the vanishing gradi-
ent and the mode collapse issues. WD has also been explored to
learn the domain-invariant features in domain adaptation tasks.
For example, Chen et al. [39] propose to minimize the WD
between the feature distributions of the source and the target
domains, yielding better performance and smoother training

than the standard training method with a Gradient Reversal
Layer [42]. Tolstikhin et al. [43] propose WAE, a generative
model that minimizes a penalized form of the WD between the
model distribution and the target distribution, for modeling the
data distribution. Also, WD has been used in node embedding
for graph data, where each node is related with a distribution
rather than a real vector [44].

Inspired by their success in variant applications, this paper
introduces JSD, MMD, and WD to the asymmetrical text match-
ing, as a regularizer to improve the sequence representations.

III. OUR APPROACH: DDR-MATCH

In this section, we introduce our proposed matching frame-
work DDR-Match. Briefly, DDR-Match consists of the feature
projection component F used to project input sequence pair
to the common semantic space; the regularizer component G
used to compute the distribution distance between sequence
representations; the matching component G used to match the
sequence representations.

A. Model Architecture

Suppose that we are given a collection of N instances of
sequence-sequence-label triples: D = {(Xi, Yi, zi)}Ni=1 where
Xi ∈ X , Yi ∈ Y , and zi ∈ Z respectively denote the first se-
quence, the second sequence, and the label indicating the rela-
tionship of Xi and Yi.

As shown in Fig. 2, DDR-Match consists of three components:
1) The Feature Projection Component: Given a sequence pair

(X,Y ), it is first processed by the feature projection component
F to map sequences to high dimensional feature vectors in the
semantic space,

[hX ,hY ] = F (X,Y ), (1)

where the feature projection function F outputs a pair of K-
dimensional feature vectors hX and hY in the semantic space.
We suppose that F is a neural network with a set of parameters
θF and all the parameters in θF are sharing for X and Y .

2) The Matching Component: The output vectors from the
feature projection component F are then fed to the matching
component M in order to output the predicted label ẑ

ẑ = M([hX ,hY ]), (2)

We suppose that M is also a neural network with a set of
parameters θM .

3) The Regularizer Component: Given two sets of the pro-
jected feature vectors hX and hY , the regularizer component
estimates the distribution distance between PX

F and PY
F , we

denote PX
F and PY

F are two distributions defined over the two
groups of feature vectors hX and hY respectively.

PX
F � P

(
hX |[hX ,hY ] = F (X,Y ) ∧ (X,Y ) ∼ X × Y) ,

PY
F � P

(
hY |[hX ,hY ] = F (X,Y ) ∧ (X,Y ) ∼ X × Y) ,

(3)

where ‘∼’ means that the pairs (X,Y ) are sampled from the
joint space X × Y . There are several methods to estimate the
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Fig. 2. DDR-Match architecture. F takes text sequences as input and outputs the sequence representations, G takes sequence representations as input and outputs
the distance between the sequence representation distributions, M takes sequence representations as input and outputs the label prediction.

distribution distance between PX
F and PY

F and different estima-
tions lead to different settings of G. If G is a neural network, we
denote the involving parameters in G as θG.

B. Optimization

To learn the model parameters {θF , θM , θG}, DDR-Match
sets up two training goals: minimizing the distribution distance
between PX

F and PY
F , and minimizing the prediction loss in

terms of the mistakenly predicted matching labels. Therefore,
the training process can be divided into two branches: the
regularizer branch and the matching branch.

In the regularizer branch, the objective term is based on the
estimation of the distribution distance between PX

F and PY
F . If

G is a neural network, the objective term can be written as:

OG(θG|θF , θM ) =
∑

(X,Y )

G(hX ,hY ), (4)

where [hX ,hY ] = F (X,Y ) are the projected feature vectors for
(X,Y ) and G denotes the method which estimates the distance
between hX and hY . Minimizing OG w.r.t. the parameters θF
and θG can achieve the goal of reducing the distance between
PX
F and PY

F in the semantic space. Thus, the regularization loss
is defined as:

LG(θG|θF , θM ) = minOG(θG|θF , θM ), (5)

The matching branch simultaneously updates the matching net-
work M and feature projection network F by seeking the min-
imization of the sequence representation distribution distance-
regularized matching loss:

min
θF ,θM

Lreg = Lm(θF ,θM ) + λ · LG(θG|θF , θM ), (6)

where λ ∈ [0, 1] is a trade-off coefficient to balance the matching
loss and regularizer. The matching loss Lm(θF ,θM ) is defined

as

Lm(θF ,θM ) =
∑

(X,Y,z)∈D
�m(M(F (X,Y )), z), (7)

where �m(·, ·) is the matching loss function defined over each
sequence-sequence-label triplet in the training data. It can be, for
example, the cross-entropy loss that measures the correctness of
the predicted label ẑ = M(F (X,Y )) by the matching network,
compared to the ground truth label z.

The general procedure of DDR-Match is introduced as fol-
lows: DDR-Match takes training set D = (Xi, Yi, zi)

N
i=1 and a

number of hyper-parameters (e.g. the batch size, the learning
rate, etc.) as inputs, and outputs the learned parameters θF and
θM . DDR-Match runs multiple rounds until convergence. At
each round, DDR-Match maintains two branches. The regular-
izer branch distribution distance of the projected features OG

which is constructed based on the sampled sequence pairs (line
4 - line 5). The matching branch estimates the regularized loss
Lreg and updates θF and θM (line 8).

DDR-Match is a general framework for asymmetrical text
matching. Different configurations of the feature projection
component F , the matching component M , and the regularizer
component G lead to different matching models. For F and G,
existing matching methods are easily incorporated into DDR-
Match by means of playing the role as the feature projection
component F and the matching component M . For G, any
method which is capable of explicitly estimating the distance be-
tween distribution pairs can be used as G. As mentioned above,
the regularizer component is the key to the DDR-Match, in the
next section, we will provide three examples of the regularizer
component, achieving three instances of DDR-Match.

IV. ALGORITHMS DERIVED FROM DDR-MATCH

Compared to existing matching methods, the novelty of DDR-
Match mainly comes from the regularizer component. In this
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Algorithm 1: Training Process for JSD-Based and MMD-
Based DDR-Match.

Require: Training set D = {(Xi, Yi, zi)}Ni=1; mini-batch
sizes n; trade-off coefficient λ; learning rates η.

1: repeat
2: Sample a mini-batch {(Xi, Yi, zi)}ni=1 from D
3: � Regularizer branch
4: if JSD-based regularizer is applied then
5: [hX

i ,hX
i ]← F (Xi, Yi), ∀i = 1, . . . , n1

6: OG(θF ) =
∑

(X,Y )[h
X log( hX

hX+hY ) +

hY log( hY

hX+hY )] {Eq. (9)}
7: else if MMD-based regularizer is applied then
8: [hX

i ,hX
i ]← F (Xi, Yi), ∀i = 1, . . . , n1

9: OG(θF ) =
1

m2

∑m
i,j=1 k(xi, xj)−

2
mn

∑m,n
i,j=1 k(xi, yj) +

∑n
i,j=1 k(yi, yj) {Eq. (13)}

10: end if
11: � Matching branch
12: Lreg =

∑n
i=1[�m(M(F (X,Y )), zi) + λOG(θF )

13: {θF ,θM} ← {θF ,θM} − η2 �θF ,θM
Lreg

{Eq. (6)}
14: until convergence
15: return {θF ,θM}

section, we utilize the JSD, MMD, and WD as the regularizer
component of DDR-Match.

A. DDR-Match Model Based on JSD

1) JSD-Based Regularizer: The Jensen–Shannon divergence
between two probabilistic distributions PX

F and PY
F is defined

as:

JSD(PX
F ,PY

F ) =
1

2
KL(PX

F ||M) +
1

2
KL(PY

F ||M) (8)

where M = 1
2 (P

X
F + PY

F ) and KL denotes the Kullback–
Leibler divergence. When applying the Jensen–Shannon diver-
gence to the regularizer component, the objective term is the
empirical estimation of JSD:

OG(θF ) =
∑

(X,Y )

[
hX log(

hX

hX + hY
) + hY log(

hY

hX + hY
)

]

(9)
In the JSD-based regularizer, the distance between PX

F and PY
F

can be directly calculated based on hX and hY without any
additional parameter, i.e., θG = ∅. Thus, the loss function for
the JSD-based regularizer is:

Ljs(θF ) = minOG(θF ). (10)

Please note that since there is no learnable parameter for Ljs,
DDR-match based on the JSD regularizer can be trained in an
end-to-end fashion. Algorithm 1 provides the general process
of DDR-Match based on JSD. Note that Ljs still takes θF

as parameters because it is calculated on the basis of features
generated by F .

B. DDR-Match Model Based on MMD

1) MMD-Based Regularizer: The Maximum Mean Discrep-
ancy between two probabilistic distributions PX

F and PY
F is

defined as:

MMD(PX
F ,PY

F ) = sup
f∈F

(EX∼PX
F
[f(X)]−EY ∼PY

F
[f(Y )])

(11)
where F is a class of functions f : X → R,Y → R. We fol-
low [45] and choose the unit ball in a reproducing kernel Hilbert
space (RKHS)H as the function class f :

MMD(PX
F ,PY

F ) = ||EX∼PX
F
[ϕ(X)]−EY ∼PY

F
[ϕ(Y )]||H,

(12)
where ϕ() is a projection function which maps to reproducing
kernel Hilbert space. When applying the MMD to the regularizer
component, one can use the kernel trick to compute the MMD.
The objective term of is the empirical estimation of the squared
population MMD:

OG(θF ) =
1

m2

m∑
i,j=1

k(xi, xj)− 2

mn

m,n∑
i,j=1

k(xi, yj)

+
n∑

i,j=1

k(yi, yj) (13)

where k(·, ·) is the associated continuous kernel in a universal
RKHS H, xi and xj are independent random variables with
distribution PX

F , yi and yj are independent random variables
with distribution PY

F . In the MMD-based regularizer, the dis-
tance between PX

F and PY
F can be calculated with the help of

kernel trick so that the only parameter in the component is a
hyperparameter, the kernel bandwidth μ, i.e., θG = ∅. Thus,
the loss function for MMD-based regularizer is:

Lmmd(θF ) = minOG(θF ). (14)

Please note that since there is no learnable parameter forLmmd,
DDR-match based on the MMD regularizer can be trained in an
end-to-end fashion. Algorithm 1 provides the general process of
DDR-Match based on MMD.

C. DDR-Match Model Based on WD

1) WD-Based Regularizer: The WD between two probabilis-
tic distributions PX

F and PY
F is defined as:

W (PX
F ,PY

F ) = inf
γ∈J (PX

F ,PY
F )

∫
‖X − Y ‖dγ(X,Y ), (15)

where J (PX
F ,PY

F ) denotes all joint distributions, γ stands for
(X,Y ) that have marginal distributions PX

F and PY
F . It can be

shown that W has the dual form [46]:

W (PX
F ,PY

F ) = sup
|G|L≤1

EPX
F
[G(hX)]− EPY

F
[G(hY )],

(16)
where ‘|G|L ≤ 1’ denotes that the ‘sup’ is taken over the set of
all 1-Lipschitz1 function G; and function G : RK → R maps

1G is 1-Lipschitz⇔ |G(h)−G(h′)| ≤ |h− h′| for all h and h′
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TABLE I
STATISTICS OF FOUR DATASET USED IN OUR EXPERIMENT, |C| DENOTES THE

NUMBER OF CLASSES AND R DENOTES A RANKING FORMULATION

eachK-dimensional feature vector in the semantic space to a real
number. When applying the WD to the regularizer component,
the objective term is the dual form of WD (Equation (16)), which
is approximately written as:

OG(θG|θF , θM ) = −
∑

(X,Y )

[
G(hX)−G(hY )

]
, (17)

Different from the above, in the WD-based regularizer, the
distance between PX

F and PY
F is approximated by means of

a two-layer feed-forward neural network θG. Minimizing OG

w.r.t. the parameters θG can be achieved by approximating the
WD between PX

F and PY
F in the semantic space defined by F :

Lwd(θG|θF , θM ) = min
θG

OG(θG|θF , θM ). (18)

To make G a Lipschitz function (up to a constant), we follow the
practices in [41], all of the parameters in θG are always clipped
to a fixed range [−c, c], where c > 0 is a hyperparameter. In
practice, the sequence pairs for trainingG are randomly sampled
from the training set D.

In terms of Lwd, Eq. (18) involves the approximation of the
WD between PX

F and PY
F so that DDR-match in the WD version

needs to be updated in an alternative training fashion. Algo-
rithm 2 provides the general process of DDR-Match based on the
WD regularizer. Specifically, in the WD version, DDR-Match
alternatively maintains two branches. The regularizer branch
updates the parameters θG, with the θF fixed.2 It contains
a sub-iteration in which the parameters are optimized in an
iterative manner: first, objective OG is constructed based on
the sampled sequence pairs (line 4 - line 6); Then θG is updated
with gradient ascent (line 7); Finally, each parameter in θG is
clipped to [−c, c] for satisfying the 1-Lipschitz constraint (line
8). The matching branch updates θF and θM , with θG fixed. It
first samples another mini-batch data from the training data and
estimates the regularized loss Ladv using the fixed G (line 11 -
line 13). Then, the gradients of the parameters are estimated and
used to update the parameters (line 14).

V. EXPERIMENTS

In this section, we present a comprehensive experimental
assessment of DDR-Match.

A. Datasets and Metrics

We use five large-scale publicly matching benchmarks: SNLI
(Stanford Natural Langauge Inference) [2], SciTail [9], SICK

2Note that the regularizer does not depend on M , given F .

Algorithm 2: Training Process for WD-Based DDR-Match.

Require:Training set D = {(Xi, Yi, zi)}Ni=1; mini-batch
sizes n1 and n2; adversarial training step k; trade-off
coefficient λ; learning rates η1 and η2; clipping threshold
c.

1: repeat
2: � Regularizer branch
3: for t = 0 to k do
4: Sample a mini-batch {(Xi, Yi, zi)}n1

i=1 from D
5: [hX

i ,hX
i ]← F (Xi, Yi), ∀i = 1, . . . , n1

6: OG =
∑n1

i=1[G(hX
i )−G(hY

i )]
7: θG ← θG + η1 �θG

OG {Eq. (18)}
8: ClipWeights(θG,−c, c)
9: end for

10: � Matching branch
11: Sample a mini-batch {(Xi, Yi, zi)}n2

i=1 from D
12: [hX

i ,hY
i ]← F (Xi, Yi), ∀i = 1, . . . , n2

13: Lreg =∑n2

i=1[�m(M(F (X,Y )), zi) + λ[G(hX
i )−G(hY

i )]]
14: {θF ,θM} ← {θF ,θM} − η2 �θF ,θM

Lreg

{Eq. (6)}
15: until convergence
16: return {θF ,θM}

(Sentences Involving Compositional Knowledge) [47], TrecQA
(Text Retrieval Conference Question Answering) [3], and Wik-
iQA (Wikipedia open-domain Question Answering) [4]. Table I
provides a summary of the datasets used in our experiments.

SNLI 3 is a benchmark for natural language inference. In
SNLI, each data record is a premise-hypothesis-label triple.
The premise and hypothesis are two sentences and the label
could be “entailment,” “neutral,” “contradiction,” or “-”. In our
experiments, following the practices in [2], the data with the
label “-” are ignored. We follow the original dataset partition.
Accuracy is used as the evaluation metric for this dataset.

SICK 4 is used to quantify the degree of semantic related-
ness between sentences and the categorizations in terms of the
entailment relation between the two sentences (with entailment,
contradiction, and neutral as gold labels). SICK consists of about
10,000 English sentence pairs which generated a subset of two
existing sets: the ImageFlickr8K dataset 5 and the SemEval-2012
dataset 6. We follow the original dataset partition. Accuracy is
used as the evaluation metric for this dataset.

SciTail 7 is an entailment dataset based on multiple-choice
science exams and web sentences. Each record is a premise-
hypothesis-label triple. The label is “entailment” or “neutral,”
because scientific factors cannot contradict. We follow the orig-
inal dataset partition. Accuracy and F1 score are used as the
evaluation metric for this dataset.

3https://nlp.stanford.edu/projects/snli
4http://marcobaroni.org/composes/sick.html
5https://www.kaggle.com/adityajn105/flickr8k/activity
6https://www.cs.york.ac. UK/semeval-2012/
7http://data.allenai.org/scitail/
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TABLE II
PERFORMANCE COMPARISON ON SNLI, SICK, SCITAIL, WIKIQA, TRECQA TEST SET. DDR-MATCH(·) DENOTES DDR-MATCH WITH THE FIRST PARAMETER

AS THE UNDERLYING MODEL, THE SECOND PARAMETER AS THE REGULARIZER. † INDICATES THE STATISTICALLY SIGNIFICANT DIFFERENCE

OVER THE UNDERLYING METHOD OF DDR-MATCH WITH p < 0.05

TrecQA 8 is an answer sentence selection dataset designed
for the open-domain question answering setting. We use the
raw version TrecQA, questions with no answers or with only
positive/negative answers are included. The raw version has 82
questions in the development set and 100 questions in the test
set. Mean average precision (MAP) and mean reciprocal rank
(MRR) are used as the evaluation metrics for this task.

WikiQA 9 is a retrieval-based question answering dataset
based on Wikipedia. We follow the data split of the original
paper. This dataset consists of 20.4 k training pairs, 2.7 k
development pairs, and 6.2 k testing pairs. We use MAP and
MRR as the evaluation metrics for this task.

B. Experimental Setup

To verify the effectiveness of the proposed DDR-Match, we
combine our proposed regularizer to representative matching
models to form new models under DDR-Match framework. In
the experiments, we denote the new models as DDR-Match
(A,B).A represents existing matching models, such as RE2 [7],
DecATT [6], Sentence-BERT (SBERT) [8] and BERT [25]. B
represents our proposed regularizers, such as the JSD-based,
MMD-based, and WD-based regularizers.

Specifically, in DDR-Match(RE2), F is stacked blocks which
consist of multiple convolution layers and multiple attention
layers, and M is an MLP; in DDR-Match(DecAtt), F is an
attention layer and an aggregation layer, M is an MLP. Please
note that we did not implement the Intra-Sentence Attention
in our experiments; in DDR-Match(SBERT), F is a siamese
BERT-base10 model to encode sentence pair separately where
two BERT networks have tied weights, and M directly cal-
culates the cosine-similarity between the sentence embedding

8https://github.com/castorini/NCE-CNN-Torch/tree/master/ data/TrecQA
9https://www.microsoft.com/en-us/download/details.aspx?id=52419
10https://github.com/google-research/bert

pair. Please note that in DDR-Match(SBERT), the output em-
bedding of ‘[CLS]’ token represents the sentence embedding.
In DDR-Match(BERT), F is a pre-trained BERT-base model,
different from DDR-Match(SBERT), F takes the concatenation
of the text pair as input. M is an MLP. Please note that we
conducted a mean pooling operation to the output of BERT to
derive a fixed-size sentence embedding pair then pass to G, and
the output of the ‘[CLS]’ token pass to M . The G module for
four models are identical: the aforementioned JSD regularizer,
MMD regularizer, or WD regularizer. The JSD regularizer is
non-parametric; the MMD regularizer depends on the setting of
the kernel, for example, if Gaussian kernel is applied, the only
parameter of the regularizer is the bandwidth of kernel; the WD
regularizer consists of a non-linear projection layer and a linear
projection layer.

For all models, the parameters of F and M were directly
set as their original settings. In the training, all models were
trained using the Adam optimizer with the learning rate η2
tuned amongst {0.0001, 0.0005, 0.001}. Batch sizen2 was tuned
amongst {256, 512, 1024}. The trade-off coefficient λ was tuned
from [0.0001, 0.01]. The clipping threshold was tuned from
[0.1, 0.5]. Word embeddings were initialized with GloVe [48]
and fixed during training. For the MMD regularizer, we set the
number of Gaussian kernels as 1, and we tuned the kernel width
from {0.1, 1, 10}. The best hyperparameters including early
stopping were tuned on the development set.

C. Experimental Results

Table II reports the experimental results of DDR-Match and its
underlying models including RE2, DecAtt, SBERT, and BERT.
All methods are trained ten times and the average results are
reported.

We summarize our observations from Table II as follows: 1)
In general, DDR-Match consistently outperformed its under-
lying methods across five datasets in the case of JSD-based,
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MMD-based, and WD-based regularizers. The results indicate
that DDR-Match is capable of improving the matching accuracy
for text matching models in asymmetrical domains benefited
from the regularizer component. 2) From the results, we found
that DDR-Match under the condition of the WD regularizer
consistently outperformed its underlying methods and achieved
the best performances in 13 out of 20 sets of experiments. The
results indicated the effectiveness of the WD-based regularizer.
We supposed the advantages of the WD-based regularizer over
the JSD-based and the MMD-based regularizers attributed to
the stability of the optimization process [41] and its learnable
nature. WD-based regularizer not only provide gradient even if
two sequence representation distributions are disjoint [41], but
also can be estimated using neural networks rather than depend-
ing on hyperparameters. Therefore, in practice, DDR-Match
incorporated WD-based regularizer achieves better performance
than that of the other two regularizers. We will verify our
viewpoint in Section V-E. 3) DDR-Match under the condition
of the MMD-based regularizer consistently achieved better per-
formances over its underlying methods. The results indicated
the effectiveness of the MMD-based regularizer. We supposed
the reason why the MMD-based regularizer suits asymmetrical
text matching is that MMD is easily estimated as an empiri-
cal mean which is concentrated around the true value of the
MMD. MMD-based regularizer is responsible for finding the
RKHS function that maximizes the difference in expectations
between the two probability distributions of sequence repre-
sentations. [33], [45]. 4) DDR-Match under the condition of
the JSD-based regularizer showed improvement on Scitail and
TrecQA but performed poorly on SNLI, SICK, and WikiQA.
We suppose that JSD-based regularizer cannot provide effective
regularization to the feature vectors when two distributions of
sequence representation are disjoint. It is because in this case,
the JSD is equal to zero and cannot provide gradients [49].
It is because in this case, JSD is equal to zero and the JSD-
based regularizer cannot provide gradients to make sequence
representations indistinguishable [41], [49] at the beginning of
the training. We will verify our viewpoint in Section V-E and
Section V-F.

Summarizing the results above, we conclude that DDR-Match
is a general while strong framework that can improve different
matching models by using them as its underlying matching
model.

D. Complexity of Regularizer Component G

As described in Section III, DDR-Match introduces a reg-
ularizer component G to existing sequence matching models.
In this section, we discuss the complexity of the regularizer
component G.

In the case of the JSD-based regularizer, the distance between
two sequence representation distributions are calculated accord-
ing to Eq. (8) and there is no additional parameter. In the case of
the MMD-based regularizer, the distance between two sequence
representation distributions are calculated according to Eq. (12)
and the only additional hyperparameter come the bandwidth of

TABLE III
COMPARISON OF THE NUMBER OF MODEL PARAMETERS AND THE TRAINING

TIME (S/BATCH) ON SCITAIL ON A SINGLE NVIDIA TESLA V100 16 GB. THE

BATCH SIZE OF RE2-BASED, DECATT-BASED, SBERT-BASED, AND

BERT-BASED MODELS ARE SET AS 128, 128, 8, AND 8 RESPECTIVELY.
DDR-MATCH(·) DENOTES DDR-MATCH WITH THE FIRST PARAMETER IN

PARENTHESES AS THE UNDERLYING MODEL, THE SECOND

PARAMETER AS THE REGULARIZER

the kernel. In the case of the WD-based regularizer, G module is
implemented as a two-layer MLP (the number of neurons in the
second layer is set as one). Therefore, the additional computing
cost comes from the training of the two-layer MLP, which is of
O(T ∗N ∗K ∗ 1), where T is the number of training iterations,
N number of training examples, K number of neurons in the
first layer of MLP (without considering the compute cost of the
activation function). We can see that the additional computing
overhead is much lower than that of the underlying methods
which usually learn much more complex neural networks for
the feature projection and the matching. We listed the number
of parameters of different text matching models with or without
DDR-Match framework in Table III. Compared to the underlying
model, the additional parameters of DDR-Match come from the
regularizer component G. The results from Table III show that
the number of parameters introduced by regularizer component
G are far less that of the underlying model.

We further recorded the training time (s/batch) on SciTail on
a single Nvidia Tesla V100 16 GB in Table III. The batch size
of RE2-based, DecAtt-based, SBERT-based, and BERT-based
models are set as 128, 128, 8, and 8 respectively. The results
from Table III show that the computation time of G of JSD-
based and MMD-based DDR-Match is far less than that of the
underlying model. For WD-based G, it cost more time because
of the alternative training, but the time cost of WD-based G
is acceptable compared to the training time of the underlying
model.

Summarizing the analysis above and the results reported in
Table III, we can conclude that DDR-Match is an efficient
framework that does not introduce many parameters compared
to its underlying model.
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Fig. 3. t-SNE visualization of the projected feature vectors, based on RE2 and DDR-Match (RE2) trained on SciTail. Subfigure (a), (b), and (c) respectively
illustrate the vector distributions of DDR-Match(RE2) with JSD regularizer, MMD regularizer, and WD regularizer. The orange ‘X’ and green ‘Y ’ correspond to
PX
F and PY

F of RE2, The dark blue ‘X’ and red ‘Y ’ correspond to PX
F and PY

F of DDR-Match (RE2), respectively.

Fig. 4. t-SNE visualization of the projected feature vectors, based on SBERT and DDR-Match (SBERT) trained on WikiQA. Subfigure (a), (b), and (c) respectively
illustrate the vector distributions of DDR-Match(SBERT) with JSD regularizer, MMD regularizer, and WD regularizer. The orange ‘X’ and green ‘Y ’ correspond
to PX

F and PY
F of SBERT, The dark blue ‘X’ and red ‘Y ’ correspond to PX

F and PY
F of DDR-Match (SBERT), respectively.

E. Visualization of the Distributions of Feature Vectors

Fig. 1(a) shows that there exists a gap between two feature vec-
tors, due to the heterogeneous nature of the texts from two asym-
metrical domains. We conducted experiments to analyze how
the feature vectors (i.e., hX and hY ) generated by DDR-Match
distributed in the common semantic space, taking DDR-Match
(RE2) with and DDR-Match (SBERT) as examples. Specifically,
we trained an RE2 model and a DDR-Match (RE2) model based
on SciTail dataset. We recorded all of the training feature vectors
and illustrated them in Fig. 3 by t-SNE. The orange ‘X’ and
green ‘Y ’ correspond to PX

F and PY
F of RE2, The dark blue ‘X’

and red ‘Y ’ correspond to PX
F and PY

F of DDR-Match (RE2),
respectively. As we can see from Fig. 3, the feature vectors from
RE2 are separately distributed while the feature vectors from
DDR-Match (RE2) are indistinguishable. We also trained an
SBERT model and a DDR-Match (SBERT) model based on
WikiQA dataset. Similar results can be found in Fig. 4. The
feature vectors from SBERT are separately distributed while the
feature vectors from DDR-Match (SBERT) are indistinguish-
able. These results demonstrate that compared to the underlying
model, DDR-Match distributes the feature vectors in semantic
space better and faster.

Please note that in Fig. 4, feature vectors of SBERT are
separately distributed in the latent space (The orange ‘X’ and

green ‘Y ’). It shows that there exists a larger gap on WikiQA
dataset. Compared (a) to (b) and (c) of Fig. 4, we can see that
the feature vectors are mixed more thoroughly with the guidance
of MMD-based regularizer and WD-based regularizer than that
of JSD-based regularizer. These results verified our assumption
that when two distributions of sequence representations are
disjoint, JSD-based regularizer failed to mix feature vectors
effectively.

F. Convergence and Effects of WD-Based Regularizer

We conducted experiments to test how our proposed DDR-
Match guided the training of matching models. Specifically, we
compared DDR-Match and its underlying model under the guid-
ance of the three types of regularizers on SciTail and WikiQA,
respectively.

Taking the comparison between DDR-Match (RE2) and RE2
as an example, we tested the DDR-Match (RE2) and RE2
models generated at each training epochs. The accuracy curve
on the basis of the development set of SciTail was illustrated in
Fig. 5 (denoted as “DDR-Match (RE2)-Accuracy” and “RE2-
Accuracy”). (a), (b), and (c) of Fig. 5 denotes DDR-Match
based on JSD-based, MMD-based, and WD-based regularizer,
respectively. Comparing these two training curves in (a), (b), and
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Fig. 5. Subfigure (a), (b), and (c) are the accuracy curves and different distribution distance measurements curves w.r.t. training epochs for RE2 and DDR-Match
(RE2) on Scitail.

Fig. 6. Subfigure (a), (b), and (c) are the accuracy curves and different distribution distance measurements curve w.r.t. training epochs for SBERT and DDR-Match
(SBERT) on WikiQA.

(c) of Fig. 5, we can see that DDR-Match (RE2) outperformed
RE2 when the training closing to converge (after about 15
epochs). We can conclude that DDR-Match (RE2) obtained
higher accuracy than RE2.

To investigate how the sequence representation distributions
guide the training of matching models, we recorded the JSD,
MMD, and the estimated WD at all of the training epochs of
RE2 and DDR-Match (RE2). For example, in Fig. 5(c), the curve
“WD-Diff” shows the differences between the WD by RE2 and
that of by DDR-Match (RE2) at each of the training epoch (i.e.,
Lwd(θF ) of RE2 minus Lwd(θF ) of DDR-Match (RE2)). From
the curve, we can see that at the beginning of the training (i.e.,
epoch 1 to 5), the “WD-Diff” was near to zero. With the training
went on (i.e., epoch 5 to 30), the WD by DDR-Math(RE2)
became smaller than that of by RE2 (the WD-Diff curve is
above the zero line), which means that DDR-Match (RE2)’s
feature projection module F was guided to move feature vectors
together more thoroughly and faster, which are more suitable for
matching. Similar phenomenon can be found in Fig. 5(a) and (c).
These results indicate DDR-Match achieved its design goal of
guiding the distributions of the projected feature vectors.

It is interesting to note that, comparing all of the three curves in
Fig. 5(c), we found the WD-Diff curve is close to zero at the be-
ginning of the training, and the accuracy curves of DDR-Match
(RE2)-Accuracy and RE2-Accuracy are similar at the beginning.
With the training went on (after epoch 10), the WD differences
became larger. At the same time, the accuracy gaps (between
DDR-Match (RE2)-Accuracy and RE2-Accuracy) also become

larger. A similar phenomenon can be found in Fig. 5(a) and (c).
The results clearly reflect the effects of sequence representation
distributions distance-based regularizer: minimizing the regu-
larizer leads to a better distribution of feature vectors in terms of
matching. We also compared DDR-Match (SBERT) and SBERT
on WikiQA as illustrated in Fig. 6. we can also obtain the same
conclusion.

To further compare the effect of JSD-based, MMD-based, and
WD-based regularizer. We illustrated the prediction accuracy
and the estimated distribution distance at all of the training
epochs of SBERT and DDR-Match (SBERT) in Fig. 6. Com-
pared Fig. 6(a) to (b) and (c), DDR-Match (SBERT) with JSD-
based regularizer converged after about 19 epochs of training,
while DDR-Match (SBERT) with MMD-based or WD-based
regularizer converged after about 15 epochs of training. Double-
checking Fig. 4, the JSD regularizer failed to thoroughly mix the
feature vectors of SBERT. These results verified our assumption
that when two distributions of sequence representations are
disjoint, JSD-based regularizer failed to mix feature vectors
effectively.

G. Effects of the Kernel Bandwidth in MMD-Based
DDR-Match

As the experimental results are shown in Table II DDR-
Match outperformed its underlying models incorporated with
the MMD-based regularizer in general. For the MMD-based reg-
ularizer, there is a key hyperparameter namely kernel bandwidth
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TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT SETTING ON KERNEL BANDWIDTH. DDR-MATCH(·) DENOTES DDR-MATCH

WITH THE FIRST PARAMETER AS THE UNDERLYING MODEL, THE SECOND PARAMETER AS THE REGULARIZER

TABLE V
PERFORMANCE COMPARISON OF REGULARIZATION ON ALL SAMPLES AND ON POSITIVE SAMPLES ON SNLI, SCITAIL, WIKIQA TEST SET. DDR-MATCH(·)

DENOTES DDR-MATCH WITH THE FIRST PARAMETER AS THE UNDERLYING MODEL, THE SECOND PARAMETER AS THE REGULARIZER

μ. In this subsection, we conducted experiments to investigate
the effect of μ for MMD-based DDR-Match.

Different kernel bandwidth defines different reproducing ker-
nel Hilbert spaces leading to different measurements to the
distance of sequence representations. Thus, we performed an
assessment for different values of the kernel bandwidth. Specif-
ically, we chose μ ∈ {0.1, 1, 10} and conducted experiments
to compare the performance of MMD-based DDR-Match on
five datasets. Experimental results are listed in Table IV and all
methods are trained five times and the average results are re-
ported. Table IV clearly shows the effect of the kernel bandwidth.
The performance of DDR-Match incorporated with MMD reg-
ularizer varied with different settings of μ. For example, DDR-
Match (RE2) in the setting of μ = 10 improved that of μ = 1
about 3%. This result indicated that the kernel bandwidth has a
major impact on the performance of the MMD-based regularizer.
In practice, the kernel bandwidth of MMD-based DDR-Match
needs to be carefully chosen.

H. Effects of Regularizing the Positive and All Samples

To further verify our idea, we conducted experiments to
compare the performance of aligning the distribution of all

sequence pairs and that of aligning the distribution of the positive
sequence pairs. Specifically, on the task of NLI and QA, we
adopted RE2 and DecAtt as the underlying matching methods of
DDR-Match, used the JSD-based, MMD-based, and WD-based
regularizer to respectively regularize only the positive sequence
representations and all sequence representations. Experimental
results are listed in Table V.

From the results, we found that on both NLI and QA tasks,
DDR-Match that aligned the distribution of all sequence pairs
performed better than aligned the distribution of the positive
sequence pairs. We suppose the reason behind the results is
as follows: 1) in asymmetrical text matching, the domain in-
formation contained in sequence representations is the noise
for matching. In DDR-Match, aligning the distributions of the
sequence pair can effectively denoise the information concern-
ing domains while enforcing F to generate semantic-related
representations that is helpful for the Matching Component M .
2) M of existing methods is capable of minimizing the distance
between positive sequences representations and distinguishing
the positive and the negative samples. When G is served as
aligning the distribution of the positive sequence pairs,G plays a
similar role to M . In this case, G may help M better distinguish
between positive and negative samples, but G failed to remove
the domain noise.
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Summarizing the results and analysis above, we conclude that
explicitly bridging the domain gap by aligning the distribution
of sequence representations is beneficial for text matching in
asymmetrical domains.

VI. CONCLUSION

In this paper, we observed that sequence representations
tended to be indistinguishable in the latent space in the task
of asymmetrical text matching. Inspired by this observation, we
proposed a novel framework for asymmetrical text matching,
namely DDR-Match which explicitly bridge the gap between
sequence representations. To investigate the effectiveness of our
proposed DDR-Match, we instantiated the JSD-based, MMD-
based, and WD-based version of DDR-Match and incorporated
four popular matching models into DDR-Match as its underlying
models. We showed that the DDR-Match is capable of well
distributing the generated feature vectors in the semantic space,
and therefore more suitable for matching. Experimental results
on five benchmarks showed that DDR-Match can outperform the
baselines including its underlying models. Empirical analysis
showed the effectiveness and the efficiency of DDR-Match and
among the three instances of DDR-Match, the WD-based is more
appealing for asymmetrical text matching.
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