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Abstract

We investigate the statistical and computational require-
ments for distributed kernel ridge regression with randomized
sketching (DKRR-RS) and successfully achieve the optimal
learning rates with only a fraction of computations. More pre-
cisely, the proposed DKRR-RS combines sparse randomized
sketching, divide-and-conquer and KRR to scale up kernel
methods and successfully derives the same learning rate as
the exact KRR with only O(N0.5+γ) time in expectation, at
the basic setting, which outperforms previous state of the art
solutions, where N is the number of data and γ ∈ [0, 1].
Then, for the sake of the gap between theory and experiments,
we derive the optimal learning rate in probability for DKRR-
RS to reflect its generalization performance. Finally, to fur-
ther improve the learning performance, we construct an effi-
cient communication strategy for DKRR-RS and demonstrate
the power of communications via theoretical assessment. An
extensive experiment validates the effectiveness of DKRR-
RS and the communication strategy on real-world datasets.

1 Introduction
Kernel methods have been widely used in data mining, ma-
chine learning, and other fields (Yin et al. 2020c; Saunders,
Gammerman, and Vovk 1998; Liu 2021; Li and Liu 2021b;
Yin et al. 2020b; Li and Liu 2021a; Wang et al. 2021; Li
et al. 2018). However, they are unfeasible to deal with large-
scale scenarios due to the high computational requirements,
typically at least quadratic in the number of data.

To address these issues, a variety of approximate kernel
ridge regression (KRR) are proposed. The main principle
is to characterize statistical and computational trade-offs,
that is, to sacrifice statistical accuracy to gain computational
benefits. The representative methods include Nyström (Yin
et al. 2021, 2020a; Rudi, Carratino, and Rosasco 2017; Li,
Kwok, and Lu 2010) which constructs the approximate ker-
nel matrix with a few anchor points, random features (Liu,
Liu, and Wang 2021; Li, Liu, and Wang 2019; Rudi, Camo-
riano, and Rosasco 2016; Rahimi and Recht 2007), itera-
tive optimization (Lin and Cevher 2020; Lin, Lei, and Zhou
2019; Shalev Shwartz et al. 2011), distributed learning (Liu,
Liu, and Wang 2021; Lin, Wang, and Zhou 2020; Wang
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2019; Guo, Lin, and Shi 2019; Chang, Lin, and Zhou 2017;
Lin, Guo, and Zhou 2017; Zhang, Duchi, and Wainwright
2015, 2013) which divides the training data into some sub-
sets for processing on local processors and carry out neces-
sary communications, and randomized sketching (Lin and
Cevher 2020; Lian, Liu, and Fan 2021; Liu, Shang, and
Cheng 2019; Yang, Pilanci, and Wainwright 2017) which
projects the kernel matrix into a small one based on the
sketch matrix. The above studies show that randomized
sketching and distributed learning have outstanding effects
in kernel methods. Recently, combinations of those acceler-
ated algorithms benefit a lot and attract much attention, of
which learning properties have been explored including the
combination of Nyström and iterative optimization (Rudi,
Carratino, and Rosasco 2017), randomized sketching and it-
erative optimization (Lin and Cevher 2020), and divide-and-
conquer and multi-pass SGD (Lin and Cevher 2018). How-
ever, the computational requirements of the existing approx-
imate KRR estimates are still high, and it still remains un-
clear for complexity reduction and statistical analysis to the
combination of randomized sketching and distributed learn-
ing in kernel learning.

To further overcome the computational bottlenecks, we
propose the method, called DKRR-RS, of combining divide-
and-conquer learning and a sparse randomized sketching
method for KRR, which keeps the optimal learning rate.
This paper makes the following main contributions. 1) The
proposed DKRR-RS improves the existing state-of-the-art
results of the distributed learning and randomized sketch-
ing. In particular, at the basic setting (2ζ + γ = 2) and the
basic assumptions (see section 5.1 for details), DKRR-RS
requires only O(N0.5+γ) time and O(N) space in expecta-
tion to guarantee the same learning rate as the exact KRR,
where N is the number of data, ζ ∈ [1/2, 1], and γ ∈ [0, 1].
We take a substantial step in provably reducing the compu-
tational requirements by combining randomized sketching
with distributed learning; 2) The theoretical performance in
expectation reflects the average results of enough trials, but
may fail to capture the learning performance for a single
trial. To essentially reflect the generalization performance,
we obtain the optimal learning rate of DKRR-RS in prob-
ability and numerically verify its effectiveness; 3) We pro-
pose a communication strategy to further improve the learn-
ing performance of DKRR-RS, called DKRR-RS-CM, and



validate the theoretical bounds via numerical experiments.
The rest of the paper is organized as follows. Section 2

is the related work. Section 3 and 4 introduce the prelimi-
naries and the proposed methods of DKRR-RS and DKRR-
RS-CM. The theoretical results are shown in section 5. The
following are experiments and conclusions.

2 Related Work
The optimal learning rate of randomized sketching in KRR
is first proposed in (Yang, Pilanci, and Wainwright 2017),
which utilizes the fast Fourier transform to accelerate the
product of matrices in random orthogonal system sketches
(ROS). However, due to the dense sketch matrices includ-
ing the discrete Fourier transform matrix and the Hadamard
matrix, O(N2 + Nm2) time and O(N2) space are needed
for the optimal learning rate with the sketch dimension
m = Ω(dN log4(N)), where dN > 1. Subsequently, the
randomized sketching method in (Liu, Shang, and Cheng
2019), called Gauss, also achieves the optimal learning rate
with timeO(N2m) and spaceO(N2), based on dense Gaus-
sian sketch matrix and local Rademacher framework, when
m = Ω(dN ). Recently, Lin and Cevher (Lin and Cevher
2020) construct a new randomized sketching method called
Subgauss. The entries of the sketch matrix in Subgauss are
i.i.d. Subgaussian (such as Gaussian or Bernoulli). Lin and
Cevher firstly introduce the integral operator framework to
derive the the optimal learning rate with time O(N2m)

and space O(N2), when m = Ω(N
γ

2ζ+γ ), where γ
2ζ+γ >

0. Heng Lian et al. (Lian, Liu, and Fan 2021) combined
divide-and-conquer and random sketching based on two
well-known types of dense sketching matrix, the Gaussian
sketch and the ROS sketch. The dense sketching matrices
lead to high time and space complexity as mentioned above.
The condition of theoretical analysis in (Lian, Liu, and Fan
2021) is different from this paper. By comparison with them,
DKRR-RS keeps less time and space complexity with the
optimal generalization error under the same condition.

The representative distributed KRR includes DKRR
(Guo, Lin, and Shi 2019; Chang, Lin, and Zhou 2017; Lin,
Guo, and Zhou 2017; Zhang, Duchi, and Wainwright 2015,
2013) based on divide-and-conquer, DKRR-RF (Li, Liu, and
Wang 2019) based on DKRR and random features (Rudi,
Camoriano, and Rosasco 2016), and DKRR-NY-PCG (Yin
et al. 2020a) based on DKRR and Nyström-PCG (Rudi, Car-
ratino, and Rosasco 2017), which derive the optimal learning
rate in expectation. However, they have a restricted limita-
tion in the number of local processors p, that is, to derive the
optimal learning rate, p should be restricted to a constant at
the most popular case (ζ = 1/2, γ = 1). Subsequently, Yin
et al.(Yin et al. 2021), Liu et al. (Liu, Liu, and Wang 2021),
and Lin et al. (Lin, Wang, and Zhou 2020) introduce com-
munication strategies into DKRR and DKRR-RF to relax the
restriction on p. However, in (Lin, Wang, and Zhou 2020),
they require communicating the input data between each lo-
cal processor, which brings difficulties to the protection of
data privacy. In addition, the high communication complex-
ity O(Nd) at each iteration makes it infeasible in practice
for large-scale datasets, where d is the dimension.

3 Preliminaries
Let X be the input space and R be the output space. The
training set D = ∪pj=1Dj = {(xi, yi)}Ni=1 is sampled iden-
tically and independently from X × R with respect to ρ,
where ρ be a fixed but unknown distribution and p > 1. All
subsets {Dj}pj=1 are disjoint and |D1| = . . . = |Dp| = n.
Let ρX(·) be the induced marginal measure onX of ρ, ρ(·|x)
be the conditional probability measure on R with respect to
x ∈ X and ρ. We denote by Kx the function K(x, ·) and by
(H, 〈·, ·〉H) the Hilbert space of functions with the associ-
ated inner product induced by K, defined by 〈Kx,Kx′〉H =
K(x, x′),∀x, x′ ∈ X . Let L2

ρX be the Lebesgue space of ρX
square integrable functions, endowed with the inner product
〈φ, ψ〉ρX =

∫
φ(x)ψ(x)dρX(x), ∀φ, ψ ∈ L2

ρX , and norm
‖ψ‖ρ =

√
〈ψ,ψ〉

ρX
for all ψ ∈ L2

ρX . For any f ∈ H,
φ ∈ L2

ρX , define a linear map S : H → L2
ρX , such that

Sf = 〈f,K(·)〉H ∈ L2
ρX , with adjoint S∗ : L2

ρX → H,
such that S∗φ =

∫
φ(x)KxdρX(x) ∈ H. L: L2

ρX → L2
ρX ,

such that L = SS∗ and T : H → H, such that T = S∗S.
For any υ ∈ Rn, define Sn : H → Rn, such that Snf =

1√
n

(〈f,Kxi〉)ni=1 ∈ Rn, with adjoint S∗n : Rn → H, such
that S∗nυ = 1√

n
Σni=1υiKxi ∈ H. Tn : H → H, such that

Tn = S∗nSn.

3.1 Kernel Ridge Regression (KRR)
Given a hypothesis space H of measurable functions from
X to R, the goal of the supervised learning problem can be
formalized as minimizing the expected risk

inf
f∈H
E(f), E(f) =

∫
X×R

(f(x)− y)2dρ(x, y). (1)

Define the regression function (Steinwart and Christmann
2008) that minimizes the expected risk over all measurable
functions as fρ(x) =

∫
ydρ(y|x), almost everywhere.

A good empirical solution f̂ should correspond to the
small excess risk E(f̂)−inff∈H E(f). Suppose there is such
an fH ∈ H: E (fH) = minf∈H E(f). This paper focuses on
KRR. Given a Mercer kernel K : X ×X → R, KRR can be
state as

f̂D,λ = arg min
f∈H

1

N

N∑
i=1

(f(xi)−yi)2 +λ‖f‖2H, λ > 0. (2)

There is a unique closed form solution in Eq.(2) according to
the Representer Theorem (Schölkopf, Herbrich, and Smola
2001)

f̂D,λ(x) =

N∑
i=1

α̂iK(xi, x), with α̂ = (KN + λNI)−1y,

(3)
where KN is the N × N kernel matrix with KN (i, j) =
K(xi, xj), y = yN = [y1, . . . , yN ]T .

The time O(N3) for solving the linear system in Eq.(3)
and the memory O(N2) for storing the kernel matrix KN

are computationally unfeasible in large-scale setting.



3.2 KRR with Divide-and-Conquer (DKRR)
KRR with divide-and-conquer (DKRR) is defined as

f̂D,λ =
1

p

p∑
j=1

f̂Dj ,λ, (4)

where f̂Dj ,λ is the solution in Eq.(3). Its time complexity
and space complexity are O(N3/p3) and O(N2/p2).

4 The Proposed Algorithms
4.1 DKRR with Randomized Sketching

(DKRR-RS)
We propose a novel randomized sketching into DKRR
in Eq.(4), called DKRR-RS. The randomized sketching is
based on the sparse sketch matrix R ∈ Rm×n, where the
sketch dimension m < n. Let σ(i) ∈ {−1/m,+1/m}
be 2-wise independent hash function and σ(i) = t for
t ∈ {−1/m,+1/m} with probability 1/2. The entries Ri,j

of R is designed as

Ri,j =

σ(i), with prob.
m

n
,

0, with prob. 1− m

n
.

(5)

Note that the novel sketch matrix R is sparse. One only
needs to store the non-zero elements. Moreover, in a matrix-
matrix product (say of the form R×A for some matrix A),
one can achieve a significant n/m-fold speedup compared
with a dense matrix.

Projecting the kernel matrix Kn by the sketch ma-
trix R. That is, one can restrict the solver of approx-
imate KRR to the hypothesis space, Hm = {f |f =∑n
i=1(RT α̂j)iK(xi, ·), α̂j ∈ Rm}.
Define fDj ,m,λ be the local estimator for j-th subset Dj

in DKRR-RS. Therefore, the following problem

fDj ,m,λ = arg min
f∈Hm

1

n

n∑
i=1

(f(xi)− yi)2 + λ‖f‖2H, (6)

can be transformed into

fDj ,m,λ(x) =

n∑
i=1

(RT α̂j)iK(xi, x), (7)

with
α̂j = (RK2

nR
T + λnRKnR

T )−1(RKnyn). (8)
Equivalently, fDj ,m,λ is characterized by the following

equation
(PmTnPm + λI)fDj ,m,λ = PmS

∗
nŷn, (9)

where Pm be the projection operator with range Hm and
ŷn = 1√

n
yn (Rudi, Camoriano, and Rosasco 2015).

The global estimator can be obtained by the weighted av-
erage of approximate local estimators

f̄0
D,m,λ =

1

p

p∑
j=1

fDj ,m,λ. (10)

The prediction stage is based on the approximate param-
eters α̂j of each local processor and we obtain the final pre-
diction estimator by averaging the local estimators of each
local processor.

Complexity Analysis of DKRR-RS Time Complexity:
Due to the sparsity of the sketch matrix R, only the non-
zero elements need to be multiplied instead of each ele-
ment in the matrix-matrix product. Therefore, the cost of
computing RKn is only O(Nm2/p). The matrix K2

n does
not need to be represented explicitly. RK2

nR can be con-
verted to the form of RKn(RKn)T , whose time complex-
ity is O(Nm2/p) except for RKn. Taking into account the
fragmented time, the time complexity of DKRR-RS can be
summed up as O(Nm2/p). Space Complexity: The approx-
imate kernel matrix Kn is the decisive part in the memory
consumption, whose space complexity is O(N2/p2). Com-
munication Complexity: It is O(m) in DKRR-RS.

4.2 DKRR-RS with Communications
(DKRR-RS-CM)

For further improving the learning performance of ap-
proximate KRR, we propose a novel communication-based
DKRR-RS, called DKRR-RS-CM. The efficient communi-
cation strategy can enlarge the range of partition pwith guar-
anteeing the optimal statistical performance of distributed
KRR, which is adapted from (Lin, Wang, and Zhou 2020)
and avoids local data communication.

Let GD,m,λ be

GD,m,λ(f) = (PmTNPm + λI)f − PmS∗N ŷN . (11)

Note that GD,m,λ(f) is the half gradient of the empirical
risk of arg minf∈Hm

1
N

∑N
i=1(f(xi) − yi)2 + λ‖f‖2H over

Hm. According to Eq.(9), it can be found that

fD,m,λ = (PmTNPm + λI)−1PmS
∗
N ŷN , (12)

and

f̄0
D,m,λ =

1

p

p∑
j=1

(PmTnPm + λI)−1PmS
∗
nŷn. (13)

Therefore, for any f ∈ H, we have

fD,m,λ =f − (PmTNPm + λI)−1

× [(PmTNPm + λI)f − PmS∗N ŷN ] ,
(14)

and

f̄0
D,m,λ =f − 1

p

p∑
j=1

(PmTnPm + λI)−1

× [(PmTnPm + λI)f − PmS∗nŷn] .

(15)

Comparing Eq.(14) and Eq.(15), and noting that
the global gradient can be obtained via the commu-
nications of each local gradient, i.e., GD,m,λ(f) =
1
p

∑p
j=1GDj ,m,λ(f), we consider the communication strat-

egy of Newton-Raphson iteration-based:

f̄ lD,m,λ =f̄ l−1
D,m,λ −

1

p

p∑
j=1

βl−1
j , l > 0, (16)

where βl−1
j = (PmTnPm + λI)−1GD,m,λ(f̄ l−1

D,m,λ).



Algorithm 1: DKRR-RS with Communications (DKRR-RS-
CM)
Input: p disjoint subsets {Dj}pj=1 with D = ∪pj=1Dj , ker-
nel parameter, regularization parameter λ, sketch dimension
m.
Output: f̄MD,m,λ

1: If l = 0
Local processor: compute fDj ,m,λ in Eq.(7), and

communicate back to global processor.
Global processor: compute f̄0

D,m,λ in Eq.(10), and
communicate to each local processor.

2: End If
3: For l = 1 to M do

Local processor: compute local gradient
GDj ,m,λ(f̄ l−1

D,m,λ) and communicate back to the
global processor.

Global processor: compute global gradient
GD,m,λ(f̄ l−1

D,m,λ) = 1
p

∑p
j=1GDj ,m,λ(f̄ l−1

D,m,λ),
and communicate to each local processor.

Local processor: compute βl−1
j = (PmTnPm +

λI)−1GD,m,λ(f̄ l−1
D,m,λ) and communicate back to the

global processor.
Global processor: compute f̄ lD,m,λ in Eq.(16), and

communicate to each local processor.
4: End For

The process of DKRR-RS-CM is summarized in Algo-
rithm 1. When l = 0, DKRR-RS-CM executes the computa-
tion of DKRR-RS. Otherwise, the four-step communication
strategy is implemented. The first step is to compute the lo-
cal gradients in each local processor and communicate them
back to the global processor. The second step is to compute
the global gradient by the local gradients in the global pro-
cessor and communicate it to each local processor. The fol-
lowing is to compute βl−1

j by the global gradient in each
local processor and communicate them back to the global
processor. The fourth is to compute f̄ lD,m,λ in the global pro-
cessor and communicate it to each local processor. Here, one
iteration ends. Repeat the four-step communication strategy
until l = M and output f̄MD,m,λ. The testing flow is shown
in Appendix.

Complexity Analysis of DKRR-RS-CM Time Complex-
ity: For each local processor, the matrices product RKn

and (RKn)(RKn)T and the inverse of RKn(RKn)T +
λnRKnR

T need to be computed once. In each iteration,
one need to compute the local gradient GDj ,m,λ(f̄ l−1

D,m,λ)

and βl−1
j in each local processor. Therefore, the total time

complexity isO(m2N/p+MmN/p) for each local proces-
sor. Space Complexity: The key element in memory is the
matrix Kn. Therefore, the space complexity in each local
processor is O(N2/p2). Communication Complexity: For
l = 0, the global processor and each local processor need
to communicate fDj ,m,λ and f̄0

D,m,λ. In each iteration, the
local processors receive GD,m,λ and f̄ lD,m,λ, and communi-

cate GDj ,m,λ and βl−1
j back to the global processor. There-

fore, the communication complexity is O(Mm).

5 Theoretical Analysis
In this section, we characterize the generalization perfor-
mances of DKRR-RS and DKRR-RS-CM showing they
achieve the same optimal learning rate as KRR, with dra-
matically reduced computations.

5.1 Basic Assumptions
Assumption 1 (Moment Assumption). There exist positive
constants Q and b such that for all j ≥ 2 with j ∈ N,∫
R |y|

jdρ(y|x) ≤ 1
2j!b

j−2Q2, almost everywhere on X .
Typically, this assumption is related to a noise assumption

in the regression model, which is satisfied if y is bounded
almost surely (Rudi, Carratino, and Rosasco 2017).
Assumption 2 (Regularity Assumption). fH satisfies∫

(fH(x) − fρ(x))2Kx ⊗KxdρX(x) � B2T , and the fol-
lowing Hölder source condition

fH = Lζg0,with ‖g0‖ρ ≤ R. (17)

Here, B,R are non-negative numbers, ζ ∈ [1/2, 1].
The equation Eq.(17) reflects the regularity of the function

fH (Smale and Zhou 2007). The bigger ζ is, the higher the
regularity of fH is and the faster the convergence rate is. ⊗
denotes the tensor product.
Assumption 3 (Capacity Assumption). For some γ ∈
[0, 1] and cγ > 0, T satisfies

tr(T (T + λI)−1) ≤ cγλ−γ , for all λ > 0. (18)

This assumption controls the variance of the estimator
and is equivalent to the classic entropy and covering num-
ber conditions (Steinwart and Christmann 2008). The effec-
tive dimension, the left hand-side of Eq.(18), is often used to
measure the complexity of the hypothesis space H (Capon-
netto and Vito 2007). γ reflects the size of H. This assump-
tion is always true for γ = 1, since T is a trace class op-
erator. It is satisfied, e.g., if the eigenvalues of T satisfy a
polynomial decaying condition σi ∼ i−1/γ , or with γ = 0
if T is finite rank.

5.2 Optimal Learning Rate for DKRR-RS in
Expectation

Theorem 1. Under Assumptions 1-3 and the sketch ma-
trix R constructed by Eq.(5), let δ ∈ (0, 1], γ ∈ [0, 1],
ζ ∈ [1/2, 1], and f̄0

D,m,λ be the estimator. When λ =

Ω(N−
1

2ζ+γ ), m = Ω
(
N

γ
2ζ+γ

)
, and p = O

(
N

2ζ+γ−1
2ζ+γ

)
,

with probability at least 1− δ, we have

E
∥∥f̄0
D,m,λ − fH

∥∥2

ρ
= O

(
N−

2ζ
2ζ+γ

)
.

Remark 1. Note that E
[
E(f̄0

D,m,λ)
]
− inff∈H E(f) =

E
∥∥∥f̄0
D,m,λ − fH

∥∥∥2

ρ
(Smale and Zhou 2007). From a theo-

retical perspective, Theorem 1 shows that if the sketch di-
mension m = Ω

(
N

γ
2ζ+γ

)
and the number of partitions



p = O
(
N

2ζ+γ−1
2ζ+γ

)
, DKRR-RS achieves the same optimal

learning rate O
(
N−

2ζ
2ζ+γ

)
1 as the exact KRR (Lin and

Cevher 2020; Caponnetto and Vito 2007). At the basic set-
ting (2ζ + γ = 2), the time and space complexity of DKRR-
RS are O(N0.5+γ) and O(N) with the optimal learning
rate. The most popular case (ζ = 1/2, γ = 1) and the worst
case (ζ = 1, γ = 0) are included in the basic setting. In
the case γ = 0, the time cost is only O(N0.5), which is a
substantial step in scaling up kernel methods.

Remark 2. Optimal learning rates for DKRR (Lin, Guo,
and Zhou 2017; Guo, Lin, and Shi 2019), DKRR-NY-PCG
(Yin et al. 2020a), and DKRR-RF (Li, Liu, and Wang 2019)
in expectation have been established. However, they have
a strict restriction on the number of local processors p.
More precisely, at the most popular case, to reach the op-
timal learning rate, p in them should be restricted to a con-
stant O(1), but for our result is O(

√
N). DKRR-RF (Liu,

Liu, and Wang 2021) obtains the optimal learning rate with
p = O(N

2ζ+γ−1
2ζ+γ ) and m = Ω(N

(2ζ−1)γ+1
2ζ+γ ) in expecta-

tion. Compared with DKRR-RF (Liu, Liu, and Wang 2021)
in expectation, DKRR-RS reduces the time complexity by a
factor of N

4(ζ−1)γ+2
2ζ+γ with the optimal learning rate, where

2(ζ − 1)γ + 1 > 0. Compared to DKRR-NY-PCG (Yin et al.
2020a), DKRR-RS reduces the time complexity and space
complexity by factors ofN

1−γ
2ζ+γ andN

γ
2ζ+γ with the optimal

learning rate, where 1− γ ≥ 0.

5.3 Optimal Learning Rate for DKRR-RS in
Probability

The expectation in Theorem 1 describes the average prop-
erties of multiple trials but may fail to capture the learning
performance for a single trial. To essentially reflect the gen-
eralization performance of DKRR-RS, we achieve the opti-
mal learning rate in probability.

Theorem 2. Under Assumptions 1-3 and the sketch ma-
trix R constructed by Eq.(5), let δ ∈ (0, 1], γ ∈ [0, 1],
ζ ∈ [1/2, 1], and f̄0

D,m,λ be the estimator. When λ =

Ω(N−
1

2ζ+γ ), m = Ω
(
N

γ
2ζ+γ

)
, and p = O

(
N

2ζ+γ−1
4ζ+2γ

)
,

with probability at least 1− δ, we have∥∥f̄0
D,m,λ − fH

∥∥2

ρ
= O

(
N−

2ζ
2ζ+γ

)
.

Remark 3. DRKK-RS obtains the optimal learning rate not
only in expectation but also in probability, and the upper
bound O

(
N

2ζ+γ−1
4ζ+2γ

)
of p in Theorem 2 is stricter than

O
(
N

2ζ+γ−1
2ζ+γ

)
in Theorem 1. This is because that the er-

ror decomposition in probability is not easy to separate a
distributed error that controls p compared to the one in ex-
pectation. To derive the optimal learning rate, we provide
a novel error decomposition in probability, please see the
details in Appendix.

1We hide the logarithmic terms of learning rate and complexity
in this paper.

5.4 Optimal Learning Rate for DKRR-RS-CM in
Probability

This part shows that the proposed communication strategy
can improve the learning performance of DKRR-RS, that is,
enlarge the range of partition p.
Theorem 3. Under Assumptions 1-3 and the sketch ma-
trix R constructed by Eq.(5), let δ ∈ (0, 1], γ ∈
[0, 1], ζ ∈ [1/2, 1], and f̄MD,m,λ be the estimator. When

λ = Ω(N−
1

2ζ+γ ), m = Ω
(
N

γ
2ζ+γ

)
, and p =

O
(
N

(2ζ+γ−1)(M+1)
(2ζ+γ)(M+2)

)
, with probability at least 1−δ, we have∥∥f̄MD,m,λ − fH∥∥2

ρ
= O

(
N−

2ζ
2ζ+γ

)
.

Proof. The proof of Theorem 1, 2, and 3 is given in Ap-
pendix.

Remark 4. It is clear that the upper bound of number of

partitions can be relaxed to O
(
N

(2ζ+γ−1)(M+1)
(2ζ+γ)(M+2)

)
in Theo-

rem 3 compared toO
(
N

2ζ+γ−1
4ζ+2γ

)
in Theorem 2 with the op-

timal learning rate, which demonstrates the function of com-
munication strategy in improving the performance of DKRR-
RS. Note that as the number of communicationM increases,
the upper bound of p is increasing. When M →∞, the par-
titions p can reach the same bound O

(
N

2ζ+γ−1
2ζ+γ

)
in expec-

tation.

5.5 Compared with the Related Works
Comparisons of Time and Space Complexity Table 1
shows the computational complexity of the state-of-the-art
approximate KRR estimates with the same statistical accu-
racy as the exact KRR at the basic setting. We know that the
proposed DKRR-RS only require N0.5+γ time and N space
with the optimal learning rate in expectation, which is more
effective than other methods, where γ ∈ [0, 1]. DKRR-RS-
CM can also keep the least time and communication com-
plexity with the optimal learning rate in probability than the
communication-based methods of DKRR-CM (Lin, Wang,
and Zhou 2020), DKRR-RF-CM (Liu, Liu, and Wang 2021),
and DKRR-NY-CM (Yin et al. 2021). At the same time, the
proposed DKRR-RS and DKRR-RS-CM keep the best up-
per bound of p under the same conditions.

Proof Techniques From a theoretical perspective, this pa-
per is a non-trivial extension of these approximate meth-
ods. Compared with (Lin and Cevher 2020): They study
stochastic gradient methods and randomized sketching, but
we consider the distributed learning and randomized sketch-
ing. To obtain the optimal learning rate, we deduce a new
decomposition ‖f̃Dj ,m,λ − fm,λ‖ρ and lead into some tech-
niques to obtain a tight distributed error bound in expecta-
tion, and deduce tight bounds of ‖f̄0

D,m,λ − fD,m,λ‖ρ and
‖f̄ lD,m,λ − fD,m,λ‖ρ in probability, which are not available
in (Lin and Cevher 2020). See Appendix for details.

Compared with (Liu, Liu, and Wang 2021; Yin et al. 2021;
Lin, Wang, and Zhou 2020; Yin et al. 2020a; Li, Liu, and



Table 1: Complexity of the state-of-the-art KRR estimates with the same learning rate as the exact KRR at the basic setting.
“Comm”, “Pro”, and “Exp” denote communication complexity, “In probability”, and “In expectation”. m denotes the sketch
dimension in randomized sketching, sampling scale in Nyström and the number of random features in random features methods.
N and M are the number of training data and communication. d > 0, γ ∈ [0, 1], ∆1 = (1−γ)γ

2 ≥ 0, ∆2 = γ
2 ∈ [0, 0.5],

0.5 + ∆1 ≥ ∆2, dN > 1. Logarithmic terms are not showed.

Algorithms Time Space Comm p m Types

KRR (Caponnetto and Vito 2007) N3 N2 / / / Pro
DKRR (Chang, Lin, and Zhou 2017) N2 N N0.5 N0.5 / Exp
DKRR (Lin, Wang, and Zhou 2020) N2.25 N1.5 N0.75 N0.25 / Pro
DKRR-CM (Lin, Wang, and Zhou 2020) N

3(M+3)
2M+4 N

M+3
M+2 MdN N

M+1
2M+4 / Pro

Nyström (Rudi, Camoriano, and Rosasco 2015) N2 N1.5 / / N0.5 Pro
Nyström-PCG (Rudi, Carratino, and Rosasco 2017) N1.5 N1.5 / / N0.5 Pro
DKRR-NY-PCG (Yin et al. 2020a) N1.5 N1+∆2 N0.5 N0.5−∆2 N0.5 Exp
DKRR-NY-CM (Yin et al. 2021) N

3M+7
2M+4 N

2M+5
2M+4 MN0.5 N

M+1
2M+4 N0.5 Pro

Random Features (Rudi, Camoriano, and Rosasco 2016) N2+2∆1 N1.5+∆1 / / N0.5+∆1 Pro
DKRR-RF (Li, Liu, and Wang 2019) N1.5+2∆1+∆2 N1+∆1+∆2 N0.5+∆1 N0.5−∆2 N0.5+∆1 Exp
DKRR-RF (Liu, Liu, and Wang 2021) N1.5+2∆1 N1+∆1 N0.5+∆1 N0.5 N0.5+∆1 Exp
DKRR-RF (Liu, Liu, and Wang 2021) N1.75+2∆1 N1.25+∆1 N0.5+∆1 N0.25 N0.5+∆1 Pro
DKRR-RF-CM (Liu, Liu, and Wang 2021) N

3M+7
2M+4 +2∆1 N

2M+5
2M+4 +∆1 MN0.5+∆1 N

M+1
2M+4 N0.5+∆1 Pro

ROS (Yang, Pilanci, and Wainwright 2017) N2 +Nd2
N N2 / / dN log4(N) Pro

Gauss (Liu, Shang, and Cheng 2019) N2dN N2 / / dN Pro
Subgauss (Lin and Cevher 2020) N2 N2 / / N∆2 Pro
DKRR-RS (Theorem 1) N0.5+2∆2 N N∆2 N0.5 N∆2 Exp
DKRR-RS (Theorem 2) N0.75+2∆2 N1.5 N∆2 N0.25 N∆2 Pro
DKRR-RS-CM (Theorem 3) N

M+3
2M+4 +2∆2 N

M+3
M+2 MN∆2 N

M+1
2M+4 N∆2 Pro

Wang 2019): Although they also adopt distributed learning
and/or communication strategies, the techniques of proof are
different from ours. This is because the distributed errors in
this paper are related to the proposed randomized sketching
method, which does not exist in them. In addition, by in-
troducing the proof techniques and new operator represen-
tations, we relax the restriction on p from O(1) to O(

√
N)

at the most popular case, and reduce the lower bound of m
compared to (Yin et al. 2020a; Li, Liu, and Wang 2019).
Finally, in (Lin, Wang, and Zhou 2020), it requires commu-
nicating data among each local processor for each iteration,
which causes the high communication complexity for large-
scale datasets and is difficult to protect the privacy of data in
local processors. However, we only require communicating
the gradients and model parameters instead of data, which
have a smaller communication complexity O(m) at each it-
eration and can do better on privacy protection. Meanwhile,
we also have a smaller communication and time complexity
than (Liu, Liu, and Wang 2021; Yin et al. 2021) due to the
smaller lower bound of m so that we are more suitable for
large-scale datasets.

Overall, we provide novel distributed bounds with ran-
domized sketching in expectation and probability, and
communication-based distributed bound in probability. By
introducing some novel techniques and decompositions, we
derive the best upper bound of p, which are a non-trivial ex-
tension of (Liu, Liu, and Wang 2021; Yin et al. 2021; Lin and
Cevher 2020; Lin, Wang, and Zhou 2020; Yin et al. 2020a;

Li, Liu, and Wang 2019). Please see the details in Appendix.

6 Experiments
In this section, we present an extensive experiment on the
commonly datasets to verify our theoretical predictions.

The empirical evaluations of DKRR-RS and DKRR-RS-
CM use Gaussian kernel, e−

1
2h2

(x1−x2)2 , on cadata (20640
samples), shuttle (43500 samples), w8a (49749 samples),
and connect-4 (67557 samples) datasets2, where the opti-
mal h ∈ 2[−2:0.5:5] and λ ∈ 2[−16:3:−4] are selected via 5-
fold cross-validation. The datasets are normalized with 70%
samples used for training and the rest for testing. The ex-
periments use RMSE and classification error for regression
and classification problems and are repeated 5 times with a
server of 32 cores (2.40GHz) and 32 GB of RAM.

Figure 1 compare DKRR-RS with Subgauss, ROS3,
DKRR, the classical Nyström4 (Li, Kwok, and Lu 2010),
and DKRR-NY which is a combination of Nyström (Li,
Kwok, and Lu 2010) and DKRR, with m = 600 >

√
N .

From Figure 1, one can find that DKRR-RS keeps approx-
imate optimal error with the least time. And the larger the

2They are from https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools
/datasets/

3The code is from the author of (Yang, Pilanci, and Wainwright
2017)

4The code is from (Li, Kwok, and Lu 2010)
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Figure 1: The testing error and training time about the number of partitions p of various algorithms on cadata and connect-4
datasets. For each algorithm, if necessary, m = 600.

Table 2: Comparison of average training time (left) in seconds and average testing error (right) in solving KRR between
Nyström, Subgauss, ROS and DKRR-RS algorithms on cadata, shuttle, and w8a datasets, with m = 900 and 1500, the number
of partitions p = 3. We bold the numbers of the best algorithm.

Dataset Nyström(m = 900) Subgauss(m = 900) ROS(m = 900) DKRR-RS(m = 900)
time error time error time error time error

cadata 0.55 1.08± 0.133 2.19 0.15±0.021 3.95 1.20± 0.119 0.21 0.19±0.023
shuttle 1.86 0.25± 0.012 10.4 0.05±0.006 21.1 0.26± 0.022 0.30 0.05±0.001
w8a 3.27 0.04± 0.001 13.0 0.02±0.002 36.0 0.05± 0.003 0.39 0.02±0.004

Dataset Nyström(m = 1500) Subgauss(m = 1500) ROS(m = 1500) DKRR-RS(m = 1500)
time error time error time error time error

cadata 1.22 0.97± 0.038 3.20 0.13±0.046 4.44 0.99± 0.023 0.29 0.14±0.056
shuttle 4.52 0.25± 0.013 15.9 0.04±0.002 23.5 0.25± 0.015 0.50 0.05±0.002
w8a 6.00 0.03± 0.0061 16.3 0.02±0.001 36.5 0.04± 0.002 0.71 0.02±0.007
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Figure 2: The testing error about the number of partitions p
of DKRR-RS and DKRR-RS-CM on connect-4 datasets. 2,
4, and 8 represent the number of communications.m = 600.

partitions, the shorter the time of p-related algorithms. The
gap between DKRR-RS and DKRR shows that the proposed
sparse randomized sketching can greatly reduce the time
consumption with a little error. They are consistent with our
theoretical analysis and Theorem 1 and 2 that the proposed
DKRR-RS can achieve satisfactory accuracy and less time
with suitable p and m.

Table 2 compare the training time and testing error of
DKRR-RS and m-related algorithms (Subgauss, ROS and
Nyström) on cadata, shuttle and w8a datasets with p = 3,
m = 900 andm = 1500. The experimental results show that

the largerm is, the longer the training time is and the smaller
the test error is. Under the same m, DKRR-RS is evidently
superior to other algorithms in training time and keeps the
(nearly) best testing error, which is consistent with the the-
oretical analysis. When m = 1500, DKRR-RS is even one
order of magnitude faster than Nyström algorithm.

Figure 2 compares DKRR-RS-CM (M = 2, 4, 8) with
DKRR-RS, with m = 600 >

√
N , which shows that:

1) With the increase of p, errors of distributed algorithms
(DKRR-RS-CM and DKRR-RS) are gradually increasing.
When p is bigger than some upper bounds, the errors are
far from the starting point. This demonstrates Theorem 1,
2, and 3. 2) The upper bound p of DKRR-RS-CM is bigger
than that of DKRR-RS, which verifies the power of com-
munication strategy in enlarging the range of p. 3) As the
number of communication increases, the upper bound of p
is increasing. This is consistent with Theorem 3. More ex-
periments and the details of datasets are given in Appendix.

7 Conclusions
In this paper, we propose DKRR-RS method by combining
distributed learning and randomized sketching, and investi-
gate its statistical and computational requirements in expec-
tation and probability. Then, to further improve the learning
performance, we construct an efficient communication strat-
egy for DKRR-RS and demonstrate the power of communi-
cations via theoretical and empirical assessments.
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