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Abstract

This paper introduces an innovative physics-informed deep learning framework for metamodeling of nonlinear structural
systems with scarce data. The basic concept is to incorporate available, yet incomplete, physics knowledge (e.g., laws of
physics, scientific principles) into deep long short-term memory (LSTM) networks, which constrains and boosts the learning
within a feasible solution space. The physics constraints are embedded in the loss function to enforce the model training which
can accurately capture latent system nonlinearity even with very limited available training datasets. Specifically for dynamic
structures, physical laws of equation of motion, state dependency and hysteretic constitutive relationship are considered to
construct the physics loss. In particular, two physics-informed multi-LSTM network architectures are proposed for structural
metamodeling. The satisfactory performance of the proposed framework is successfully demonstrated through two illustrative
examples (e.g., nonlinear structures subjected to ground motion excitation). It turns out that the embedded physics can
alleviate overfitting issues, reduce the need of big training datasets, and improve the robustness of the trained model for more
reliable prediction with extrapolation ability. As a result, the physics-informed deep learning paradigm outperforms classical
non-physics-guided data-driven neural networks.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Numerical simulations are widely utilized for structural analysis and design of complex engineering systems.
Many successful computational implementations have been achieved in last several decades for analyzing structural
integrity and capacity subjected to dynamic loading. For example, finite element method (FEM) is one of the
most popular simulation-based methods for structural dynamic analysis with extensive applications in civil [1,2],
mechanical [3,4], and aeronautical engineering [5,6]. Despite recent advances in computational power (e.g. high-
performance computing clusters or facilities), dramatically growing complexity of numerical models still demands
prohibitively heavy computation for complex, large engineering problems with nonlinear hysteretic behaviors under
dynamic loads. In addition, the computational cost excessively increases especially when numerous simulations
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are required to account for the optimization [7,8] and stochastic uncertainties of external loads (e.g., Monte
Carlo simulations [9–11] or incremental dynamic analysis (IDA) [12–14] of nonlinear structural systems for
fragility/reliability analysis).

To address the aforementioned challenge, researchers have explored the use of metamodels to replace the original
time-consuming simulation in order to reduce the computational burden. A metamodel is essentially the reduced-
fidelity surrogate model of a high-fidelity model, used to describe the input–output relationship of a system.
Traditionally, regression and response surface methodology (RSM) are widely used for metamodeling [15–17] which
are based on the polynomial lease-square fitting. These techniques allow fast computation; however, the accuracy is
often insufficient for complex systems due to their simplicity and the well-known limitations of using second-order
polynomials for approximating highly nonlinear behaviors [18]. Kriging [19], radial basis functions [20], polynomial
chaos expansions [21], and support vector regression [22] have also been proposed as metamodeling techniques
with applications to uncertainty quantification. A review of application of these methods for metamodeling of
some engineering systems can be found in [18]. For the engineering design of dynamic structures and mechanical
systems, structural optimization and model updating have been extensively studied and used to simulate structural
behaviors [23–25]. However, it generally requires excessive computational efforts on calibrating the model especially
when the model is of high fidelity with a large number of parameters. To reduce the computational efforts, model
order reduction techniques (e.g., proper orthogonal decomposition [26] and equivalent reduction expansion [27])
have been developed to establish reduced-fidelity metamodels to approximate the high-fidelity models of complex
engineering systems [28–30]. Nevertheless, the majority of these methods are generally limited to linear or low-order
nonlinear systems under stationary conditions, which makes applying these approaches to model highly nonlinear
structures intractable.

Recently, artificial neural networks (ANNs) have been proven to be a powerful metamodeling tool and approxi-
mator [31,32], which often outperforms conventional metamodeling techniques in terms of both prediction accuracy
and capability of capturing underlying nonlinear input–output relationship for complex systems [33]. Researchers
have successfully implemented shallow ANNs (e.g., with only a few layers) for metamodeling structural systems
under static and dynamic loading during the past decade [34–36]. However, due to the simple architecture, shallow
ANNs have distinct limitations in modeling time series of complex nonlinear dynamical systems. Thanks to the state-
of-the-art advances in artificial intelligence (AI), recent studies have shown that deep learning (e.g., convolutional
neural network (CNN) [37] and recurrent neural network (RNN) [38,39]) are a promising approach to establish
metamodels for fast prediction of time history response of dynamical systems [36,40–42] and material constitutive
modeling [43,44]. For example, Zhang et al. [41] successfully developed a deep long short-term memory (LSTM)
network for modeling of nonlinear seismic response of structures with large plastic deformation. However, training
a reliable deep learning model requires massive (sufficient) data that must contain rich input–output relationship,
which typically cannot be satisfied in most engineering problems. Particularly, the “black-box” model highly
depends on the representative quality of the labeled data that it is fed in, leading to low accuracy and generalizability
outside available data (training/validation datasets). Even with rich data, the trained metamodel is uninterpretable and
of no physical sense. Furthermore, grand challenges arise when available data is highly incomplete, scarce and/or
noisy, e.g., due to (1) “synthetic”: limited number of computationally intensive simulations of the high-fidelity model
for training data generation, or (2) “sensing”: limited number of recordings, limited number of sensors, low signal-
to-noise ratio, and incompleteness of measured state variables. A potential solution to overcome this limitation
is to incorporate scientific principles (e.g., partial differential equations, boundary conditions) into deep neural
networks to reduce the violation of the embedded physical laws [42,45–50]. To address the aforementioned issues,
we develop physics-informed multi-LSTM networks for metamodeling of nonlinear structures and show applications
to buildings under earthquake excitation. The major contribution and novelty of this work are to develop such a
framework that embeds available, yet incomplete, physics information (e.g., general form of equation of motion,
state dependency and hysteretic constitutive relationship) to weakly supervise the deep LSTM networks, which will
constrain and boost the learning within a feasible solution space. Such metamodels possess salient features that
include (1) clear interpretability with physics meaning, (2) superior generalizability with robust inference, and (3)
excellent capability of dealing with less rich data.

This paper is organized as follows. Section 2 introduces two physics-informed multi-LSTM network architectures
for structural metamodeling, e.g., the physics-reinforced double-LSTM (e.g., PhyLSTM2) and the physics-reinforced
triple-LSTM (e.g., PhyLSTM3). In Section 3, the performance of PhyLSTM2 and PhyLSTM3 is verified through
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a steel moment-resisting frame with rate-independent hysteresis. Section 4 presents another numerical example
to compare PhyLSTM2 and PhyLSTM3 for metamodeling of a nonlinear system with rate-dependent hysteresis.
Section 5 summarizes the conclusions. The data and codes used in this paper will be publicly available on GitHub
at https://github.com/zhry10/PhyLSTM after the paper is published.

2. Physics-informed multi-LSTM network for metamodeling

Metamodeling of structural systems aims to develop reduced-fidelity (or reduced-order) models that effectively
capture underlying nonlinear input–output behaviors. A metamodel can be trained on datasets obtained from high-
fidelity simulation or actual system sensing. For better illustration, we consider a building-type structure and
hypothesize the earthquake dynamics is governed by the reduced-fidelity nonlinear equation of motion (EOM):

Mü + Cu̇ + λKu + (1 − λ)Kr  
h

= −MΓag (1)

where M is the mass matrices; C is the damping matrices; K is the stiffness matrices; u, u̇, and ü are the relative
displacement, velocity, and acceleration vector to the ground; r is an auxiliary non-observable hysteretic parameter
(or called hysteretic displacement); λ ∈ (0, 1] is the ratio of post-yield stiffness to pre-yield (elastic) stiffness; ag

represents the ground acceleration; Γ is the force distribution vector; h represents the total nonlinear restoring force.
The EOM essentially maps the ground motion ag to structural response u, u̇, ü and r. By normalizing Eq. (1) based
on M, the governing equation can be rewritten in a more general form as

ü + g = −Γag (2)

where g(t) = M−1h(t) is the mass-normalized restoring force and g(t) = G (Z(t)) with G being an unknown
latent function. Here, Z denotes the state space (SS) variable that includes the displacement u, the velocity u̇, and
the hysteretic parameter r, namely, Z = {z1, z2, z3}

T
= {u, u̇, r}T . Developing mathematically closed-form of a

nonlinear reduced-fidelity model based on physics (e.g., a parsimonious form of g) is intractable especially when
the nonlinearity is complex, implicit, and of high order.

In nonlinear time history analysis of building-type structures under seismic excitation, a fast prediction of the
state space variable Z is of our primary interest. An effective metamodel could establish an efficient and accurate
mapping from the seismic input to nonlinear structural response, e.g., ag

metamodel
−−−−−→ Z. Our recent study showed that

LSTM is a powerful deep learning approach for sequence-to-sequence input–output relationship modeling and thus
holds strong promise to serve as a metamodel [41]. However, to train an LSTM-based metamodel, it is essential
to have complete state measurement of Z for a given seismic input ag (e.g., response data of u, u̇ and r should
be all measured). This is particularly intractable and challenging because the auxiliary hysteretic parameter r is
typically non-observable and latent which cannot be extracted from large-scale high-fidelity model simulations
or from actual system sensing. Yet, predicting such a nonlinear parameter is very important since it reflects the
macroscopic nonlinearity of the system (with attributes from local nonlinearity) and relates to the internal hysteretic
restoring force. These evidences illustrate that a direct application of a deep learning approach (e.g., LSTM) to
establish the metamodel is inapplicable for the above mentioned problem. To address this fundamental challenge,
we develop an innovative physics-informed deep learning paradigm (e.g., multi-LSTM networks constrained by
physics) for metamodeling of nonlinear structural systems, which systematically maps ag to the full state Z given
incomplete data (e.g., r is not measured). In the following subsections, we introduce the basic concept and algorithm
architectures of the proposed new paradigm.

2.1. LSTM network

We first introduce the fundamental algorithm architecture of deep LSTM networks for sequence-to-sequence
modeling [41], which consist of multiple hidden layers (including both LSTM layers and fully connected layers)
in addition to the input and output layers as shown in Fig. 1(a). The deep LSTM network maps the input sequence
to the output sequence pairwise in the temporal space (τ = 1, 2, . . . , t). To implement the deep LSTM network
trained with multiple datasets, both the input and output sequences must be formatted as three-dimensional arrays,
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Fig. 1. Schematic of deep LSTM networks: (a) architecture of a deep LSTM network with m LSTM layers and multiple fully-connected
layers for sequence-to-sequence modeling; (b) architecture of a typical LSTM cell of the lth layer at time t , which consists of cell input X(l)

t ,
cell output Y(l)

t , cell state c(l)
t , hidden state h(l)

t , and four gate variables
{
f(l)
t , i(l)t , c̃(l)

t , o(l)
t

}
.

where the entries are the samples (e.g., independent datasets) in the first dimension, the time steps in the second
dimension, and the input or output features/channels in the third dimension.

Each LSTM layer contains a suite of LSTM cells as shown in Fig. 1. Each LSTM cell, which is very similar
to the neural node in classical neural networks, contains an independent set of weights and biases shared across
the entire temporal space within the layer. The LSTM cell consists of four interacting units, including an internal
cell, an input gate, a forget gate, and an output gate. The internal cell memorizes the cell state at the previous time
step through a self-recurrent connection. The input gate controls the flow of input activation into the internal cell
state. The output gate regulates the flow of output activation into the LSTM cell output. The forget gate scales
the internal cell state, enabling the LSTM cell to forget or reset the cell’s memory adaptively. Controlled by the
input/forget/output gates in each LSTM cell, the cell state can selectively propagates valuable information along
the temporal sequence to capture the long short-term time dependence in a dynamical system. Let us denote, at the
time step t (t = 1, . . . , n, where n is the total number of time steps) and within the lth LSTM network layer, the
input state to the LSTM cell as x(l)

t , the forget gate as f(l)
t , the input gate as i(l)t , the output gate as o(l)

t , the cell state
memory as c(l)

t , and the hidden state output as h(l)
t . At the previous time step t −1, we denote the cell state memory

as c(l)
t−1 and the hidden state output as h(l)

t−1. The relationship among these defined variables can be described by the
equations as follows (also see Fig. 1(b) for schematic illustration):

f(l)
t = σ

(
W(l)

x f xt + W(l)
h f ht−1 + b(l)

f

)
(3)

i(l)t = σ
(

W(l)
xi xt + W(l)

hi ht−1 + b(l)
i

)
(4)

c̃(l)
t = tanh

(
W(l)

xcxt + W(l)
hcht−1 + b(l)

c

)
(5)

o(l)
t = σ

(
W(l)

xoxt + W(l)
hoht−1 + b(l)

o

)
(6)

c(l)
t = f(l)

t ⊙ c(l)
t−1 + i(l)t ⊙ c̃(l)

t (7)

h(l)
t = o(l)

t ⊙ tanh
(

c(l)
t

)
(8)

where W(l)
αβ (with α = {x, h} and β = { f, i, c, o}) denotes the weight matrices corresponding to different inputs

(e.g., x(l)
t or h(l)

t ) within different gates (e.g., input gate, forget gate, tanh layer or output gate as shown in Fig. 1(b)),
while b(l)

β represents the corresponding bias vectors; the superscript l denotes the lth layer of the LSTM network.
For example, W(l)

x f and W(l)
h f are the weight matrices corresponding to input vectors xt or ht , respectively, within the

forget gate. Here, c̃(l)
t denotes a vector of intermediate candidate values created by a tanh layer shown in Fig. 1(b); σ

is the logistic sigmoid function; tanh is the hyperbolic tangent function; ⊙ denotes the Hadamard product (element-
wise product). The complex connection mechanism within each LSTM cell makes the deep LSTM network powerful
in sequence modeling, which the fully connected layers are beneficial for mapping the temporal feature maps to
the corresponding output space.
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Fig. 2. The proposed PhyLSTM2 network architecture. PhyLSTM2 consists of two deep LSTM networks for modeling state space variables
and nonlinear restoring force. The LSTM networks are interconnected through a tensor differentiator which calculates the derivative of state
space variables.

2.2. PhyLSTM2

The deep LSTM network introduced in the previous subsection is purely based on data and cannot be used
to model latent variables (e.g., r) which are not measured in data. To address this issue, we leverage available
physics information (e.g., governing equations, states dependency) and encode it into the network architecture. The
basic concept is to use one deep LSTM network (see Fig. 1(a) [41]) to model the sequence-to-sequence input–output
relationship inter-connected, via a central finite difference filter-based numerical differentiator, with another one/two
LSTM network(s) to model the physics. As a result, the multiple connected LSTM networks form a “one-network”
architecture.

Firstly, we introduce the formulation and algorithm architecture of physics-informed double-LSTM network for
structural metamodeling (PhyLSTM2) as shown in Fig. 2, which consists of three components, including two deep
LSTM networks and a tensor differentiator. To illustrate the concept, we first assemble the structural response to a
group of state space variables, v.i.z., Z = {z1, z2, z3}

T
= {u, u̇, r}T , each of which has same number of n sample

points ranging from t1 to tn , and use one deep LSTM network to establish nonlinear mapping from the ground
motion ag to the response Z (see Box I in Fig. 2), e.g., Z = LSTM1(ag; θ1) where θ1 denotes the trainable weights
and biases of LSTM1. With the available training data {ud , u̇d}

T (note that r is an immeasurable latent variable),
we can formulate the “data loss function” of LSTM1, written as,

Jd (θ1) =

nm∑
i=1

z(i)
1 (θ1) − u(i)

d

2
2 +

z(i)
2 (θ1) − u̇(i)

d

2
2 (9)

where nm is the number of measurement (data) samples. The differentiation will be realized through finite difference-
based filtering, which produces derivatives of Z, namely, Ż = {ż1, ż2, ż3}

T
= {u̇, ü, ṙ}T . By default, we have the

SS variable equality condition ż1 − z2 −→ 0 (see Box III in Fig. 2), leading to the “equality loss function”:

Je(θ1) =

nc∑
i=1

ż(i)
1 (θ1) − z(i)

2 (θ1)
2

2 (10)

where nc is the number of collocation samples. A second LSTM network is then used to map the response Z to
the mass-normalized restoring force g (see Box II in Fig. 2), e.g., g = LSTM2

(
Z(θ1); θ2

)
, where θ2 denotes the

trainable weights and biases of LSTM2. Concerning the governing equation in Eq. (2), e.g., ż2 + g +Γag −→ 0, we
obtain the “governing loss function” as

Jg(θ1, θ2) =

nc∑
i=1

ż(i)
2 (θ1) + g(i)(θ1, θ2) + Γag

2
2 (11)

A logical connection of the components in Boxes I, II and III thereby forms the proposed PhyLSTM2 network, which
can be trained by solving the following optimization problem through a standard training algorithm (e.g., gradient
descent technique [51]):{

θ̂1, θ̂2
}

= arg min
{θ1,θ2}

J (θ1, θ2) (12)
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Fig. 3. The proposed PhyLSTM3 network architecture. PhyLSTM3 network consists of three deep LSTM networks for modeling state space
variables, restoring force, and hysteretic parameter. Here, Φ is a library of system variables, e.g., inspired from the Bouc–Wen model [52].
The LSTM networks are interconnected through a tensor differentiator which calculates the derivative of state space variables.

where J (θ1, θ2) is the total loss function composed of both data loss and physics loss, given by

J (θ1, θ2) = αJd (θ1) + βJe(θ1) + γJg(θ1, θ2) (13)

Here, α, β and γ are user-defined weight coefficients for convergence control (e.g., inversely proportional to the
magnitude of each term; or for simplicity α = β = γ = 1). The aim here is to optimize the network parameters
{θ1, θ2} for both deep LSTM networks such that PhyLSTM2 can interpret the measurement data while satisfying
the physics constraints. Note that the equality condition and the governing equation should hold for any collocation
samples that only consist of generic earthquake records with different magnitudes and frequency contents. This
will essentially enhance the capability of LSTM1 for modeling the underlying nonlinear input–output relationship
within a physically feasible solution space. Note that both LSTM networks in the proposed PhyLSTM2 architecture
used in this study have three LSTM layers and two fully-connected layers.

2.3. PhyLSTM3

For dynamic systems with complex rate-dependent hysteretic behavior (e.g., dependent on ṙ), the governing
equation in Eq. (2) can be augmented by another nonlinear differential equation of the hysteretic parameter r,
expressed as,{

ü + g = −Γag

ṙ = f (Φ)
(14)

where f is a nonlinear function and Φ is a library of system variables. For instance, the Bouc–Wen model [52] takes
Φ =

{
∆u̇, |∆u̇|, r, |r|n−1, |r|n

}T to model the nonlinear hysteresis, where ∆u̇ denotes the inter-story velocity vector.
A simplified version of the library reads Φ = {∆u̇, r}T if a priori knowledge is unknown. Therefore, we propose to
augment the PhyLSTM2 network by introducing another deep LSTM network to model the differential equation of r
(see Box IV in Fig. 3), e.g., ṙ = LSTM3

(
Φ(θ1); θ3

)
, where θ3 denotes the trainable weights and biases of LSTM3.

This essentially forms the PhyLSTM3 network architecture as shown in Fig. 3, with four components, including
three deep LSTM networks and a tensor differentiator. Similar to PhyLSTM2, the other two LSTM networks are
used to model the state space variables Z and the mass-normalized restoring force g, respectively. The “hysteretic
loss function” can then be obtained:

Jh(θ1, θ3) =

nc∑
i=1

ṙ(i)(θ1, θ3) − ż(i)
3 (θ1)

2
2 (15)
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Fig. 4. The 3-story steel MRF building.

The tensor differentiator calculates the derivative of the state space outputs {ż1, ż2, ż3} so that the physics constraints
can be well constructed. Note that the PhyLSTM3 network can be trained by optimizing the trainable parameters:{

θ̂1, θ̂2, θ̂3
}

= arg min
{θ1,θ2,θ3}

[
J (θ1, θ2) + ηJh(θ1, θ3)

]
(16)

where η is also a user-defined weight coefficient (e.g., η = 1 for simplicity). In PhyLSTM3, the physics loss
enforces the satisfactory of physics constraints including the SS variable equality (ż1 −z2 −→ 0), equation of motion
(ü + g +Γag −→ 0), and the hysteretic parameter equation (ż3 − ṙ −→ 0). Note that PhyLSTM3, as a generalization
of PhyLSTM2, is, in theory, more powerful in metamodeling of highly nonlinear structures. This will be verified
in the numerical example section.

3. Numerical validation: 3-story moment resisting frame

The proposed physics-informed multi-LSTM networks are firstly validated for metamodeling of a highly
nonlinear structural system under seismic excitation. In this example, synthetic data (e.g., nonlinear time–history
response) of a 3-story steel moment resisting frame (MRF) are generated by numerical simulation. We test the
performance of the proposed PhyLSTM2 and PhyLSTM3 networks for seismic metamodeling of such a structure
and compare them with the classical deep LSTM network. Both PhyLSTM2 and PhyLSTM3 map the ground
motion ag to the full state space response {u, u̇, r}T (see Figs. 2 and 3), while LSTM can only predict {u, u̇}

T (see
Fig. 1(a)), given measured displacements and velocities. Note that, as mentioned previously, the hysteretic parameter
r is a non-observable latent variable. The network training has been performed in the Python environment using
TensorFlow [53] which is a popular and well documented open source symbolic math library for machine learning
applications developed by Google Brain Team. It offers flexible data flow architecture enabling high-performance
training of various types of neural networks on a variety of platforms (CPUs, GPUs, TPUs). Simulations in this
paper are performed on a workstation with 28 Intel Core i9-7940X CPUs and 2 NVIDIA GTX 1080Ti GPU cards.

We test and validate the proposed methodology on a full scale 3-story office building. The prototype building
adopted from Dong et al. [54] is assumed to be on a stiff site in Pomona, California. Fig. 4(a) shows the plan view
of the building. The overall dimensions of the prototype structure are 45.7 m (150 ft) by 45.7 m (150 ft) in plan and
11.43 m (37.5 ft) in elevation. The structural system of the building includes a lateral resisting system, a damping
system, and a gravity load system. The lateral resisting system consists of 8 identical single-bay moment resisting
frames (MRFs). The damping system consists of 8 single-bay frames with nonlinear viscous dampers and associated
bracing, termed as damped braced frames (DBFs). The gravity load system includes the uniformly distributed gravity
frames in plan. The floor is assumed to be rigid, and thus the MRFs, DBFs, and the gravity system are assumed to
deform together in each horizontal direction. Due to the symmetry of the prototype building, only one quarter of
the floor plan within the seismic tributary area as shown in Fig. 4(a) is considered, forming the prototype structure
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Fig. 5. Suite of earthquake records used in this study.

investigated in this study. The 3-story prototype structure shown in Fig. 4(b) consists of a single-bay MRF, an
associated single-bay DBF, and the gravity load system with associated seismic mass. The horizontal displacement
at the ground level is restrained, and the columns are fixed at the base level. The design details of this structure
can be found in the reference [54].

To generate the training/validation datasets, the prototype structure shown in Fig. 4(b) is modeled by the
nonlinear computational platform, RT-Frame2D, developed in an embedded function under the MATLAB/Simulink
environment [55,56]. To preserve stability for nonlinear dynamic analysis, an explicit unconditionally-stable
integration scheme is adopted [57]. A concentrated plasticity model is employed for the nonlinear beam–column
elements in RT-Frame2D, assuming that yielding occurs at the element ends. A bilinear moment–curvature hysteresis
material model, with kinematic hardening and a post yielding ratio of 2.5%, is applied. Panel zone elements are
used to model the shear deformation and the uniform bending deformation of the MRF panel zones. The element
properties include the linear flexural rigidity (EI), axial rigidity (EA), shear rigidity (GA) and yield curvature κ .
Mass is assigned as 4.78 × 105 kg and 5.17 × 105 kg distributed over beam elements at the first/second and third
floor respectively for global mass matrix assembling. The gravity load system is represented by the lean-on column,
which is modeled by elastic beam–column elements. The seismic mass is lumped and the gravity load is applied
at each floor level on the lean-on column so that P-∆ effects are included in the nonlinear analysis. The lean-on
column is connected to the MRF using a rigid diaphragm. The inherent damping ratios of the first two modes are
assigned as 2% using Rayleigh damping. This does not account for energy dissipation from inelastic response of
the MRF, which is included directly within the nonlinear elements. The natural frequencies are 1.02 Hz, 3.61 Hz,
and 8.32 Hz for the first three modes. More details of the numerical modeling can be found in [55,56].

A synthetic database, consisting of nonlinear time–history responses of the structure (e.g., {ud , u̇d}
T ), is

generated, under excitation of a suite of 97 earthquake records selected from the PEER strong motion database [58]
in the area of Pomona, California (latitude, longitude = 34.0608◦ N, 117.7558◦ W) with a 10% probability of
exceedance in 50 years. These ground motion records are selected using the earthquake selection and scaling tool
developed by Baker and Lee [59] to match the target conditional spectrum which is conditional on a spectral
value at a conditioning period of the fundamental natural frequency of the structure. The selected ground motion
records are scaled such that the mean response spectrum matches the design spectrum of the prototype building.
Fig. 5(a) shows the conditional acceleration spectra of all 97 selected earthquake records. To establish the database
in this example, the incremental dynamic analysis (IDA) is conducted for each ground motion record with scaled
intensities (e.g., amplitudes) to simulate different levels of structural damages and nonlinear responses composed
of both elastic and plastic deformation, producing an ensemble of 806 total datasets for the prototype structure.
Noteworthy, each dataset contains the input ground acceleration and output structural displacements, velocities,
and mass-normalized restoring forces (not used in training and only used for testing the predictability of the
trained metamodel). To generate the datasets for training the proposed physics-informed multi-LSTM networks,
we select 7 representative ground motions based on unsupervised clustering [60] and take the corresponding 46
input–output pairs resulted from IDA as the training/validation datasets. The purpose of ground motion selection
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Fig. 6. Performance of PhyLSTM2, PhyLSTM3 and LSTM for prediction of nonlinear displacements of a 3-story MRF structure: (a)–(c)
regression analyses where γ denotes the correlation coefficient, and (d) predicted displacements at the top floor under two unseen earthquake
excitations randomly picked from the datasets for illustration purpose. Note that Case 1 denotes Earthquake 1 and Case 2 denotes Earthquake
2.

herein is to generate diversifying datasets for a limited, and ideally minimal, number. Since IDA is conducted
for magnitude effects, the earthquake excitations are clustered based on the conditional spectral accelerations (Sa)
shown in Fig. 5(a). Fig. 5(b) shows the identified 7 cluster centroids for the suite of 97 earthquakes using an
unsupervised learning clustering algorithm [41,60]. Only one earthquake record that is closest to the cluster centroid
is selected from each cluster for generating the training/validation datasets, while the rest are considered as the
prediction dataset. A total of 760 IDA input–output pairs for the rest 90 unselected earthquakes are considered
as the prediction/test datasets. Note that both training and validation datasets are considered as “known” where
{ag, ud , u̇d}

T are fully given for training/validating the PhyLSTM2, PhyLSTM3 and LSTM metamodels, while the
prediction dataset is considered as “unknown ground truth” only for testing purpose.

All the training/validation datasets are reshaped to 3D arrays in order to be compatible with the data format
for LSTM networks, e.g., the input and output sizes are [46, 10001, 1] and [46, 10001, 3]. A ratio of 0.8/0.2
is used for splitting training and validation datasets which are shuffled before each epoch to maximize feature
learning from limited data. The datasets are fed into the LSTM network (see Fig. 1(a) or Box I in Figs. 2 and 3)
to compute the data loss Jd . A number of 200 earthquake samples in addition to the known earthquake records
in the training/validation datasets are used as collocation samples for determining the physics losses (e.g., Je, Jg ,
Jh). Training the metamodels consists of two phases with different optimization algorithms. In pre-training, Adam
(Adaptive Momentum Estimation) is selected as the optimizer with a learning rate of 0.001 and a decay rate of
0.0001 [51] for a total number of 1 × 104 epochs. The pre-trained model is further tuned using L-BFGS optimizer
which is a quasi-Newton, gradient-based optimization algorithm [61]. The network parameters (weights and biases,
e.g., θ1, θ2 and θ3) are updated iteratively through back propagation such that the loss function defined in Eq.
(13) or Eq. (16) is minimized. The trained network (e.g., with the minimum validation loss value) is then used as
the metamodel to predict structural displacements, velocities, and restoring forces under unknown/unseen ground
motions. Note that the speedup of the trained metamodel for response inference/estimation is >103 times faster
compared to the conventional FEM simulation, making the model more suitable for fragility analysis.

Fig. 6 shows the performance of the three networks (e.g., PhyLSTM2, PhyLSTM3 and LSTM) for prediction of
nonlinear displacements of the 3-story MRF structure. Fig. 6(a)–(c) summarize regression analysis of the predicted
displacement time histories across all 760 testing datasets. It can be observed that the majority of the correlation
coefficients (denoted as γ ) for both PhyLSTM2 and PhyLSTM3 are greater than 0.9, indicating very accurate
prediction. Clearly, the proposed physics-informed multi-LSTM approaches are much more robust and produce
more accurate prediction compared to classical LSTM without embedded physics. The worst scenario for LSTM
corresponds the correlation coefficient γ = 0.25 which is much lower compared to PhyLSTM2 with γ = 0.74 and
PhyLSTM3 with γ = 0.76. Fig. 6(d) shows predicted displacement time histories at the top floor under two example
earthquakes, with the corresponding correlation coefficients marked in the regression plot for PhyLSTM2 (γ =

0.95 and 0.76), PhyLSTM3 (γ = 0.95 and 0.89), and LSTM (γ = 0.66 and 0.85). The PhyLSTM2 prediction, with
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Fig. 7. PhyLSTM2-predicted IDA displacements at the 3rd floor for three example unseen earthquakes with varying intensities
(e.g., magnitudes).

γ = 0.95, matches the reference well in magnitudes, phases, as well as residual drifts that reflect plastic deformation
as shown in Fig. 6(d). Note that the prediction displacement time histories for γ > 0.95 are not shown since the
predicted displacements have an excellent match with the ground truth. Even for the case with less satisfactory
prediction (e.g., γ = 0.76), the PhyLSTM2 approach is still able to reasonably well predict the displacement
time histories using very limited training data. Similar prediction performance is observed for the PhyLSTM3

metamodel. The predicted structural displacements using LSTM are also presented in Fig. 6(d). Although the
predicted peak magnitudes and phases of displacements relatively well match the reference, the residual drifts
(e.g., plastic deformation) cannot be accurately predicted by LSTM. This indicates that it is intractable to learn the
complex hysteretic behavior purely from data in training especially when available datasets are limited. In summary,
both PhyLSTM2 and PhyLSTM3 outperform LSTM, while PhyLSTM2 produces slightly better prediction compared
with PhyLSTM3. Note that the nonlinear hysteresis of this structure is rate-independent (e.g., independent on ṙ) such
that PhyLSTM2 is more capable of modeling the latent nonlinearity given its parsimonious architecture compared
with PhyLSTM3. The favorable performance of PhyLSTM2, for example, is further illustrated in Fig. 7, which shows
the predicted IDA displacements in comparison with the ground truth under excitation of the same earthquake but
with varying intensities. It is seen that, although the input earthquakes are scaled linearly, the trained metamodel
is capable of capturing and distinguishing the nonlinear structural responses, indicating that the trained metamodel
has extrapolation ability and learns the underlying dynamics/physics instead of just regression of the training data.

Fig. 8 presents the result of predicted velocities by PhyLSTM2, PhyLSTM3 and LSTM, respectively. It turns out
the velocities are much easier to learn and can be accurately predicted even using LSTM, because velocity time
histories have less complex behaviors such as residuals. Nevertheless, PhyLSTM2 and PhyLSTM3 still provide
better prediction accuracy compared with the data-driven LSTM. Another advantage of physics-informed multi-
LSTM networks is that the latent state (e.g., the hysteretic parameter r resulting from LSTM1 or the nonlinear
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Fig. 8. Performance of PhyLSTM2, PhyLSTM3 and LSTM for prediction of velocities of a 3-story MRF structure: (a)–(c) regression analyses
where γ denotes the correlation coefficient, and (d) predicted velocities at the top floor under two unseen earthquake excitations randomly
picked from the datasets for illustration purpose. Note that Case 1 denotes Earthquake 1 and Case 2 represents Earthquake 2.

Fig. 9. Performance of PhyLSTM2 and PhyLSTM3 for prediction of the mass-normalized restoring forces g: (a)–(b) regression analyses
where γ denotes the correlation coefficient, and (d) predicted mass-normalized restoring forces at the top floor under two unseen earthquake
excitations randomly picked from the datasets for illustration purpose. Note that without the measurements of g, the physics-informed
multi-LSTM approaches are able to predict the latent nonlinear restoring force while LSTM fails to predict it without measurement in
training.

restoring force g from LSTM2, as shown in Figs. 2 and 3) can be predicted even though no measurement of
the state is available for training. This can be realized by the physical knowledge encoded in the network. For
example, Fig. 9 shows the predicted mass-normalized restoring force using PhyLSTM2 and PhyLSTM3 given no
measurements of which in training. This is a mission impossible by classical data-driven LSTM networks. Note that
the time history examples shown in Figs. 6, 8, and 9 are subjected to the same set of ground motion excitations for
better comparison. This example clearly illustrates the accuracy and robustness of the proposed physics-informed
multi-LSTM metamodels compared with the classical data-driven LSTM. From the aforementioned results, we can
also conclude that, with physics constraints, the proposed physics-informed multi-LSTM metamodels are capable
of learning and recognizing hidden patterns obeying given governing laws from very limited data.

4. Numerical validation: Bouc–Wen hysteresis model

We herein consider a nonlinear system with rate-dependent hysteresis (e.g., dependent on ṙ) as described in
Eq. (14) and compare the capability of PhyLSTM2 and PhyLSTM3 for complex hysteresis modeling. The Bouc–
Wen model [52,62] is adopted for showcase, in which, for the i th degree-of-freedom (DOF), the rate-dependent
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Fig. 10. Prediction performance of displacement u using PhyLSTM2 and PhyLSTM3: (a) regression analysis for PhyLSTM2; (b) two
examples of predicted displacement time histories; and (c) regression analysis for PhyLSTM3.

hysteresis is expressed as [63]:

ṙi = ∆u̇i − αi |∆u̇i ||ri |
ni −1ri − βi∆u̇i |ri |

ni (17)

where ∆u̇i is the relative velocity between (i − 1)th and i th DOF, denoted as ∆u̇i = u̇i − u̇i−1 for i ≥ 2 and
∆u̇i = u̇1 if i = 1; αi , βi and ni are the nonlinear parameters of the Bouc–Wen model. In this example, a single
DOF (SDOF) Bouc–Wen model is used with the following parameters: m = 500 kg, c = 0.35 kNs/m, k = 25 kN/m,
α = 2, β = 2 and n = 3. The natural frequency of the system is 1.13 Hz. The parameter λ in Eq. (1) is assumed
as 0.5. A synthetic database, consisting of 100 samples (e.g., independent seismic sequences), was generated by
numerical simulation for the SDOF nonlinear system excited by random band-limited white noise (BLWN) ground
motions with different magnitudes. Each simulation was executed up to 30 s with a sampling frequency of 50 Hz
resulting in 1501 data points for each record. All datasets are formatted to required 3D arrays for PhyLSTM2 and
PhyLSTM3. Only 10 datasets with BLWN input and corresponding structural displacement and velocity responses
are randomly selected and considered as “known” datasets for training/validation (with a split ratio of 0.8/0.2),
while the rest are considered as “unknown” datasets to test the prediction performance of trained metamodels. 50
additional collocation samples (e.g., BLWN input records only) are used to guide the model training with physics
constraints.

The network configuration for this example is given as follows: each LSTM network in PhyLSTM2 and
PhyLSTM3 has two LSTM layers and one FC layer, which turns out to be sufficient to train an accurate model.
The PhyLSTM2 and PhyLSTM3 models are first pre-trained using the Adam optimizer [51] with a learning rate of
0.001 for 5000 epochs and with a learning rate of 0.0001 for another 5000 epochs. Then the L-BFGS optimizer [61]
is used to enhance the pre-trained model until the default convergence criteria is triggered. We take Φ = {∆u̇, r}

T

as the simplified library of basis functions for hysteresis modeling.
Fig. 10 summarizes the performance of both PhyLSTM2 and PhyLSTM3 for prediction of nonlinear displacement

time histories of the SDOF Bouc–Wen model under unseen BLWN excitations. Comparing the regression analysis
shown in Fig. 10(a) and (c) for PhyLSTM2 and PhyLSTM3 respectively, it can be clearly seen that PhyLSTM3

ensures a larger probability of correlation coefficients close to one, demonstrating a better prediction performance.
Besides, the accuracy for the worst scenario using PhyLSTM3 (γ = 0.77) is much higher in contrast to PhyLSTM2

(γ = 0.19), indicating that PhyLSTM3 is a more robust and stable approach for nonlinear rate-dependent hysteresis
modeling. Fig. 10(b) shows two examples of predicted displacement time histories using PhyLSTM2 and PhyLSTM3

with the corresponding correlation coefficients of γ = 0.85 and γ = 0.99 for Case 1 and γ = 0.19 and γ = 0.77
for Case 2. The mass-normalized restoring force g can be perfectly predicted (with γ ≈ 1) using the proposed
PhyLSTM3 as shown in Fig. 11 even though no measurement is available in training. The hysteresis of this nonlinear
system can also be well estimated by the trained PhyLSTM3 metamodel as depicted in Fig. 12 which presents two
examples of u-g curves (e.g., predicted displacement v.s. predicted restoring force). To further test the robustness of
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Fig. 11. PhyLSTM3-predicted mass-normalized restoring force: (a) regression analysis; and (b) predicted time histories.

Fig. 12. Examples of predicted hysteresis curves of nonlinear restoring force versus displacement using the proposed PhyLSTM3.

Fig. 13. Predicted displacements of the SDOF Bouc–Wen model under unseen earthquake records using the PhyLSTM3 metamodel trained
by BLWN excitation data.

the proposed approach, the PhyLSTM3 metamodel trained by BLWN excitation data is employed to predict structural
responses subjected to the suite of 97 ground motions used in the previous example. Fig. 13(a) summarizes the
overall prediction performance over all 97 records using PhyLSTM3, as a result, with the majority (e.g., > 95%)
of correlation coefficients greater than 0.9. Fig. 13(b) shows two example time histories of predicted structural
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displacement with γ = 0.99 and γ = 0.79 (e.g., the worst scenario). In general, this clearly demonstrates the
robustness of PhyLSTM3 in metamodeling of nonlinear hysteretic system.

5. Conclusions

This paper presents a novel physics-informed deep learning paradigm for metamodeling of nonlinear structural
systems with showcase of predicting nonlinear structural seismic responses. In particular, two architectures of
physics-informed multi-LSTM networks (e.g., PhyLSTM2 and PhyLSTM3) are presented for representation learning
of sequence-to-sequence features from limited data enhanced by available physics. The laws of physics are taken
as extra constraints, encoded in the network architecture, and embedded in the overall loss function to enforce the
model training in a feasible solution space. In such way, the trained metamodel can accurately capture structural
dynamics even with very scarce training/validation data. Another distinction of the proposed networks is that
they can accurately model non-observable, latent nonlinear state variables (e.g., hysteretic parameter or nonlinear
restoring force), where measurement is unavailable. The performance of PhyLSTM2 and PhyLSTM3 is demonstrated
through two numerical examples (e.g., a 3-story MRF structure and a SDOF Bouc–Wen model). Numerical results
illustrate that the physics-informed multi-LSTM models outperform the classical non-physics-guided data-driven
LSTM network in terms of robustness and prediction accuracy. For nonlinear systems with rate-independent
hysteresis, PhyLSTM2 is more capable of modeling the latent nonlinearity given its parsimonious architecture
compared with PhyLSTM3; however, for the system with rate-dependent hysteresis, PhyLSTM3 is more powerful
and produces much more accurate prediction thanks to its explicit modeling of the rate-dependent hysteresis using
a differential equation. In general, the proposed PhyLSTM2 and PhyLSTM3 metamodels possess salient features
that include (1) clear interpretability with physics meaning, (2) superior generalizability/extrapolability with robust
inference, and (3) excellent capability of dealing with less rich data. It turns out that the embedded physics can
provide constraints to the network outputs, alleviate overfitting issues, reduce the need of big training datasets, and
thus improve the robustness of the trained model for more reliable prediction. Though the proposed metamodeling
approaches are presented in the context of structural seismic response prediction, they can be easily extended
to develop metamodels for other types of structural systems, where the physics-informed multi-LSTM network
architectures should be adapted by changing the physics part as needed. In addition, we will test the scalability of
the proposed methodology on developing metamodels in a higher-dimensional parameter space (e.g., the number
of state variables is larger than 100) in the future.
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