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In a marketplace where a number of firms produce and sell a homogeneous product, an 
innovator develops cost-cutting manufacturing technology and decides to sell it to various 
firms in the form of a license for profit. Given the innovator’s license pricing policy, each 
firm independently decides whether to purchase the innovation license and how many 
products to produce. To put it simply, the firms are then in a Cournot market in which the 
product price is a decreasing function of the total amount of the product on the market. 
Both the innovator and the firms are acting out of self-interest and look to maximize their 
utilities. We consider the problem of designing optimal pricing policies for the innovator.
A pricing policy could be in the form of a one-off upfront fee, a per-unit royalty fee, or 
a hybrid of both. Building upon the results of Segal [1], we first show that in a properly 
designed pricing policy, it is a strictly dominant strategy for the firms to accept the pricing 
policy, and that this constitutes the unique Nash equilibrium of the game. For the hybrid-
fee policy, we devise an algorithm that computes the optimal price in time O (n3), where 
n is the number of firms. For the royalty-fee policy, we show that the problem is captured 
by convex quadratic programming and can be solved in time O (n6 L2), where L is the 
number of input bits. For the upfront-fee policy, we show the optimal policy problem is NP-
complete and we devise an FPTAS algorithm. Moreover, we compare the revenue achievable 
through the above three pricing policies when all firms are identical.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A patent license agreement grants a licensee exclusive rights to manufacture, sell, and use a patented invention. It is an 
effective way to disseminate innovations and create a huge market. A group of six companies, including Apple and Microsoft, 
outbid Google and paid $4.5 billion for 6000 Nortel wireless patents, about $750,000 per patent [2]. AOL licensed its 800 
patents to Microsoft for $1.1 billion in 2012 [3]. Kodak sold about 1100 digital imaging patents for $525 million [4]. The five 
largest intellectual property offices in the world granted 1.25 million patents and received 2.7 million patent applications 
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Table 1
Ratios between optimal hybrid-fee policy and dif-
ferent pricing policies in the symmetric case.

Pricing Policy Royalty-Fee Upfront-Fee

Ratio 3 1.62

in 2019 [5]. The high patent licensing fee and the huge amount of patents issued indicate the critical role of patents in 
business.

In this paper, we follow the model introduced by Arrow [6] and consider the problem of designing optimal pricing poli-
cies for the innovator owner. The innovator is someone who develops cost-cutting manufacturing technology and decides to 
sell it to the firms in a license for profit. They can be regarded as an outsider, for example an independent institution. In the 
first stage, the innovator as license owner announces a patent license agreement to the firms that produce a homogeneous 
product. In the second stage, each firm may sign a patent license agreement with the innovator, manufacture the item at a 
reduced cost, or ignore it and produce the item at its standard cost. In the third stage, the firms decide how many products 
to produce. Thus, they compete with each other in a Cournot market game [7,8], in which the market price of the product 
is a decreasing function of the total quantity of the product available on the market. We consider a complete information 
setting in which the innovator knows firms’ pre-innovation costs, as it can be inferred through the equilibrium in a standard 
Cournot game. Also, the innovator knows by how much its innovative technology can save unit-production costs. The firms 
are self-interested and, therefore, will choose the strategy that maximizes their utilities.

Typically, there are two types of payment that an innovator offers in a cost-cutting patent contract. Bousquet et al. [9]
concluded that 78% of the contracts adopt per-unit royalty fee, using a French firm’s data. Based on a survey that includes 62 
research universities, Thursby et al. [10] showed that the one-off upfront fee is used in 66% contracts while 81% respondents 
used royalty fees. For a comprehensive study, we consider all of these three typical pricing policies as per-unit royalty fee, 
one-off upfront fee, or a hybrid of both.

When innovation technology is sold as a commodity to firms through patent licensing, the critical feature is that there 
exist identity-dependent externalities. When firms compete with each other in a Cournot game, these firms with an inno-
vation license can reduce their manufacturing costs. They stand in a better position in the market and can influence the 
balance between supply and demand. Therefore, other firms suffer from negative externalities and need to take this into 
account when deciding whether to buy a license. Note, though, when multiple firms purchase the innovation licensing, the 
resultant externalities are not necessarily additive.

The contribution of the paper is the following:

• We design a pricing policy framework for patent licensing. First, the firms choose whether to accept the pricing policy. 
Then they are in a Cournot competition, and their utilities are determined by the unique Nash equilibrium of the game. 
We show that in a properly designed pricing policy, each firm’s dominant strategy is to purchase the license.

• We formulate an optimization problem whose objective is to maximize the sum of revenues generated by the upfront 
and royalty fees, respectively. We locate the optimal hybrid-fee policy and propose an efficient algorithm that solves 
it in run-time O (n3) where n is the number of firms. For the royalty-fee policy, we show an algorithm that can com-
pute it optimally in running time O (n6L2), where L is the length of the input. For the upfront-fee policy, we prove 
that the problem is NP-hard, and we devise an FPTAS algorithm with run-time O (Lε−3n11 logn) which achieves 1 − ε
approximation.

• We observe an interesting phenomenon whereby an innovator without any cost-reducing innovation may gain revenue 
by selling subsidy policy. In particular, by setting negative royalties (giving a positive money transfer to the firms) and 
a positive upfront fee, the upfront fee will outweigh the royalties.

• We compare the revenue achieved in different pricing policies. In the symmetric case where all firms are identical, the 
ratio between the revenue of the optimal hybrid-fee policy and the revenue of the optimal royalty-fee policy is at most 
3, the ratio between the revenue of the optimal hybrid-fee policy and the revenue of the optimal upfront-fee policy is 
at most 1.62 (Table 1).

1.1. Related work

Our work contributes to the growing body of literature on the patent licensing [11–16]. Arrow [6] first realized that 
the value of cost-reducing innovation could be converted to profit by patent licensing, which motivates the monopoly to 
innovate. Kamien et al. [17], and Kamien and Tauman [18,19] showed that the upfront-fee policy dominates the royalty-fee 
policy in terms of innovator’s revenue. Kamien et al. [19], and Sen [16] compared the auction method with the upfront-fee 
policy and royalty-fee policy. Sen and Tauman [20] considered the hybrid-fee and its influence on the price in Cournot 
games. Sen and Tauman [21] considered the optimal licensing policy in cases of both drastic innovation and non-drastic 
innovation. Beggs [22] and Gallini and Wright [23] considered the asymmetric information model where the innovator has 
privileged information about the innovation. Bousquet et al. [9] studied the ad valorem royalty, which results in a firm 
paying a fraction of its revenue to the innovator. Bimpikis et al. [24] considered the best way to sell accurate information 
63



M. Chen, H. Huang, W. Shen et al. Theoretical Computer Science 901 (2022) 62–86
about the parameters to firms in Cournot games. To the best of our knowledge, these works have only examined the patent 
licensing problem when firms have the same cost per product unit. Due to firms’ symmetry, the critical step of solving the 
pricing policy problem is essentially reduced to deciding the number of licenses to be sold. In this paper, we consider a more 
general setting in which firms have different manufacturing costs, which is more consistent with actual practice. The main 
difficulty is that firms that do not purchase innovation licenses may drop out of the markets due to high post-innovation 
costs. As a result, there is no closed formula for computing the innovator’s revenue in terms of the pricing policy.

The externality effects have been studied in a Cournot competition [11,18]. Hart et al. [25], and Rey and Tirole [26]
considered the problem that arises when a company sells intermediate goods to firms who then process them to produce 
homogeneous consumer goods in the Bertrand-Edgeworth game. Segal [1] showed how to implement an efficient outcome 
in the presence of multilateral externalities, which can be adopted in designing the pricing policy. Externalities in auctions 
have been extensively studied [27–29]. Jehiel, Moldovanu, and Stacchetti [30,31] considered selling an indivisible item. 
Leme et al. [32] considered the setting where bidders have combinatorial valuations, and innovators hold item auctions 
sequentially. Haghpanah et al. [33], and Rohlfs [34] considered positive externalities in a social network where a person’s 
valuation of an item may increase if his friends buy it as well. Brânzei et al. [35] studied the problem of a fair division of 
divisible heterogeneous resources in the presence of externalities.

2. Preliminaries

There is an innovator whose pioneering technology can help the manufacturing firms to reduce their unit-cost of pro-
ducing a homogeneous product. There are n such firms interested in purchasing the innovation license to become more 
competitive on the market. In the model, the innovator publicizes the pricing policy for all firms. Each firm can either keep 
producing its products at a higher cost without the innovation technology or purchase the license as per the pricing policy 
and produce its products at a lower cost. In either case, each firm finally decides how many quantities of their products 
they are producing. Both the innovator and the firms are utility-maximizers. Upon knowing the pricing policy, the firms 
first decide whether or not to purchase the license and then decide their production quantity. Hence, the second stage of 
the model is a Cournot competition. We are interested in devising a pricing policy to maximize the innovator’s revenue.

Denote N = {1, 2, . . . , n} the set of all firms. Let ci ∈ [ci, ci] denote Firm i’s cost for producing each unit of product, where 
ci is Firm i’s cost without the cost-cutting technology, and ci is Firm i’s cost with the cost-cutting technology. W.l.o.g., we 
assume ci is sorted in an non-decreasing order, i.e., c1 ≤ c2 ≤ ... ≤ cn . Let qi be the quantity of the products produced by 
Firm i. Let ri and bi denote the per-unit royalty fee and the one-off upfront fee, respectively. In an upfront-fee plus royalty-
fee (hybrid-fee) pricing policy, Firm i pays the innovator an upfront fee bi , and its per unit production cost ci = ci + ri . In 
an upfront-fee pricing policy, Firm i pays the innovator an upfront fee bi , and its per unit production cost ci = ci , regardless 
of the production quantity. In a royalty-fee pricing policy, Firm i’s per unit production cost ci = ci + ri . If Firm i does not 
purchase the cost-cutting technology license, its per unit production cost ci = ci (Tables I.5 and I.6).

We consider the classical version of the Cournot competition [7,8], in which all firms produce a homogeneous product 
and the price p of each unit of product is linearly decreasing in the total quantity. That is,

p(q) = θ −
n∑

i=1

qi, (1)

where q = (q1, q2, . . . , qn) is the quantity profile of all firms, and θ is a pay-off relevant parameter. We consider the complete 
information setting where all parameters (ci , ci for all i, and θ ) are publicly known.

Therefore, the utility ui of Firm i is

ui =
{

qi · (p − ci) − bi, Hybrid-fee or Upfront-fee,

qi · (p − ci), Royalty-fee or no license.

After deciding whether or not to purchase the innovation license, each firm’s strategy is the quantity of the product they 
are going to produce. In this Cournot game, their strategies constitute an equilibrium in which no firm would change its 
production quantity if other firms are not changing. The following theorem asserts the uniqueness of Nash equilibrium in 
Cournot games.

Theorem 1 (Szidarovszky and Yakowitz [36]). For any given pricing policy and the firms’ decision on purchasing the innovation license 
or not, the corresponding Cournot game has a unique equilibrium.

We use the following example to illustrate that, by adequately offering a hybrid-fee policy, the innovator can incen-
tivize the firms to accept its pricing policy and consequently increase its revenue in equilibrium. Similar examples can be 
constructed for the upfront-fee policy and the royalty-fee policy as well.

Example 1. There are two firms in the market. The unit cost for each firm, without the cost-cutting technology, is c1 = 30
and c2 = 45, respectively. The costs reduce to c1 = 15 and c2 = 15 if they purchase the license. The market price of the 
product is p = 120 −∑i∈[2] qi , where qi is the quantity produced by Firm i, i = 1, 2.
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When neither of the two firms purchases the licenses, the unique pure Nash equilibrium of the Cournot game is q1 = 35
and q2 = 20. The market price is p = 65, and the utility of the two firms under equilibrium is 1225 and 400, respectively. 
The revenue of the innovator is 0 in this scenario.

Now that if Firm 2 accepts a hybrid-fee pricing policy that charges an upfront fee b2 = 100 and per-unit royalty fee 
r2 = 15, then in the unique Nash equilibrium of the Cournot game, the production quantity of the firms becomes that 
q1 = 30 and q2 = 30. Hence, the market price is 60, and the two firms’ utilities are 900 and 800, respectively. Since Firm 
2’s utility is larger than its utility before accepting the hybrid-fee policy, it will purchase the license. The revenue of the 
innovator is r2q2 + b2 = 550 in this scenario.

2.1. Nash equilibrium in Cournot games

Theorem 1 implies that given each firm’s cost ci , both their production quantities and the product’s final price are 
uniquely determined in the Cournot competition. Therefore, effectively, a firm’s strategy is to decide whether to accept the 
pricing policy for the cost-cutting manufacturing technology.

Let p∗({ci}) and q∗
i ({ci}) be the price and Firm i’s production quantity at the equilibrium of the Cournot game. Denote 

E∗({ci}) = {i|ci ≤ p∗({ci})}. That is, E∗({ci}) is the set of firms whose manufacturing cost is lower than the market price at 
equilibrium. Hence, production is beneficial to them. Denote u∗

i ({ci}) Firm i’s utility at the equilibrium of the Cournot game. 
We use p∗, q∗, E∗, u∗ when there is no ambiguity for abbreviation. In the Cournot equilibrium, firms i /∈ E∗ will exit the 
market, and firms i ∈ E∗ will converge to an equilibrium with production quantity q∗

i . The first order condition ∂u∗
i /∂qi = 0

implies∑
j∈E∗

q∗
j + q∗

i = θ − ci .

Combining the equations for all firms i ∈ E∗ , and solving a linear equation system, we get that

q∗
i = θ +∑ j∈E∗ c j

1 + |E∗| − ci, p∗ = θ +∑ j∈E∗ c j

1 + |E∗| and u∗
i = (q∗

i )
2.

This way, we can compute the production quantity and the product price at equilibrium, given the set E∗ . The following 
lemma shows that active firms are precisely those who have the lowest per-unit manufacturing costs. Therefore, we can 
reduce the search space of E∗ . Essentially, we can enumerate the size of E∗ and find the equilibrium in linear time.

Lemma 1. p is the equilibrium price if and only if

p = θ +∑i ci · Ici<p

1 +∑i Ici<p
,

where Ici<p is a binary variable indicating whether ci < p or not.

Proof. For the if direction, since p is the product price in the Cournot game equilibrium, we have that p = θ+∑ j∈E∗ c j

1+|E∗| . The 
statement is clearly true since E∗ = {i : ci < p}. For the only if direction, we define

q̃i =
{

p − ci, if ci < p,

0, if ci ≥ p.

It is easy to check that Firm i producing q̃i units of the product will constitute a Nash equilibrium. �
2.2. The optimal policy framework

Denote ûi Firm i’s lowest utility that it may obtain in the Cournot game.
Before we present the pricing policy framework, we characterize the lower bound of ûi . The following lemma states that 

Firm i has the lowest utility when it does not have the cost-cutting technology while all other firms get the innovation 
without a royalty fee.

Lemma 2. In a Cournot game, Firm i obtains the lowest utility ûi when Firm i produces the product at the highest possible unit cost ci
while all other firms produce the product at their lowest possible unit costs {c j} j �=i . That is, ûi = u∗

i ({c j} j �=i, ci).

Proof. Define E1 = E∗({ci}) the active firms in the equilibrium when Firm i achieves the lowest utility. Define E2 =
E∗({c j} j �=i, ci) the active firms in the equilibrium when all firms except i have licenses free of charge. We define prices 
in these two equilibriums as p1 and p2 respectively. We consider two cases depending on whether Firm i remains active in 
the first equilibrium.
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• Firm i does not remain active in the worst case, i.e., i /∈ E1. We claim that Firm i also drops out of the market when all 
firms except i are licensed for free, i.e., i /∈ E2. Suppose not, we have i ∈ E2. By Lemma 1, we have ci ≥ p1 and ci < p2
and it implies p1 < p2.
By Lemma 1, for any firm j ∈ E1, we have c j ≤ c j < p1 < p2 which implies Firm j remains active in the second 
equilibrium, i.e., j ∈ E2. As a result, E1 is a subset of E2. Recall the price formula, for j ∈ E2\(E1 ∪ {i}), we have

c j <
θ +∑ j∈E1

c j +∑ j∈E2\(E1∪{i}) c j + ci

|E2| + 1
.

Based on these inequalities together we can get

θ +∑ j∈E1
c j

|E1| + 1
>

θ +∑ j∈E1
c j +∑ j∈E2\(E1∪{i}) c j + ci

|E2| + 1
.

Note that we have higher unit cost in the first equilibrium for firms in E1. We have

θ +∑ j∈E1
c j

|E1| + 1
>

θ +∑ j∈E1
c j +∑ j∈E2\(E1∪{i}) c j + ci

|E2| + 1
,

which is p1 > p2, it is a contradiction.
• Firm i remains active in the worst case, i.e., i ∈ E1. It implies i ∈ E2. Firm i’s utility in two equilibriums are (p1 − ci)

2

and (p2 − ci)
2 respectively. It suffices to prove that

p1 − c1 ≥ p2 − ci . (2)

For any firm j ∈ E1\E2, Firm j with innovation still drops out of the market in the second equilibrium. By Lemma 1, 
we have c j ≥ c j > p2. Plug these inequalities into the formula of p1, we have

p1 ≥ θ +∑E1∩E2\{i} c j + ci

|E1| + 1
+ |E1\E2|p2

|E1| + 1
.

Combined with equation (2), it suffices to prove

θ +∑E1∩E2\{i} c j + ci

|E1| + 1
− ci >

(
1 − |E1\E2|

|E1| + 1

)
p2 − ci . (3)

For firm j ∈ E2\E1, by Lemma 1, we have

c j < p2 = θ +∑ j∈E2\{i} c j + ci

|E2| + 1
.

These inequalities together imply that

p2 <
θ +∑ j∈E2∩E1

c j + ci

|E2 ∩ E1| + 1
.

Plug it into equation (3), it is suffice to prove that

θ +∑E1∩E2\{i} c j + ci

|E1| + 1
− ci >

θ +∑E1∩E2\{i} c j + ci

|E1| + 1
− ci .

This is correct since ci ≥ ci .

These two cases together prove the theorem. �
Next, we present the innovation licensing policy �({ci}). It transforms the policy design problem into an optimization 

problem. By solving the optimization problem, the corresponding optimal policy can be implemented in dominant strategies.

Definition 1. The policy �({ci}) proceeds as follows. The innovator first publicizes a hybrid-fee policy, which charges the 
firms an one-off upfront fee and a per-unit royalty fee. Each firm independently decides whether or not to accept the 
policy. Denote A the set of firms that accept the policy with which they can utilize the cost-cutting technology. Firm i /∈ A
would not be charged by the innovator.

• If A =N , firms i ∈ E∗ buy the license and the cost becomes ci . Firm i ∈ E∗ pays an upfront fee payi = u∗
i ({ci}) − ûi − ε

and a royalty fee riq∗
i ({ci}). Note that if firm i /∈ E∗ , we have u∗

i ({ci}) = ûi = 0 which means Firm i gets ε subsidy from 
the innovator.
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• If A � N , the innovator will exempt the royalty fee and only charge firms in A an upfront-fee. In this case, each firm 
i ∈ A produces the product at the lowest unit cost of ci and decides how many quantities to produce. The innovator 
charges firm i ∈ A the upfront fee payi = u∗

i ({c j} j∈A, {c j} j /∈A) − u∗
i ({c j} j∈A\{i}, {c j} j /∈A\{i}) − ε .

We note that our framework is an adaption of the model introduced by Segal [1]. Particularly, we regard the royalty 
payment 

∑
i∈N q∗

i (ci − ci) in our model as the principal net profit function f (x) in [1] and ci as variable xi . Firm i’s lowest 
utility ûi is regarded as the term min ui(0, x−i). Therefore, we have the following theorem.

Theorem 2 (Proposition 10, Segal [1]). For each firm, accepting the policy is a strictly dominant strategy in procedure �. The strategy 
profile that all firms accept is the unique Nash equilibrium of �. The innovator’s revenue at the equilibrium is∑

i∈N
(q∗

i (ci − ci) + u∗
i ) −

∑
i∈N

ûi . (4)

If {ci} maximizes the above function, then procedure �({ci}) achieves the optimal revenue.

Thus, we transform the pricing policy design problem into an optimization problem in formula (4). Since the second 
term, 

∑
i ûi , is fixed, we only need to maximize the first term. Note that for Firm i who drops out (i.e., the cost is equal or 

higher than the price), q∗
i = u∗

i = 0. So the objective of the optimization problem is

max{ci}
∑
i∈E∗

q∗
i (ci − ci) + u∗

i . (5)

3. Optimal hybrid-fee policy

In this section, we first solve our optimization problem whose objective is presented as equation (5). Then, we generalize 
the setting to the case that the innovator is an incumbent firm (who also produces products and competes with other firms 
in the Cournot game). Sen and Tauman [21] and Sen and Stamatopoulos [37] show that the result is usually different for 
these two cases. However, we show that these two cases are equivalent when the innovator uses the hybrid-fee policy.

3.1. Optimal solution

To solve the optimization problem, we need to determine the set E∗ of firms whose manufacturing cost is lower than 
the market price at equilibrium. For this purpose, we depict a structure-property of set E∗ . We consider the possible values 
of price. By definition p = θ −∑i∈E∗ qi < θ . Suppose the price p lies in the interval (ck, ck+1], k ∈ {0, ..., n}. Here we define 
c0 = 0 and cn+1 = θ for simplicity. Define B = {1, ..., k}, firms in B have cost lower than price, by Lemma 1, B ⊆ E∗ . The 
next lemma shows firms in E∗\B have lower post-innovation cost than firms in N \E∗ .

Lemma 3. In the optimal solution, for two firms j1, j2 > k, if j1 ∈ E∗ and j2 /∈ E∗ , we have c j1
≤ c j2

.

Proof. Since c j1 ≥ ck+1 ≥ p, if j1 does not get the innovation, it can not remain active in the competition. Hence, c j1
≤

c j1 < p. We prove by contradiction. If c j1
> c j2

, we can improve the revenue by licensing the patent to j2 rather than j1. 
In detail, instead of licensing the innovation to j1, we can license the innovation to j2 and let its unit cost be c j1 . To be 
specific, we define c′

i = ci for i �= j1, j2, c′
j1

= c j1 and c′
j2

= c j1 . In such a way, E∗({c′
i}) = E∗({ci}) ∪ { j2}\{ j1} and price does 

not change, p∗({c′
i}) = p∗({ci}). We can keep the same revenue from the upfront fees but gain more from the royalty fees 

since c j1
≥ c j2

. This is a contradiction. �
Based on Lemma 3, firms in E∗\B can be determined uniquely given the size |E∗\B|. Thus, to find the potential optimal 

E∗ , we only need to search k and |E∗|. The following lemma states that all firms in E∗ except one either have their unit 
costs unchanged or obtain the innovation without royalty fee. It implies an efficient algorithm to compute the optimal ci
for i ∈ E∗ .

Lemma 4. There is an optimal solution where there is at most one firm has ci ∈ (ci, ci). For the other firms, we have c j = c j if c j < ci
and c j = c j if c j > ci .

Proof. We first define the innovation owner’s operation �( j1, j2, η) as decreasing the cost of Firm j1 by η and increasing 
the cost of Firm j2 by η. We call operation �( j1, j2, η) feasible if η ≤ min{c j1 − c j1

, c j2 − c j2 , 
1

|E∗|+1 (θ +∑i∈E∗ ci) − c j2 }.
For j1, j2 ∈ E∗ , we claim that if c j1

< c j2
and operation �( j1, j2, η) is feasible, then the revenue will increase by oper-

ation �( j1, j2, η). If c j1
= c j2

, then the revenue will not change. Actually, after the operation, we have c′
i = ci for i �= j1, j2, 

c′ = c j1 − η, c′ = c j2 + η. There are two cases depending on the value of η.
j1 j2
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• If η < 1
|E∗({ci})|+1 (θ +∑i∈E∗ ci) − c j2 . The same set of firms will remain active in the Cournot game. In addition the price 

will not change.
• If η = 1

|E∗({ci })|+1 (θ +∑i∈E∗ ci) − c j2 . Firm j2 drops out of the market. Then firms in E∗\ j2 remain active in the compe-
tition. The price is actually the same:

p∗({c′
i}) = θ +∑i∈E∗({ci})\ j2

ci − η

|E∗({ci})|
= p∗({ci})(|E∗({ci})| + 1) − c j2 − p∗({ci}) + c j2

|E∗({ci})| = p∗({ci}).

In both cases, other active firms still remain active in the equilibrium and the price would not change. This operation will 
only affect the product quantity of Firm j1 and Firm j2. We have q∗

j1
({c′

i}) = q∗
j1
({ci}) + η and q∗

j2
({c′

i}) = q∗
j2
({ci}) − η. The 

total change of seller’s revenue is

η ·
[
(c j1 − c j1

) + q∗
j1
({ci}) − (c j2 − c j2

) − q∗
j2
({ci})

]
=η · (c j2

− c j1
) ≥ 0.

If c j1
< c j2

, the seller’s revenue increases by this operation. If c j1
= c j2

, the seller’s revenue stays the same.
In the optimal solution, if there are two firms j1 and j2 that have c j1 ∈ (c j1

, c j1 ) and c j2 ∈ (c j2
, c j2 ), respectively. W.l.o.g., 

we can assume that c j1
≤ c j2

. We conduct action �( j1, j2, η) on j1, j2 where

η = min

{
c j1 − c j1

, c j2 − c j2 ,
1

|E∗| + 1
(θ +

∑
i∈E∗

ci) − c j2

}
.

The revenue will weakly increase after the operation. At the same time, the number of firms such that ci ∈ (ci, ci) decreases 
by one.

Also, for an optimal solution, assume Firm i is the one who has ci ∈ (ci, ci) and there is a firm j who gets the full 
innovation and has ci < c j . Then we can increase the revenue by the operation �(i, j, η), which is a contradiction. Thus, 
the lemma is proved. �

Based on Lemma 4, there must exist a critical firm l such that if ci < cl we have ci = ci , if ci > cl we have ci = ci and 
cl ∈ [cl, cl]. Note that if there exists Firm i that ci = cl and ci = cl , then we can always construct an optimal solution where 
ci = ci or ci and cl ∈ [cl, cl]. To find optimal parameters {ci}, we only need to enumerate l ∈ E∗ and then compute the 
optimal cl in each instance. The objective function 

∑
i∈E∗({ci})(q

∗
i (ci − ci) + u∗

i ) is a quadratic function of cl , it is easy to 
find the optimal cl . The procedure to solve the optimal licensing strategy through the hybrid-fee policy is summarized in 
Algorithm 1.

ALGORITHM 1: Algorithm for optimal hybrid-fee policy.

1 Input: The unit cost without innovation {ci} and The unit cost with innovation {ci}.
2 Output: The optimal solution E∗ and {ci} to the problem (5).
3 Rev = −∞;
4 copt = ∅;
5 for e = 1; e ≤ n; e + + do
6 for k = 0; k ≤ n; k + + do
7 B = {1, ..., k};
8 E∗ = B ⋃{i1, i2, . . . , ie−k|ci1

≤ ci2
≤ · · · ≤ cin−|B| , i1, i2, . . . , in−|B| ∈ N \B};

9 Sort firms in E∗ in increasing order of {ci}, denoted by {ei};
10 for l = 1; l ≤ e; l + + do
11 cei = cei

∀ei < l;

12 cei = cei ∀ei > l;

13 cl = argmax{∑i∈E∗ q∗
i (q∗

i + ci − ci) s.t. 1
e+1 (θ +∑ j∈E∗ c j) ∈ (ck, ck+1] ∩ (maxi∈E∗ {ci}, mini∈N \E∗ {ci}], qi > 0 ∀i ∈ E∗};

14 if cl exists and Rev <
∑

i∈E∗ q∗
i (q∗

i + ci − ci) then
15 Rev =∑i∈E∗ q∗

i (q∗
i + ci − ci);

16 copt = {ci};
17 Eopt = E∗;
18 end
19 end
20 end
21 end
22 Rev = Rev −∑i∈N ûi ;
23 Return Eopt and copt ;
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Theorem 3. The optimization problem in (5) can be solved in O (n3) time.

3.2. When the innovator produces products (incumbent firm)

In this subsection, we consider the problem where the innovator is one of the competing firms. The innovator wants 
to maximize the sum of revenue generated from selling innovation license and the revenue in selling the product in the 
Cournot game. Suppose the seller is Firm d and has a unit cost cd . Since the seller’s utility constitutes the revenue generated 
from two parts, they may obtain a higher utility even though the revenue generated from the Cournot game is suboptimal.

Suppose the seller pretends her unit cost is cd in the Cournot game where cd could be any number larger than or equal 
to cd . Using the same argument, the payment collected from other firms is 

∑
i∈E∗({ci})\d(q

∗
i (ci −ci) +u∗

i ) −
∑

i∈N \d ûi . Seller’s 
utility in Cournot game is q∗

d({ci})(p∗({ci}) − cd) = u∗
d({ci}) + q∗

d({ci})(cd − cd). So the sum of seller’s revenue and utility in 
Cournot game is∑

i∈E∗({ci})\d

(q∗
i (ci − ci) + u∗

i ) −
∑

i∈N \d

ûi + u∗
d({ci}) + q∗

d({ci})(cd − cd)

=
∑

i∈E∗({ci})
(q∗

i (ci − ci) + u∗
i ) −

∑
i∈N \d

ûi .

There is only a constant difference ûd compared to equation (5). Hence we have the following theorem.

Theorem 4. Designing optimal hybrid-fee policy is the same in the case that the seller is an outsider and the seller is an incumbent 
firm.

3.3. Innovator without cost-reducing innovation

In this subsection, we show that the innovator increases its revenue by offering subsidies to the firms while charging 
them an upfront fee instead of chagrining them a per-unit royalty fee. For example, an economic coalition (correspondingly, 
the innovator) provides a tax relief (negative royalty fee) to the firms who join in the coalition but charges them an entry fee 
(upfront payment). Consequently, we observe that an innovator without real innovation can still make a profit by offering a 
negative royalty fee. We illustrate this phenomenon using the same setting as in Example 1.

Example 2. We consider a setting similar to Example 1. The difference is that the “innovator” has no real innovation and so 
c1 = c1 = 30 and c2 = c2 = 45. For simplicity, suppose the “innovator” commits to the following pricing policy: Firm 1 can 
get a subsidy of 15 for each unit of a product if Firm 1 pays 600 upfront fee, Firm 2 can get a subsidy of 30 for each unit 
of a product if Firm 2 pays 1000 upfront fee. It is easy to check that both firms will pay to get subsidies under this policy. 
The upfront fees for the two firms are 600 and 1000 respectively. After two firms get subsidies, each firm will produce 35
products. Thus the “innovator” will subsidize 35 ∗ 15 + 35 ∗ 30 = 1575 in total. Since the total upfront fee is larger than the 
total subsidy amount, the “innovator” gains a revenue of 25.

The following theorem asserts that a company that can convince the firms to agree on its pricing policies can always 
make a profit, even without innovation. We prove it by construction.

Theorem 5. When there are multiple firms producing a homogeneous product in the market, a company without innovation can make 
a positive profit. However, when there is only one firm in the market, a company without innovation cannot make a positive profit.

4. Optimal royalty-fee policy

In this section, we consider the degenerated case where only royalty payment is allowed. When we only allow royalty 
fee, we choose a royalty profile {ri}. For firms that do not buy licenses, we can set ri = ci − ci and these firms will buy 
licenses. In such a way, the equilibrium in Cournot game does not change but the innovator’s revenue weakly increases. 
Thus, w.l.o.g., we can assume all firms buy licenses and the unit cost ci is restricted to [ci, ci]. According to equation (5), 
the total royalty payment is

∑
i∈E∗

⎡
⎣ 1

|E∗| + 1
(θ +

∑
j∈E∗

c j) − ci

⎤
⎦ · (ci − ci).

We adopt the same method in solving the optimal hybrid-fee policy. We first consider the possible price. We assume the 
price lies in (ck, ck+1] for k ∈ {0, ..., n}. Therefore, the firms in {1, ..., k} must be active since their unit costs are definitely 
lower than price. In addition, Lemma 3 still holds here. Thus, the set of active firms E∗ can be uniquely determined by k
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and |E∗|. We will enumerate all possible combinations of k and |E∗|. For each case, we compute the optimal parameters 
{ci} and the problem is indeed a quadratic programming. Based on the fact that the objective function is convex and the 
constraints are linear, we get the following result.

Theorem 6. The optimal royalty-fee policy problem can be solved in O (n6L2) time where L is the number of input bits.

Proof. The optimal policy problem can be transformed into the following quadratic optimization problem.

max
∑
i∈E∗

⎡
⎣ 1

|E∗| + 1

⎛
⎝θ +

∑
j∈E∗

c j

⎞
⎠− ci

⎤
⎦ · (ci − ci)

s.t.
1

|E∗| + 1

⎛
⎝θ +

∑
j∈E∗

c j

⎞
⎠− ci > 0,∀i ∈ E∗,

1

|E∗| + 1

⎛
⎝θ +

∑
j∈E∗

c j

⎞
⎠− ci ≤ 0,∀i /∈ E∗,

1

|E∗| + 1

(
θ +

∑
i∈E∗

ci

)
≤ ck+1,

1

|E∗| + 1

(
θ +

∑
i∈E∗

ci

)
> ck,

ci ∈ [ci, ci],∀i ∈ E∗.

The first two constraints describe the relations between the product price and the cost per unit product of the firms. Two 
next two constraints refers to the price assumption. Let c and c denote the vectors with ith elements ci and ci , respectively. 
We can rewrite the objective function of as

min ct
(
I − 1

|E∗| + 1
J
)

c − ct
(
I − 1

|E∗| + 1
J
)

c − θ

|E∗| + 1
et(c − c),

where I is the identity matrix, J is a |E∗| ×|E∗| matrix of ones, and e is a vector of ones in size |E∗|. The Hessian matrix of 
objective function is 2 

(
I − 1

|E∗|+1J
)

, whose eigenvalues are 2
|E∗|+1 and 2. It implies I − 1

|E∗|+1J is a positive semi-definite 
matrix. Thus, the objective function is convex. Since all the constraints are linear it is a convex quadratic programming. Ye 
and Tse [38] provide an efficient algorithm for solving convex quadratic programming with running time O (L2n4), where L
is the number of input bits.

Back to our problem, there will be n2 possibilities when we enumerate k and |E∗|. So the total running time will be 
O (n6L2). �

After showing the optimal royalty-fee policy, we then compare the revenue achieved by the optimal royalty-fee policy 
with the revenue achieved by the optimal hybrid-fee policy in the symmetric case. Symmetric case refers to the market 
where all firms are identical. For illustration, we provide a formal definition below.

Definition 2. Firms in a set N are identical if we have ci = c j, ci = c j for ∀i, j ∈N .

Theorem 7. In the symmetric case, the ratio between revenue of the optimal hybrid-fee policy and revenue of the optimal royalty-fee 
policy is 3.

To prove the theorem, we give the closed form of the optimal royalty-fee policy and compare it to the optimal hybrid-fee 
policy directly.

5. Optimal upfront-fee policy

In this section, we characterize the optimal upfront-fee policy. Since there is no royalty payment, the revenue formula 
(5) becomes 

∑
i∈E∗ u∗

i . We first show that finding the best upfront-fee policy is NP-Hard. The proof is done by a reduction 
from a variant of Subset Sum Problem (SSP). Then we devise an FPTAS algorithm to solve the problem.
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5.1. NP-hardness

In this part, we focus on proving that finding the best upfront-fee policy is NP-Hard. The proof is done by a reduction 
from a variant of SSP to our problem. To facilitate the presentation, we describe the variant first and then show the reduction 
step by step.

Recall that an original subset sum instance usually consist of a target sum T and a multiset S = {s1, s2, ..., sn} of n
elements where the elements may be duplicated. To solve the problem, we need to decide whether there exists a set of 
coefficients yi ∈ {0, 1} such that 

∑n
i=1 yi si = T . If the coefficients exist, we return “Yes”; otherwise, we return “No”. Here, 

we consider a variant of SSP (SSP{−1,1}) which requires the coefficient y′
i to be either −1 or 1, rather than 0 or 1. By a 

straightforward reduction from SSP, we can show that SSP{−1,1} is NPC readily.

Definition 3. SSP{−1,1}: Given a multiset S = {s1, s2, ..., sn} and a target sum T , decide whether there exists a set of coeffi-
cients yi ’s such that 

∑n
i=1 yi si = T , where yi ’s are either −1 or 1.

Lemma 5. SSP{−1,1} is an NPC problem.

Proof. Given an instance I{0,1} of SSP containing a multiset S and a target sum T . Let sum(S) denote the sum of all elements 
in S , i.e., 

∑n
i=1 si . We can construct an instance I{−1,1} of SSP{−1,1} with S ′ = { s1

2 , s2
2 , ..., sn

2 } and T ′ = T − sum(S)
2 . Then we 

show that if the result of I{0,1} is “Yes”, the result of I{−1,1} is “Yes”, and vice versa.
Assume we can find a set of yi ’s such that 

∑n
i=1 yi si = T . Then we have

n∑
i=1

yi si − sum(S)

2
=

n∑
i=1

si

(
yi − 1

2

)
= T ′.

With yi belonging to {0, 1}, yi − 1
2 can be either − 1

2 or 1
2 . Thus, there exists a satisfactory coefficient set for I{−1,1} .

We then prove the correctness of the opposite direction. If we can decide y′
i for s′

i = si
2 such that 

∑n
i=1

si
2 y′

i = T ′ . We 
have

n∑
i=1

si

2
y′

i + sum(S)

2
=

n∑
i=1

si

(
y′

i

2
+ 1

2

)
= T .

Since y′
i

2 + 1
2 ∈ {0, 1}, I{0,1} can be satisfied as well. As a result, we prove the lemma. �

Given that the sign of elements in S ′ and target sum will not affect the satisfactory result of the instance of SSP{−1,1} . We 
assume all elements in S ′ and T ′ are non-negative without specific mention. In addition, we assume that T ′ ≥ 2 × max S ′ . 
This assumption does not affect the hardness of the problem. Since for any instance of S S P {−1,1} , we can always modify it 
by adding two elements of value 

∑n
i=1 si to the multiset S ′ and changing T ′ to T ′ + 2 ×∑n

i=1 si to satisfy the constraint. 
We can check the two problems are equivalent.

After introducing the variant SSP{−1,1} , we are now ready to prove the NP-Hardness of our problem.

Theorem 8. Finding the optimal upfront-fee policy is NP-Hard.

Proof. Given an instance of SSP{−1,1} with multiset S = {s1, s2, ..., sn} and target sum T , we can reduce it to an instance 
of our problem as following. Consider a market of n firms producing the same product, we can find two constant numbers 
θ and c satisfying θ − c = n+2

2 T . Then we set the payoff-relevant parameter to be θ . For Firm i, we set ci = c − si
2 and 

ci = c + si
2 . For ease of expression, we introduce an indicator variable yi ∈ {−1, 1} for each firm. yi = −1 means the Firm 

i gets the innovation; otherwise, it does not. The cost of Firm i after innovation licensing stage can then be expressed as 
c + yi

si
2 . We then show that if we can solve our problem optimally, we can decide the result of SSP{−1,1} exactly.

Proposition 1. For the instance of our problem constructed according to the instance of S S P {−1,1} , all firms will remain in the market 
under any innovation assignment.

Proof. Without loss of generality, we can assume s1 is the largest element in S . To prove this claim, we only need to show 
the product price under any innovation assignment is not less than the largest cost, i.e., c + s1

2 . Given an arbitrary innovation 
assignment, assume a set E of firms remain in the market. Recall the formula of the price at equilibrium, we have

p = θ +∑ j∈E c j ≥ θ + |E|c −∑ j∈E
s j
2

.

1 + |E| 1 + |E|
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Given θ−c
n+2 ≥ s1, we then have

p − c − s1

2
≥ θ − c

n + 2
− s1 ≥ 0.

Thus, the claim is true. �
As all firms will remain in the market, we can calculate the utility of Firm i as

ui =
(

θ +∑n
i=1(c + si

2 yi)

n + 1
− c − si

2
yi

)2

.

Combine the utilities of all firms together, we have the total utility as following

u =
n∑

i=1

ui =
(

θ − c + si yi
2

n + 1

)[
n

n + 1
(θ − c) − n + 2

2(n + 1)

n∑
i=1

si yi

]
.

When 
∑n

i=1 si yi = − 2(θ−c)
n+2 = −T , we can achieve the largest possible utility. Thus, if the S S P {−1,1} is satisfied,1 we can 

have the highest possible total utility, and vice versa. �
5.2. FPTAS algorithm

Given the NP-Hardness of the problem, we turn to devise an FPTAS algorithm. First, we round up the cost of each 
firm to the power of (1 + δ) and show that we can derive a good approximation solution of the original problem from 
the approximation solution of the problem with modified parameters. Here, δ is a constant number whose value will be 
determined later. Second, we reduce the problem with the modified parameters to a variant of the knapsack problem and 
devise an algorithm for solving it.

5.2.1. Rounding method
W.l.o.g., we can assume min{ci} = 0. It is easy to find out that the problem does not change if we subtract min{ci} from 

all parameters θ, {ci}, {ci}. To facilitate the expression, we define some notations first.

Definition 4. If ci = 0, we define c′
i = 0. If ci > 0, we define c′

i the unique integer power of (1 + δ) in [ci, (1 + δ)ci). Define 
E ′({c′

i}) and p′({c′
i}) the set of active firms and the prices in the Cournot game equilibrium with parameters θ and {c′

i}. We 
will use E ′ and p′ if there is no ambiguity for abbreviation.

The rounding is done by setting ci to be c′
i and setting ci to be c′

i . After the rounding procedure, if c′
k and c′

k+1 (or c′
k

and c′
k+1) are not equal, we have c′

k+1 ≥ (1 + δ)c′
k (or c′

k+1 ≥ (1 + δ)c′
k). The motivation of the rounding is from Section 5.2.2

where we solve a knapsack problem variant. In that problem, we do not want any two parameters too close if they are 
different.

The following lemma says that the equilibrium price will not change too much after the rounding.

Lemma 6. There is an inclusion relationship between E ′ and E∗ , either E ′ ⊆ E∗ or E∗ ⊆ E ′ . The price in equilibrium is close, p′ ∈(
p

1+δ
, (1 + δ)p

)
.

Next lemma bounds the difference between the objectives, i.e., the sum of utilities, in two equilibriums is small.

Lemma 7. | ∑i∈E∗ u∗
i −∑i∈E ′ u′

i | ≤ 4δθ2 .

Armed with the two properties, we are ready to show the following lemma.

Lemma 8. If {c′
i} is a (1 − ε

2 )-approximation solution for the problem with modified parameters, {ci} is a (1 − ε)-approximation 
solution for the original problem.

Proof. Let μ1 denote the optimal value of the problem with original parameters, i.e., μ1 = max{ci}
∑

i∈E∗ u∗
i . Let μ2 denote 

the optimal value of the problem with modified parameters, i.e., μ2 = max{c′
i}
∑

i∈E ′ u′
i . Suppose we find a solution {c′

i} such 

1 For S S P {−1,1} , the sign of the target sum does not matter.
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that μ3 ≡∑i∈E ′({c′
i}) u′

i ≥ (1 − ε/2)μ2. By using Lemma 7, we have μ1 ≥ μ2 − 4δθ2. Then for utility of the corresponding 
solution {ci} of the original problem, denoted by μ4, we have μ4 ≥ μ3 − 4δθ2 according to Lemma 7. To sum up, μ4 ≥
(1 − ε/2)(μ1 − 4δθ2) − 4δθ2. By setting δ = ε

64n2 , we get μ4 ≥ (1 − ε)μ1. �
5.2.2. Knapsack problem variant

In this section, we present an approximation algorithm for the problem after rounding. Rewrite the objective function as 
following:

∑
i∈E∗

u∗
i =

∑
i∈E∗

(
θ +∑ j∈E∗ c j

|E∗| + 1
− ci

)2

=
[∑

i∈E∗
c2

i + |E∗|
(|E∗| + 1)2

θ2

]
− (|E∗| + 2)(

∑
j∈E∗ c j)

2 + 2θ
∑

j∈E∗ c j

(|E∗| + 1)2
.

Let X({ci}) and Y ({ci}) denote the first term and the second term, respectively. We will use X and Y if there is no ambiguity 
for abbreviation. Denote {c∗

i } the optimal solution which achieves the maximum total utility 
∑

i∈E∗ u∗
i . In the following 

lemma, we present that a solution {ci} that has X({ci}) and Y ({ci}) approximate X({c∗
i }) and Y ({c∗

i }) well is enough to be a 
good approximation solution for {c∗

i }.

Lemma 9. Suppose we find {ci} such that X({ci}) ≥ (1 − α)X({c∗
i }) and Y ({ci}) ≤ (1 + β)Y ({c∗

i }) where α = β = ε
36n2 , we have 

X({ci}) − Y ({ci}) ≥ (1 − ε/2)(X({c∗
i }) − Y ({c∗

i }).

To get the solution {ci} satisfying the condition in Lemma 9, we conduct a numerical enumeration over |E∗|, i.e., the 
number of active firms after licensing the innovation. Fix |E∗|, we then enumerate all intervals that the 

∑
j∈E∗ c j might 

lie in. There are n candidate intervals, i.e., [(|E∗| + 1)ck − θ, (|E∗| + 1)ck+1 − θ), k ∈ {0, ..., n}. For each candidate interval 
[(|E∗| + 1)ck − θ, (|E∗| + 1)ck+1 − θ), we further divide it into sub-intervals [a j, a j+1), j ∈ {0, ..., �log1+β/3

max
∑

i∈E∗ ci
min

∑
i∈E∗ ci

+ n�}
such that a j+1 = (1 + β

3 )a j for each sub-interval [a j, a j+1) except the last one. In the following lemma, we present that we 
can approximate Y ({c∗

i }) well by this enumeration method.

Lemma 10. Suppose |E∗| is found correctly, if 
∑

i∈E∗ ci is within (1 + β
3 ) approximation of 

∑
i∈E∗ c∗

i , then Y ({ci}) is no more than 
(1 + β)Y ({c∗

i }).

Fix |E∗| and the sub-interval [h1, h2) where 
∑

i∈E∗ ci lies in, we then maximize X({ci}) subject to these two constraints. 
Suppose that [h1, h2) is a subset of [(|E∗| + 1)ck − θ, (|E∗| + 1)ck+1 − θ), we then have the equilibrium price locates in the 
interval [ck, ck+1) according to the price formula. Given that |E∗|

(|E∗|+1)2 θ2 is fixed, we focus on maximizing 
∑

i∈E∗ c2
i . The 

optimization problem is as following:

max
xi

∑
i

c2
i xi

s.t. xi = 1, i ≤ k; xi ∈ {0,1}, x > k,∑
i

xi = |E∗|,

ci ∈ {ci, ci}, i ≤ k; ci = ci, i > k,∑
i

ci xi ∈ [h1,h2).

(6)

Variable xi = 1 indicates Firm i is active in the post-innovation competition. Variable ci = ci indicates Firm i gets innova-
tion. We have xi = 1 for all firms i ∈ {1, ..., k} because their pre-innovation costs are smaller than the equilibrium price. Then 
we introduce another variable zi to rewrite the optimization problem. For firm i ≤ k, we use variable zi = 0 to represent 
it gets innovation and zi = 1 otherwise. For firm i > k, we use zi = 1 to represent it remains active and zi = 0 otherwise. 
Rewrite the objective function in terms of zi , we have 

∑
i c2

i xi =∑i≤k(c2
i − c2

i )zi +∑i>k c2
i zi +∑i≤k c2

i . Since the third 
term is a positive constant given k, it suffices to give a good approximation of the first two summations. The optimization 
problem becomes (7).
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max
zi

∑
i≤k

(c2
i − c2

i )zi +
∑
i>k

c2
i zi

s.t.
∑
i>k

zi = |E∗| − k, zi ∈ {0,1},

∑
i≤k

(ci − ci)zi +
∑
i>k

ci zi ∈
⎡
⎣h1 −

∑
i≤k

ci,h2 −
∑
i≤k

ci

⎞
⎠ .

(7)

This is indeed a knapsack problem. We can regard the coefficients of zi ’s in the objective as values and the coefficients 
of zi ’s in the constraint as weights. The total weight has a lower bound constraint besides an upper bound constraint. In 
addition, we must select exact |E∗| − k items in the set {k + 1, ..., n}. This is a knapsack problem variant with a minimum 
filling constraint and a cardinal constraint, reformulated as follows:

max
zi

∑
i

vi zi

s.t.
∑
i>k

zi = m,

∑
i

wi zi ∈ [ f , g],

zi ∈ {0,1}, ∀i.

(8)

Theorem 9. There is an approximation scheme for problem (8). If there is no feasible solution, it outputs impossible. Otherwise, it 
returns a feasible solution with value not less than (1 − α) times the optimal value for any α > 0. The running time is O (

n3 logn
1− f /g +

n3

α(1− f /g)
).

At last, we compute the total running time. Theorem 9 requires a small f /g in order to give a good running time. Note 
that in our problem f and g are the endpoints of sub-intervals in [(|E∗| + 1)ck − θ, (|E∗| + 1)ck+1 − θ). In fact, the price 
interval is large enough after the rounding method,

(|E∗| + 1)ck+1 − θ

(|E∗| + 1)ck − θ
>

ck+1

ck
≥ 1 + δ ≥ 1 + β/3.

Recall that α, β are defined in Lemma 9. Hence we can choose sub-intervals with overlap and guarantee the ratio 
f /g = 1/(1 + β/3) in each sub-interval. Thus we can solve knapsack problem (8) in O (Lα−1(1 − f /g)−1n3 log n) =
O (Lα−1β−1n3 logn) time.

With the number of combinations of |E∗| and sub-interval being at most log1+β/3
max

∑
i∈E∗ ci

min
∑

i∈E∗ ci
+ n = O (Lβ−1 +

n) = O (nLβ−1). We have at most O (n2β−1) number of knapsack problem to solve. Then the total running time is 
O (Lα−1β−2n5 logn) = O (Lε−3n11 log n). The pseudo code is presented in Algorithm 2.

Theorem 10. The Algorithm 2 gives a solution with value at least (1 − ε) maxE∗
∑

i∈E∗ ui and the running time is O (Lε−3n11 log n).

In some traditional industries, the current pricing policy is restricted to the upfront-fee policy due to the lack of moni-
toring the production level of firms. Suppose the innovator is able to use remote control over the manufacturing machines, 
then the royalty fee is applicable. A natural question is how much additional revenue the innovator can gain by using re-
mote control. We compare the revenue of the optimal hybrid-fee Policy to that of the upfront-fee policy. There is a case 
where the ratio is 1.75 and we conjecture this is a tight bound.

Observation 1. Consider a market consisting of two firms, where we have c1 = c1 = 10, c2 = 20 +ε1, c2 = 20 and θ = 60 +ε2. 
Here ε1, ε2 are small positive numbers. It is easy to check that the optimal hybrid-fee policy is to sell the license to Firm 
2 and keep c2 = 20 + ε1, and the revenue is 70

3 ε1. As for the optimal upfront-fee policy, the total revenue is 40
3 ε1. And the 

ratio is 7/4 = 1.75

We also consider a symmetric case where all firms are identical and we show an upper bound of 1.62.

Theorem 11.
In the symmetric case, the ratio between revenue of the optimal hybrid-fee Policy and revenue of the optimal upfront-fee policy is 

upper bounded by 1.62.
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ALGORITHM 2: FPTAS for optimal upfront-fee policy.
Input: ci , ci , δ, α, β .
Output: The solution E∗ and {ci}.

1 for i = 1; i ≤ n; i + + do
2 Compute c′

i and c′
i based on δ;

3 end
4 Rev = −∞;
5 for |E∗| = 1; |E∗| ≤ n; |E∗| + + do
6 for k = 0; k ≤ |E∗|; k + + do
7 B = {1, ..., k};
8 Divide interval I = [(|E∗| + 1)c′

k − θ, (|E∗| + 1)c′
k − θ) into sub-intervals I(β);

9 for [h1, h2) ∈ I(β) do
10 Solve problem X(|E∗|, k, {c′

i}, {c′
i}, h1, h2) within (1 − α) approximation;

11 if Solution {zi; i ∈N } exists and Rev <
∑

j∈N u∗
j ({ci + zi(ci − ci)}) then

12 Rev =∑ j∈N u∗
j ({ci + zi(ci − ci)});

13 E∗ = B ⋃{i : zi = 1; i ∈ N \B};
14 {ci} = {ci + zi · (ci − ci)};
15 end
16 end
17 end
18 end
19 Rev = Rev −∑i∈N ûi ;
20 Return E∗ and {ci};

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgement

This work was partially supported by Science and Technology Innovation 2030 - “New Generation of Artificial Intelli-
gence” Major Project No. (2018AAA0100903); National Natural Science Foundation of China (Grant No. 61806121); Beijing 
Outstanding Young Scientist Program (No. BJJWZYJH012019100020098); Intelligent Social Governance Platform, Major Inno-
vation & Planning Interdisciplinary Platform for the “Double-First Class” Initiative, Renmin University of China; a Leverhulme 
Trust Research Project Grant (2021 – 2024).

Appendix A. Proof of Theorem 5

Theorem 5. When there are multiple firms producing a homogeneous product in the market, a company without innovation can make 
a positive profit. However, when there is only one firm in the market, a company without innovation cannot make a positive profit.

Proof. We prove by constructing a strategy to gain positive revenue. The seller makes a commitment that it holds an 
innovation which can help each firm reduce its cost to ci − σ , where σ is a constant to be defined later. The upfront fee 
from Firm i is

u∗
i ({ci − σ }) − ûi = 2n

n + 1

(
θ +∑ j∈N c j

n + 1
− ci

)
σ − n2 − 2n

(n + 1)2
σ 2,

where u∗
i ({ci − σ }) is i’s utility at the equilibrium when all firms reduce their cost by σ .

And for Firm i, the seller needs to pay a subsidy σ
(

θ+∑ j∈N c j

n+1 − ci + σ
n+1

)
to help Firm i reduce its cost. Let the upfront 

fee subtract the subsidy, then the actual revenue getting from Firm i is

n − 1

n + 1

(
θ +∑ j∈N c j

n + 1
− ci

)
σ − n2 − n + 1

(n + 1)2
σ 2.

Since 
θ+∑ j∈N c j

n+1 − ci is the amount of Firm j’s initial production which is always larger than 0, we can choose σ ∈(
0,mini∈N

{
n2−1

n2−n+1

(
θ+∑ j∈N c j

n+1 − ci

)})
to get positive revenue from each firm in N .

When the market is monopolized by a firm i, this situation is different. Without loss of generality, assume the firm’s 
original cost is ci . Then if the seller announces that it can help the firm reduce its cost to ci − σ where σ is arbitrary 
number in the interval (0, ci). Then the revenue the seller can get is 

(
θ−c+σ

2

)2 − ( θ−c
2

)2 − σ · θ−c+σ
2 = −σ 2

4 < 0. Thus, the 
seller cannot make a positive profit without real innovation. �
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Table B.2
The optimal royalty-fee policy revenue in the symmetric case.

ξ Royalty-Fee Policy

ξ ≤ θ − c nξ θ−c
n+1

θ − c < ξ ≤ n+2
n (θ − c) n

n+1

(
θ−c+ξ

2

)2

n+2
n (θ − c) < ξ ≤ n+1

n−1 (θ − c) (θ − c)
(
ξ − θ−c

n

)
n+1
n−1 (θ − c) < ξ max{ n−1

n

(
θ−c+ξ

2

)2
, (θ − c)

(
ξ − θ−c

n

)
}

Appendix B. Proof of Theorem 7

Theorem 7. In the symmetric case, the ratio between revenue of the optimal hybrid-fee policy and revenue of the optimal royalty-fee 
policy is 3.

We provide the close-form solutions of optimal royalty-fee policy and optimal hybrid-fee policy, and then calculate the 
gap between the two policies by comparing them case by case. To calculate the revenue of the optimal royalty-fee policy, 
we first characterize the optimal royalty-fee policy in the symmetric case in the following lemma.

Denote c, c and ξ the pre-innovation unit-cost, the unit-cost after employing the innovative technology and c − c, re-
spectively.

Lemma 11. In the symmetric case, all firms who get the innovation will pay the same amount of fees under the optimal royalty-fee 
policy.

Proof. According to Theorem 6, the optimal revenue under the royalty-fee policy is a solution of a quadratic optimization 
problem, which can always be achieved. Denote ri the royalty fee paid by Firm i under the optimal royalty-fee policy. 
Assume there are k firms remain in the market in the equilibrium after the assignment of innovation. We prove by contra-
diction. The total revenue of innovator R under this policy is

k∑
i=1

ri

(
θ − c +∑k

j=1 r j

k + 1
− ri

)
,

where c is the cost of the firm after getting the innovation. Without loss of generality, assume r1 < r2. If we modify the 
royalty fees of both Firm 1 and Firm 2 to r1+r2

2 , the equilibrium price will not change. Thus, all firms stay in the market in 
the equilibrium as well. As a result, the innovator’s revenue after modification R ′ is

k∑
i=3

ri

(
θ − c +∑k

j=1 r j

k + 1
− ri

)
+ (r1 + r2)

(
θ − c +∑k

j=1 r j

k + 1
− r1 + r2

2

)
.

Because R ′ − R = −(r1 − r2)
2/2 ≤ 0, we get a contradiction. �

Lemma 11 helps us to reduce variables when computing the revenue under the optimal royalty-fee policy, and we 
present how to get the closed-form solution by employing it in the following lemma.

Lemma 12. The revenue under the optimal royalty-fee policy is as Table B.2

Proof. From Section 2, we have known that some firms would exit the market under a pricing policy. But if a firm has 
extremely low c, he does never drop out. With this observation, we discuss two cases (1) all firms are active regardless of 
what policy is used and (2) there exists possibility in kicking out firms when computing the optimal policies. In the first 
case, the revenue of a policy has a unique expression where the size of survival set is n. In the latter case, we must consider 
two possible expressions of policy revenue which are distinguished by the size of survival set, and take the one with lager 
value as the optimal solution. Besides this lemma, Lemma 13 and Lemma 14 are all proved with this sketch.

According to Lemma 11, we only need to determine the number of firms getting the innovation and the royalty fee to 
charge for each firm. Denote k ∈ [0, n] the number of firms getting the innovation and r ∈ [0, ξ ] the royalty fee.

Case 1. No firm will be kicked out from the market under any policy. To guarantee this condition, we consider the extreme 
policy where (n − 1) firms get the full innovation without any charging fees and the remaining firm does not get the 
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innovation. If the remaining firm is active under the extreme policy, then this firm would be active under any other policies. 
The survival condition is that the price in equilibrium cannot less than the cost without innovation, i.e., p = θ+(n−1)c+c

n+1 ≥ c, 
thus we have ξ ≤ θ−c

n−1 .
The revenue of royalty-fee policy can be expressed as

kr

[
θ − c + k(r − ξ)

n + 1
− (r − ξ)

]
.

With the derivative with respect to k being r θ−c+(2k−n−1)(r−ξ)
n+1 , which is always larger than 0 when ξ ≤ θ−c

n−1 , we have k
equals to n to maximize the revenue. Plug k = n back, we find the revenue is an increasing function with respect to r. Thus, 
we have r = ξ . The optimal revenue is nξ θ−c

n+1 .

Case 2. The possibility that some firms will be kicked out exists. In this case, we have ξ > θ−c
n−1 . We consider the following 

two scenarios and choose the maximum between the two as the optimal revenue.

1. Some firms have been kicked out under the royalty-fee policy. To guarantee the condition, the price in the equilibrium 
should be greater than or equal to the cost without innovation i.e., k(ξ − r) ≥ θ − c. According to Lemma 11, we have 
all firms remaining get the innovation and pay the same royalty fees. The revenue then can be written as

kr · θ − c − r + ξ

k + 1
.

Further, the derivative with respect to k is r(θ − c − r + ξ) 1
(k+1)2 , which is larger than 0. As a result, k should be n − 1

to maximize the revenue. Plug k = n − 1 back, we calculate the derivative with respect to r as n−1
n (θ − c − 2r + ξ). The 

value of r is as follows

r =
⎧⎨
⎩

ξ − θ−c
n−1

θ−c
n−1 < ξ ≤ n+1

n−1 (θ − c),

(θ − c + ξ)/2 n+1
n−1 (θ − c) < ξ,

(B.1)

and the corresponding revenue is⎧⎪⎨
⎪⎩

(θ − c)
(
ξ − θ−c

n−1

)
θ−c
n−1 < ξ ≤ n+1

n−1 (θ − c),

n−1
n

(
θ−c+ξ

2

)2
n+1
n−1 (θ − c) < ξ.

(B.2)

2. No firm has been kicked out under the royalty-fee policy. To guarantee this condition, we have k(ξ − r) ≤ θ − c. Note 
that k cannot be greater than n − 1 in this case since there is at least one firm kicked out. Then we can write the 
revenue as

kr

[
θ − c + k(r − ξ)

n + 1
− (r − ξ)

]
.

The derivative with respect to k is r
n+1 [θ − c − (2k − n − 1)(ξ − r)], which is larger than r(θ−c)

n+1

(n+1
k − 1

)
> 0. Thus, we 

have k = n. Then the value of r is as follows

r =

⎧⎪⎪⎨
⎪⎪⎩

ξ θ−c
n−1 < ξ ≤ (θ − c),

(θ − c + ξ)/2 θ − c < ξ ≤ n+2
n (θ − c),

ξ − θ−c
n

n+2
n (θ − c) < ξ,

(B.3)

and the revenue is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nξ(θ−c)
n+1

θ−c
n−1 < ξ ≤ (θ − c),

n
n+1

(
θ−c+ξ

2

)2
θ − c < ξ ≤ n+2

n (θ − c),

(θ − c)
(
ξ − θ−c

n

)
n+2

n (θ − c) < ξ.

(B.4)

Combine all the results, we can get the optimal revenue of royalty-fee policy and construct Table B.2 �
To finish the proof of Theorem 7, we compute the revenue of the optimal hybrid-fee policy as well in the following 

lemma.
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Table B.3
The optimal hybrid-fee policy revenue in the symmetric case.

ξ Hybrid-Fee Policy

ξ < θ−c
n−1 ξ n

n+1 (θ − c) + nξ(n−1)
n+1

(
2(θ−c)

n+1 − n−1
n+1 ξ

)
θ−c
n−1 ≤ ξ < θ − c max

{
n

n+1 (θ − c)
(

θ−c
n+1 + ξ

)
, ξ(θ − c)

}
θ − c ≤ ξ

(
θ−c+ξ

2

)2

Lemma 13. The revenue under the optimal hybrid-fee policy is as Table B.3.

Proof. Case 1. No firm will be kicked out from the market in any case. According to the discussion of Case 1 in Lemma 12, 
we must have ξ < θ−c

n−1 . For the optimal hybrid-fee policy, according to Lemma 4, only one firm will get partial innovation 
and the other firms will either get full innovation or no innovation. According to Eq. (4), we can write the revenue as:

k

(
θ − c

n + 1
+ n − k

n + 1
ξ + r

n + 1

)2

+
(

θ − c

n + 1
+ n − k

n + 1
ξ + r

n + 1

)
·
(

θ − c

n + 1
+ n − k

n + 1
ξ − n

n + 1
r

)

+(n − k − 1)

[
ξ

(
θ − c

n + 1
− k + 1

n + 1
ξ + r

n + 1

)
+
(

θ − c

n + 1
− k + 1

n + 1
ξ + r

n + 1

)2
]

−
∑

i

ûi,

where ûi is the lowest utility of i, k (k ∈ [0, n − 1]) is the number of firms getting full innovation and r ∈ [0, ξ ] is the royalty 
fee paid by the firm getting partial innovation. The first term is total utilities of k firms who get the full innovation; the 
second term refers to the utility and the royalty fee of the single firm who get the partial innovation; the third term is the 
total royalty fees we get from the remaining firms. The derivative with respect to k can then be calculated as

1

(n + 1)2

[
(n − 1)ξ2 + (2r − (n − 1)(θ − c))ξ − 2ξ2k

]
,

which is less than 0 when ξ < θ
n−1 . Thus, we set k as 0. Plug k = 0 back, we find the revenue increases with respect to r. 

Thus, we set r as ξ and calculate the revenue of optimal hybrid-fee policy as

ξ
n(θ − c)

n + 1
+ n · (n − 1)ξ

n + 1

(
2

θ − c

n + 1
− n − 1

n + 1
ξ

)
.

Case 2. The possibility that some firms will be kicked out exists. Then we have ξ ≥ θ−c
n−1 . In this case, we have ûi = 0. We 

consider two subcases first and then choose the maximum revenue between these two as the optimal revenue.

Subcase 1. No firm will be kicked out. For hybrid-fee policy, the revenue formula is the same as Case 1. When θ−c
n−1 ≤ ξ ≤

n−1
n+1 (θ − c), the function does not increase with respect to k, thus we have k = 0. Plug k = 0 back we find the revenue 
increases with respect to r. Thus, we have r = ξ .

When n−1
n+1 (θ − c) < ξ ≤ θ − c, we will confront two scenarios if no firm will drop out: (1) all firms get the innovation (2) 

a part of firms get the innovation and k ≤ θ−c
ξ

. Thus, the value of k can only be 0, 1 and n − 1.

• k = 0. Through calculus, r will be set as n−1
2 (θ − c − ξ) when n−1

n+1 (θ − c) < ξ ≤ θ − c.
• k = 1. The revenue formula can be written as

1

(n + 1)2
[θ − c + (n − 1)ξ + r][n(θ − c) + 2ξ − r].

Then we can calculate its derivative with respect to r as

1

(n + 1)2
[(n − 1)(θ − c) − (n − 3)ξ − 2r],

which is larger than 0. So r will be set as ξ .
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• k = n − 1. The revenue formula can be written as

(n − 1)

(
θ − c + ξ

n + 1
+ r

n + 1

)2

+
(

θ − c + ξ

n + 1
+ r

n + 1

)(
θ − c + ξ

n + 1
− nr

n + 1

)
.

Then we can calculate its derivative with respect to r as

1

(n + 1)2 [(n − 1)(θ − c + ξ) − 2r].

The revenue decreases with respect to r. As no firm will drop out, r should not be less than θ−c+ξ
n . So r will be set as 

θ−c+ξ
n .

Subcase 2. Some firms have been kicked out. To guarantee this condition, we have k ≥ θ−c
ξ

. For the symmetric case we are 
considering, all firms without innovation will drop out. Thus, for hybrid-fee policy, we can write the revenue formula as

k

(
θ − c + ξ

k + 2
+ r

k + 2

)2

+
(

θ − c + ξ

k + 2
+ r

k + 2

)(
θ − c + ξ

k + 2
− k + 1

k + 2
r

)
.

Then we can calculate the derivative with respect to k as

θ − c + ξ + r

(k + 2)3
[2r − k(θ − c + ξ)].

And the derivative with respect to r is

1

(k + 2)2
[k(θ − c + ξ) − 2r].

The revenue decreases with respect to k when k ≥ θ−c
ξ

and increase with respect to r when 0 ≤ r ≤ ξ . Thus, we need to set 
r = ξ and k = θ−c

ξ
.

When ξ ≥ θ − c, it is easy to check that both the optimal hybrid-fee policy and the upfront-fee policy are providing full 
innovation to only one firm.

Combining all the results above, we can calculate the optimal revenue and construct Table B.3. �
Proof of Theorem 7. Through Lemma 12 and Lemma 13, the ratio can be calculated as:

• ξ ≤ θ−c
n−1 .{

nξ
θ − c

n + 1
+ nξ

n − 1

n + 1

(
2(θ − c)

n + 1
− n − 1

n + 1
ξ

)}
/

(
nξ

θ − c

n + 1

)

≤ 1 + 2(n − 1)

n + 1
≤ 3.

• θ−c
n−1 ≤ ξ ≤ θ − c.

max{n(θ − c)

n + 1

(
θ − c

n + 1
+ ξ

)
, ξ(θ − c)}/

(
nξ

θ − c

n + 1

)

= max{ θ − c

(n − 1)ξ
+ 1,

n + 1

n
} ≤ 2.

• θ − c < ξ ≤ n+2
n (θ − c).

n + 1

n
≤ 2. (B.5)

• n+2
n (θ − c) < ξ ≤ n+1

n−1 (θ − c).

(
θ − c + ξ

2

)2

/

[
(θ − c)

(
ξ − θ − c

n

)]
≤
(

1 + 1

n − 1

)2

/

(
n + 1

n

)

= n3

2
≤ 3.
(n − 1) (n + 1)
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• n+1
n−1 (θ − c) < ξ .

min{n − 1

n
,

(
θ − c + ξ

2

)2

/

[
(θ − c)

(
ξ − θ − c

n

)]
} ≤ 2.

The proof is done. �
Appendix C. Proof of Lemma 6

Lemma 6. There is an inclusion relationship between E ′ and E∗ , either E ′ ⊆ E∗ or E∗ ⊆ E ′ . The price in equilibrium is close, p′ ∈
(

p
1+δ

, (1 + δ)p).

Proof. By definition of c′
i , two parameter profiles {ci} and {c′

i} have the same order sequence, i.e., ci ≤ c j ⇔ c′
i ≤ c′

j . By 
Lemma 1, firms in a active set have lower unit cost than obsolete firms, i.e., E∗ = {i : ci < p} and E ′ = {i : c′

i < p′}. So we 
have either E ′ ⊆ E∗ or E∗ ⊆ E ′ .

We define p̃ = θ+∑i∈E∗ c′
i|E∗|+1 . Since c′

i ∈ [ci, (1 + δ)ci], we have p̃ ∈ [p, (1 + δ)p). We consider three cases.

• If c′
i < p̃, ∀i ∈ E∗ and p̃ ≤ c′

i, ∀i /∈ E∗ . By Lemma 1, p̃ is the price and firms in E∗ remain active in the equilibrium. We 
have E ′ = E∗ , p′ = p̃ ∈ [p, (1 + δ)p).

• If ∃i ∈ E∗ such that c′
i ≥ p̃. The value of ci must be very close to the price. To be specific we have c′

i ≥ p̃ ≥ p > ci . Assume 
p̃ ∈ ((1 + δ)t , (1 + δ)t+1], we have c′

i = (1 + δ)t+1. Let H denote the set of firms with high costs, H = { j : c′
j = (1 + δ)t+1}.

We will prove that E ′ = E∗\H and p′ = θ+∑ j∈E∗\H c′
j

|S\H |+1 . In the equilibrium with cost {c j}, we have p > c j, ∀ j ∈ H . Gather 
these equations, we have

|H|
|E∗| + 1

⎛
⎝θ +

∑
j∈E∗\H

c j +
∑
j∈H

c j

⎞
⎠>

∑
j∈H

c j

⇒θ +∑ j∈E∗\H c j

|E∗\H| + 1
>

∑
j∈H c j

|H| > (1 + δ)t

⇒θ +∑ j∈E∗\H c′
j

|E∗\H| + 1
>

θ +∑ j∈E∗\H c j

|E∗\H| + 1

⇒θ +∑ j∈E∗\H c′
j

|E∗\H| + 1
> c′

e, ∀e ∈ E∗\H .

By assumption (1 + δ)t+1 ≥ p̃, we have

(1 + δ)t+1 ≥ θ +∑ j∈E∗\H c′
j +∑ j∈H c′

j

|E∗| + 1

⇒(1 + δ)t+1 ≥ θ +∑ j∈E∗\H c′
j

|E∗\H| + 1

⇒c′
e ≥ θ +∑ j∈E∗\H c′

j

|E∗\H| + 1
, ∀e ∈ N\E∗.

So firms in E∗\H remaining active constitute an equilibrium and the price is p′ . Furthermore, we have p′ > (1 + δ)t >
1

1+δ
p̃ ≥ 1

1+δ
p.

• If ∃i /∈ E∗ such that p̃ ≤ c′
i . The proof of this case is very similar to the above case and omitted. �

Appendix D. Proof of Lemma 7

Lemma 7. | ∑i∈E∗ u∗
i −∑i∈E ′ u′

i | ≤ 4δθ2 .

Proof. We provide the proof for the case E∗ ⊆ E ′ . The proof on the other case is similar.∣∣∣∣∣
∑

∗
u∗

i −
∑

′
u′

i

∣∣∣∣∣=
∣∣∣∣∣
∑

∗
(p − ci)

2 −
∑

′
(p′ − c′

i)
2

∣∣∣∣∣

i∈E i∈E i∈E i∈E
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≤
∑
i∈E∗

∣∣∣(p − ci)
2 − (p′ − c′

i)
2
∣∣∣+ ∑

i∈E ′\E∗
|(p′ − c′

i)
2|.

For i ∈ E ′\E∗ , we have (1 + δ)p > p′ > c′
i ≥ ci ≥ p which implies 0 < p′ − c′

i ≤ δp. For i ∈ E∗ , we have |(p − ci) − (p′ − c′
i)| ≤|p − p′| + |c′

i − ci | ≤ δp + δci ≤ 2δp. Plug them into the equations, the sum of utilities is

≤
∑
i∈E∗

|(p − ci) − (p′ − c′
i)|(p − ci + p′ − c′

i) + δp
∑

i∈E ′\E∗
(p′ − c′

i)

≤ 2δp
∑
i∈E∗

(p − ci + p′ − c′
i) + 2δp

∑
i∈E ′\E∗

(p′ − c′
i)

≤ 2δθ

(∑
i∈E∗

(p − ci) +
∑
i∈E ′

(p′ − c′
i)

)

≤ 4δθ2. �
Appendix E. Proof of Lemma 9

Lemma 9. Suppose we find {ci} such that X({ci}) ≥ (1 − α)X({c∗
i }) and Y ({ci}) ≤ (1 + β)Y ({c∗

i }) where α = β = ε
36n2 , we have 

X({ci}) − Y ({ci}) ≥ (1 − ε/2)(X({c∗
i }) − Y ({c∗

i }).

Proof. It suffices to prove (1 − α)X({c∗
i }) − (1 + β)Y ({c∗

i }) ≥ (1 − ε/2)X({c∗
i }) − Y ({c∗

i }). Note that X({c∗
i }) = Y ({c∗

i }) +
X({c∗

i }) − Y ({c∗
i }), it is equivalent to prove

(ε/2 − α)X({c∗
i }) − Y ({c∗

i }) ≥ (α + β)Y ({c∗
i }). (E.1)

We first give a lower bound of X({c∗
i }) − Y ({c∗

i }). Suppose ct = 0, we consider the case that only Firm t is licensed the 
innovation, i.e., ct = ct = 0. We first give a lower bound on the sum of utilities of active firms except t using Cauchy–
Schwarz inequality.∑

i∈E∗
u∗

i =
∑
i∈E∗

(p − c j)
2 = (p − ct)

2 +
∑

i∈E∗\{t}
(p − c j)

2

≥ p2 + 1

|E∗| − 1

⎡
⎣(|E∗| − 1)p −

∑
i∈E∗\{t}

c j

⎤
⎦

2

= p2 + (θ − 2p)2

|E∗| − 1

=
(

1 + 4

|E∗| − 1

)(
p − 2

|E∗| + 3
θ

)2

+ 1

|E∗| + 3
θ2

≥ 1

n + 3
θ2.

We then give an upper bound of Y ({c∗
i }). Note that c j ≤ θ for all j ∈ E∗ . We have

|E∗| + 2

(|E∗| + 1)2

⎛
⎝∑

j∈E∗
c j

⎞
⎠

2

+ 2

(|E∗| + 1)2
θ

⎛
⎝∑

j∈E∗
c j

⎞
⎠

≤θ2
( |E∗| + 2

(|E∗| + 1)2
|E∗|2 + 2|E∗|

(|E∗| + 1)2

)
<θ2(|E∗| + 1) = 2nθ2.

On the left-hand side of equation (E.1), we have (ε/2 − α)X({c∗
i }) − Y ({c∗

i }) ≥ (ε/2 − α) 1
n+3 θ2. On the right-hand side, we 

have (α + β)Y ({c∗
i }) ≤ 2nθ2(α + β). It suffices to prove

(ε/2 − α)
1

n + 3
θ2 ≥ 2nθ2(α + β).

It holds when α = β = ε
2 . �
36n
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Appendix F. Proof of Lemma 10

Lemma 10. Suppose |E∗| is found correctly, if 
∑

i∈E∗ ci is within (1 + β
3 ) approximation of 

∑
i∈E∗ c∗

i , then Y ({ci}) is no more than 
(1 + β)Y ({c∗

i }).

Proof. Given 
∑

j∈E∗ c j

O P T
(∑

j∈E∗ c j

) ∈ [1, (1 + β/3)], we need to prove

|E∗|+2
(|E|+1)2

(∑
j∈E∗ c j

)2 + 2
(|E∗|+1)2 θ

(∑
j∈E∗ c j

)
O P T

(
|E∗|+2

(|E∗|+1)2

(∑
j∈E∗ c j

)2 + 2
(|E∗|+1)2 θ

(∑
j∈E∗ c j

)) ∈ [1,1 + β].

It is easy to check the ratio is larger than 1. We prove it is smaller than 1 + β . It suffices to prove (1 + β/3)2 ≤ (1 + β)

which is true when β < 1. �
Appendix G. Proof of Theorem 9

Theorem 9. There is an approximation scheme for this problem. If there is no feasible solution, it outputs impossible. Other-
wise, it returns a feasible solution with value not less than (1 − α) times the optimal value for any α > 0. The running time is 
O  
(

n3 logn
1− f /g + n3

α(1− f /g)

)
.

Proof. It is easy to solve the case m = n when all items are selected. In the following We only consider the case m < n.
We first resolve the cardinality constraint. Define w ′

i = wi for i ≤ k and w ′
i = wi + g for i > k.

maxzi

∑
i

vi zi

s.t.
∑

i

w ′
i zi ∈ [ f + mg, g + mg],

zi ∈ {0,1}, ∀i.

(G.1)

These two problems above are equivalent in the sense that any feasible solution of (8) corresponds a solution of (G.1). This 
is because if there are not exact m items are selected among {k + 1, ..., n} then the weight constraint cannot be satisfied.

For this knapsack problem with a minimum filling constraint, we can use the algorithm introduced in [39]. If there 
is no feasible solution of (G.1), it outputs impossible. Otherwise, it returns a feasible solution with value not less than 
(1 − α) times the optimal value for any α > 0. The running time is O  

(
(n2 log n)/(1 − λ) + n2/[α(1 − λ)]) time where λ =

( f + mg)/(g + mg). Note that m < n, we have running time O  
(

n3 logn
1− f /g + n3

α(1− f /g)

)
. �

Appendix H. Proof of Theorem 11

Theorem 11. In the symmetric case, the ratio between revenue of the optimal hybrid-fee policy and revenue of the optimal upfront-fee 
policy is 1.62.

Given that we have already know the revenue of optimal hybrid-fee policy in Lemma 13, we only need to calculate the 
revenue of the optimal upfront-fee policy to finish the proof.

Lemma 14. The revenue of the optimal upfront-fee policy is as Table H.4.

Proof. c, c and ξ are denoted as Lemma 12. We consider two cases in terms of ξ .

Case 1. No firm will be kicked out from the market in any case. According to the proof of Lemma 12, we have ξ < θ−c
n−1 . Then 

the revenue can be written as

k

(
θ − c

n + 1
+ n − k + 1

n + 1
ξ

)2

+ (n − k)

(
θ − c

n + 1
− kξ

n + 1

)2

−
∑

i

ûi,

where k is the number of firms getting the innovation.
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Table H.4
The optimal upfront-fee policy revenue in the symmetric case.

ξ Upfront-Fee Policy

ξ <
2(θ−c)

n2+n−1
n2ξ
n+1

(
2 θ−c

n+1 − n−2
n+1 ξ

)
2(θ−c)

n2+n−1
≤ ξ < 1

n−1 (θ − c) (θ−c)2

(n+2)(n+1)2 + ξ(θ − c)
[

1
n+2 + 2(n−1)n

(n+1)2

]
+ ξ2

[
(n+1)2

4(n+2)
− n (n−1)2

(n+1)2

]
1

n−1 (θ − c) ≤ ξ ≤ 2
n+1 (θ − c) (θ−c)2

n+2 + θ−c
n+2 ξ + (n+1)2

4(n+2)
ξ2

2
n+1 (θ − c) ≤ ξ ≤ θ − c ξ(θ − c)

θ − c < ξ
(

θ−c+ξ
2

)2

Calculate its derivative with respect to k as

2(θ − c)

(n + 1)2
ξ + ξ2 − 2n + 4

(n + 1)2
ξ2k.

Then the value of k to achieve the optimal revenue through upfront-fee policy is set as

k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n, ξ <
2(θ − c)

n2 + 2n − 1
,

θ − c

ξ(n + 2)
+ (n + 1)2

2n + 4
,

2(θ − c)

n2 + 2n − 1
≤ ξ ≤ θ − c

n − 1
.

Case 2. The possibility that some firms will be kicked out exists. Then we have ξ ≥ θ−c
n−1 . In this case, we have ûi = 0. We 

consider two subcases first and then choose the maximum revenue between these two as the optimal revenue.

Subcase 1. No firm will be kicked out. The revenue formula is the same as Case 1. In addition, we can find the revenue 
increases with respect to k when k ≤ θ−c

ξ(n+2)
+ (n+1)2

2n+4 and decreases when k ≥ θ−c
ξ(n+2)

+ (n+1)2

2n+4 . With k being either less than 
θ−c
ξ

or n, we have k = θ−c
ξ(n+2)

+ (n+1)2

2n+4 , when θ−c
n−1 ≤ ξ ≤ 2(θ−c)

n+1 , and k = max{ θ−c
ξ

, n}, when ξ >
2(θ−c)

n+1 .

Subcase 2. Some firms have been kicked out. To guarantee this condition, we have k ≥ θ−c
ξ

. Then we can write the revenue 
formula as

k(
θ − c + ξ

k + 1
)2.

Calculate its derivative as

(
θ − c + ξ

k + 1
)2 1 − k

k + 1
.

Thus, the revenue decreases with respect to k when k ≥ θ−c
ξ

and we have k = θ−c
ξ

when θ−c
n−1 ≤ ξ ≤ θ − c.

When ξ ≥ θ − c, it is easy to check that both the optimal hybrid-fee policy and upfront-fee policy are providing full 
innovation to only one firm.

Combining all the results above, we can calculate the optimal revenue and construct Table H.4. �
Proof of Theorem 11. Through Lemma 13 and Lemma 14, we can compute the ratio directly as following:

• ξ <
2(θ−c)

n2+n−1
. The ratio can be written as

(3n − 1)(θ − c) − (n − 1)2ξ

2n(θ − c) − n(n − 2)ξ
= (3n − 1)(θ − c)/ξ − (n − 1)2

2n(θ − c)/ξ − n(n − 2)

≤ (3n − 1)(n2 + n − 1)/2 − (n − 1)2

2
= 3n3 − 1

3
≤ 3

.

n(n + n − 1) − n(n − 2) 2(n + n) 2
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• 2(θ−c)
n2+n−1

≤ ξ < 1
n−1 (θ − c). The ratio can be written as

θ−c
ξ

n(n + 1)(n + 2) + (n − 1)n(n + 2)(2 θ−c
ξ

− (n − 1))(
θ
ξ

)2 + θ−c
ξ

[(n + 1)2 + 2(n − 1)n(n + 2)] + (n+1)4

4 − n(n − 1)2(n + 2)

≤ (3n − 1)n(n + 2) θ−c
ξ

− (n − 1)2n(n + 2)(
θ−c
ξ

)2 + θ−c
ξ

(2n − 1)n(n + 2) − (n + 1)2
(

3n
2 − 1

2

)(
n
2 − 3

2

)
≤1.6.

• 1
n−1 (θ − c) ≤ ξ < 2

n+1 (θ − c). The ratio is written as

max

⎧⎪⎨
⎪⎩

n
(n+1)2

(
θ−c
ξ

)2 + n
n+1

θ−c
ξ

1
n+2 ( θ−c

ξ
)2 + 1

n+2
θ−c
ξ

+ (n+1)2

4(n+2)

,

θ−c
ξ

1
n+2 ( θ−c

ξ
)2 + 1

n+2
θ−c
ξ

+ (n+1)2

4(n+2)

⎫⎪⎬
⎪⎭

≤max

⎧⎪⎨
⎪⎩

n(n + 2)

(n + 1)2

(
θ−c
ξ

)2 + (n + 1) θ−c
ξ(

θ−c
ξ

)2 + θ−c
ξ

+ (n+1)2

4

,
n + 2

θ−c
ξ

+ 1 + (n+1)2

4
ξ

θ−c

⎫⎪⎬
⎪⎭

≤max{1.62,1}
=1.62.

The second inequality is based on routine calculations.
• 2

n+1 (θ − c) ≤ ξ ≤ θ − c. The ratio can be written as

max

{
n

(n + 1)2

θ − c

ξ
+ n

n + 1
,1

}
≤ max{ 3n

2(n + 1)
,1} ≤ 1.5.

• θ − c < ξ . The ratio is 1. �
Appendix I. Notation tables

Table I.5
Global notations.

Notations Meanings

N the set of all firms

n the number of firms

θ the pay-off relevant parameter in the Cournot game

p the price of each unit

ci Firm i’s per unit cost

ci Firm i’s per unit cost without the innovation

ci Firm i’s per unit cost with the innovation

qi the quantity of the products produced by Firm i
ri the per-unit royalty fee of Firm i
bi the one-off upfront fee of Firm i
ui the utility of Firm i
q = (q1,q2, . . . ,qn) the quantity profile of all firms

{ci} the cost profile of all firms

p∗ , q∗
i , u∗

i the price, Firm i’s production quantity and utility at the 
equilibrium of the Cournot game

E∗ the set of firms that ci < p∗

ûi Firm i’s lowest utility that it may obtain in the Cournot game

� the pricing policy

A the set of firms that accept the pricing policy

L the number of input bits

ε a sufficiently small positive number
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Table I.6
Local notations.

Notations Meanings

Icond. binary variable indicating that Icond. = 1 if cond. is true, 0 otherwise, used in Lemma 1

B the set of firms that ci < p∗ , used in Section 3

l the critical firm in the hybrid-fee policy, used in Section 3

�( j1, j2, η) the operation of decreasing the cost of Firm j1 by η and increasing the cost of Firm j2 by η, used in Lemma 4

e the size of E∗ , i.e., |E∗|, used in Algorithm 1

ei the i-th firm in E∗ in the increasing order of {ci}, used in Algorithm 1

d the innovator when it is an incumbent firm, used in Section 3.2

I the identity matrix, used in Theorem 6

J a |E∗| × |E∗| all-ones matrix, used in Theorem 6

e a |E∗| all-ones vector, used in Theorem 6

c, c the vectors with i-th elements ci and ci , used in Theorem 6

S , T , yi , si the multiset, the target number, coefficients and elements in Subset Sum Problem, used in Section 5.1

I{0,1} , I{−1,1} an instance of SSP{0,1} and SSP{−1,1} respectively, used in Lemma 5

E the set of firms remain in the market, used in Proposition 1

δ a constant number in the FPTAS algorithm, used in Section 5.2

c′
i the unique integer power of (1 + δ) in [ci , (1 + δ)ci) if ci > 0 and c′

i = 0 if ci = 0, used in Section 5.2.1

E ′ , p′ the set of active firms and the prices in the Cournot game equilibrium with θ and {c′
i}, used in Section 5.2.1

μ the optimal value of royalty policy, used in Lemma 8

X , Y the first and the second terms of the objective function of upfront fee policy, used in Section 5.2.2

α, β α = β = ε
36n2 , coefficients used in Section 5.2.2

a, h, f , g interval labels, used in Lemma 9, Lemma 10 and Theorem 9

zi , wi , m, vi item variable, item weight, item value and total quantity of the knapsack problem, used in Theorem 9

p̃ p̃ = θ+∑i∈E∗ c′
i|E∗|+1 , used in Lemma 6

H H = { j : c′
j = (1 + δ)t+1}, the set of firms with high costs, used in Lemma 6

σ a constant number, used in Theorem 5

c, c the pre-innovation unit-cost, the unit-cost after employing the innovative technology in the symmetric case, used in Theorem 7 and 
Theorem 11

ξ c − c, used in Theorem 7 and Theorem 11

k the number of firms that satisfying different conditions in different situations, used in Lemma 11, Lemma 12, Lemma 13, Lemma 14, 
Section 3 and Section 5.2.2

r the royalty fee under different policies in the symmetric case, used Lemma 12 and Lemma 13

References

[1] I. Segal, Contracting with externalities, Q. J. Econ. 114 (1999) 337–388.
[2] A. Sharp, S. Carew, Apple/RIM group top Google in $4.5 billion Nortel sale, https://www.reuters .com /article /us -nortel /apple -rim -group -top -google -in -4 -

5 -billion -nortel -sale -idUSTRE7600PF20110701, 2011.
[3] K. Clay, Microsoft buys 800 patents for $1.1 billion from AOL - but what’s next for AOL?, https://www.forbes .com /sites /kellyclay /2012 /04 /09 /microsoft -

buys -800 -patents -for-1 -1 -billion -from -aol -but -whats -next -for-aol /#7da1d1b476e1, 2012.
[4] A. Martin, Kodak to sell digital imaging patents for 525 million, https://www.nytimes .com /2012 /12 /20 /business /kodak-to -sell -patents -for-525 -million .

html, 2012.
[5] The IP5 offices, Key IP5 statistical indicators 2019, https://www.fiveipoffices .org /statistics, 2020.
[6] K. Arrow, Economic welfare and the allocation of resources for invention, in: The Rate and Direction of Inventive Activity, 1962, pp. 609–625.
[7] A.A. Cournot, I. Fisher, Mathematical Principles of the Theory of Wealth, vol. 1, James & Gordon, 1995.
[8] N. Singh, X. Vives, Price and quantity competition in a differentiated duopoly, Rand J. Econ. (1984) 546–554.
[9] A. Bousquet, H. Cremer, M. Ivaldi, M. Wolkowicz, Risk sharing in licensing, Int. J. Ind. Organ. 16 (1998) 535–554.

[10] J.G. Thursby, R. Jensen, M.C. Thursby, Objectives, characteristics and outcomes of university licensing: a survey of major us universities, J. Technol. 
Transf. 26 (2001) 59–72.

[11] M.L. Katz, C. Shapiro, On the licensing of innovations, Rand J. Econ. (1985) 504–520.
[12] J. Bessen, E. Maskin, Sequential innovation, patents, and imitation, Rand J. Econ. 40 (2009) 611–635.
[13] X.H. Wang, Fee versus royalty licensing in a Cournot duopoly model, Econ. Lett. 60 (1998) 55–62.
[14] X.H. Wang, B.Z. Yang, On licensing under Bertrand competition, Aust. Econ. Pap. 38 (1999) 106–119.
[15] C. Shapiro, Patent licensing and r & d rivalry, Am. Econ. Rev. 75 (1985) 25–30.
[16] D. Sen, Fee versus royalty reconsidered, Games Econ. Behav. 53 (2005) 141–147.
[17] M.I. Kamien, Y. Tauman, The Private Value of a Patent: a Game Theoretic Analysis, Springer, 1984.
[18] M.I. Kamien, Y. Tauman, Fees versus royalties and the private value of a patent, Q. J. Econ. 101 (1986) 471–491.
[19] M.I. Kamien, S.S. Oren, Y. Tauman, Optimal licensing of cost-reducing innovation, J. Math. Econ. 21 (1992) 483–508.
[20] D. Sen, Y. Tauman, Patent licensing in a Cournot oligopoly: general results, Math. Soc. Sci. 96 (2018) 37–48.
[21] D. Sen, Y. Tauman, General licensing schemes for a cost-reducing innovation, Games Econ. Behav. 59 (2007) 163–186.
[22] A.W. Beggs, The licensing of patents under asymmetric information, Int. J. Ind. Organ. 10 (1992) 171–191.
85

http://refhub.elsevier.com/S0304-3975(21)00704-0/bib6C3620642F60013E38ED9E23FAA5CFD1s1
https://www.reuters.com/article/us-nortel/apple-rim-group-top-google-in-4-5-billion-nortel-sale-idUSTRE7600PF20110701
https://www.reuters.com/article/us-nortel/apple-rim-group-top-google-in-4-5-billion-nortel-sale-idUSTRE7600PF20110701
https://www.forbes.com/sites/kellyclay/2012/04/09/microsoft-buys-800-patents-for-1-1-billion-from-aol-but-whats-next-for-aol/#7da1d1b476e1
https://www.forbes.com/sites/kellyclay/2012/04/09/microsoft-buys-800-patents-for-1-1-billion-from-aol-but-whats-next-for-aol/#7da1d1b476e1
https://www.nytimes.com/2012/12/20/business/kodak-to-sell-patents-for-525-million.html
https://www.nytimes.com/2012/12/20/business/kodak-to-sell-patents-for-525-million.html
https://www.fiveipoffices.org/statistics
http://refhub.elsevier.com/S0304-3975(21)00704-0/bibA30A5BADB7415691DCB62CC32C079EB3s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib3FF786F397AFB43E93BB530B1296BC81s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib708F77FB5FA28FA1EA372D8B09C4429Fs1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib9E1C9F178ED873DAB9BC9EACD5879834s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bibA73974347E8E7BEEB61A7490BB77574Bs1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bibA73974347E8E7BEEB61A7490BB77574Bs1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib90532CC6D0D8C41D2903047B4F8192D2s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib5BC71856C36EDE54FCD270634C827BDDs1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib844F62A7F4413B970EE86FB31369DC78s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib16D3C33B44B34CB8F9444E3E34A79878s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib68B2B2BC1BE440313EBAD3D654DC25B5s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bibA1EDA96920550B52FE7B176003881327s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bibEE9B4245EB81A8D075275E9C590DE2BBs1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib59DD5D057AE13936FA49CC1BDA5B5881s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bibBCC5456D5B29FDF540DA1789BA82A03Cs1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib5388EC69BECA22D207C0E8D6C27EC53Fs1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bibFC0F00A2D36490E17BB2F60BB3C4796Bs1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bibECD4B63203CD412FA6311F5300C50EFDs1


M. Chen, H. Huang, W. Shen et al. Theoretical Computer Science 901 (2022) 62–86
[23] N.T. Gallini, B.D. Wright, Technology transfer under asymmetric information, Rand J. Econ. (1990) 147–160.
[24] K. Bimpikis, D. Crapis, A. Tahbaz-Salehi, Information sale and competition, Manag. Sci. 65 (2019) 2646–2664.
[25] O. Hart, J. Tirole, D.W. Carlton, O.E. Williamson, Vertical integration and market foreclosure, in: Brookings Papers on Economic Activity, Microecon. 

1990 (1990) 205–286.
[26] P. Rey, J. Tirole, A primer on foreclosure, in: Handbook of Industrial Organization, vol. 3, 2007, pp. 2145–2220.
[27] A. Ghosh, M. Mahdian, Externalities in online advertising, in: Proceedings of the 17th International Conference on World Wide Web, 2008, pp. 161–168.
[28] A. Ghosh, A. Sayedi, Expressive auctions for externalities in online advertising, in: Proceedings of the 19th International Conference on World Wide 

Web, 2010, pp. 371–380.
[29] C. Deng, S. Pekec, Money for nothing: exploiting negative externalities, in: Proceedings of the 12th ACM Conference on Electronic Commerce, 2011, 

pp. 361–370.
[30] P. Jehiel, B. Moldovanu, E. Stacchetti, Multidimensional mechanism design for auctions with externalities, J. Econ. Theory 85 (1999) 258–293.
[31] P. Jehiel, B. Moldovanu, E. Stacchetti, How (not) to sell nuclear weapons, Am. Econ. Rev. (1996) 814–829.
[32] R.P. Leme, V. Syrgkanis, É. Tardos, Sequential auctions and externalities, in: Y. Rabani (Ed.), Proceedings of the Twenty-Third Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17–19, 2012, SIAM, 2012, pp. 869–886.
[33] N. Haghpanah, N. Immorlica, V. Mirrokni, K. Munagala, Optimal auctions with positive network externalities, ACM Trans. Econ. Comput. 1 (2013) 1–24.
[34] J. Rohlfs, A theory of interdependent demand for a communications service, Bell J. Econ. Manag. Sci. (1974) 16–37.
[35] S. Brânzei, A.D. Procaccia, J. Zhang, Externalities in cake cutting, in: F. Rossi (Ed.), IJCAI 2013, Proceedings of the 23rd International Joint Conference on 

Artificial Intelligence, 2013, IJCAI/AAAI, 2013, pp. 55–61.
[36] F. Szidarovszky, S. Yakowitz, A new proof of the existence and uniqueness of the Cournot equilibrium, Int. Econ. Rev. (1977) 787–789.
[37] D. Sen, G. Stamatopoulos, Licensing under general demand and cost functions, Eur. J. Oper. Res. 253 (2016) 673–680.
[38] Y. Ye, E. Tse, An extension of Karmarkar’s projective algorithm for convex quadratic programming, Math. Program. 44 (1989) 157–179.
[39] Z. Xu, The knapsack problem with a minimum filling constraint, Nav. Res. Logist. 60 (2013) 56–63.
86

http://refhub.elsevier.com/S0304-3975(21)00704-0/bibB8F472C39D8B99575EC3324000D4FFE5s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib43D24D91BC5756D5879A52895DFD4B9Fs1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib272740F0C2BD6CF09976A9DB308B2BD1s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib272740F0C2BD6CF09976A9DB308B2BD1s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib88F5284B76AD0BB8D9950DE452B99870s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib503DD737D8ED2345AA27C70130672ECBs1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib2654005D2E83253F5AA064AC43FA20A2s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib2654005D2E83253F5AA064AC43FA20A2s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bibA68212E6D40B6DAEE80AE25C6786EA26s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bibA68212E6D40B6DAEE80AE25C6786EA26s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib4E5C596E5977FADEBD1B32CFCED3D8C9s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib2ADE02EDAF69826C172BF6297E73E236s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib2F57BEA90B26E9012CC5EAF68E5DC8CEs1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib2F57BEA90B26E9012CC5EAF68E5DC8CEs1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib3DEF701316468786903B68F6D5159CEAs1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib7AB9FD80274D718555E64CEC4910369Fs1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib9262DB4501AA64863364B4741EC8D8D3s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib9262DB4501AA64863364B4741EC8D8D3s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bibDA75B2BB624EC0D1E87C4D08A2E08F45s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib1DE43254D092676AB42E733A6EA7BE25s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bibEEAC57F815C13B5BEA1D71D35A2C5266s1
http://refhub.elsevier.com/S0304-3975(21)00704-0/bib9EA42DA7D0C77B07529C45F6F831F72Bs1

	Optimal pricing policy design for selling cost-reducing innovation in Cournot games
	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Nash equilibrium in Cournot games
	2.2 The optimal policy framework

	3 Optimal hybrid-fee policy
	3.1 Optimal solution
	3.2 When the innovator produces products (incumbent firm)
	3.3 Innovator without cost-reducing innovation

	4 Optimal royalty-fee policy
	5 Optimal upfront-fee policy
	5.1 NP-hardness
	5.2 FPTAS algorithm
	5.2.1 Rounding method
	5.2.2 Knapsack problem variant


	Declaration of competing interest
	Acknowledgement
	Appendix A Proof of Theorem 5
	Appendix B Proof of Theorem 7
	Appendix C Proof of Lemma 6
	Appendix D Proof of Lemma 7
	Appendix E Proof of Lemma 9
	Appendix F Proof of Lemma 10
	Appendix G Proof of Theorem 9
	Appendix H Proof of Theorem 11
	Appendix I Notation tables
	References


