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ABSTRACT

Most recent few-shot learning (FSL) approaches are based on episodic training
whereby each episode samples few training instances (shots) per class to imitate
the test condition. However, this strict adhering to test condition has a negative
side effect, that is, the trained model is susceptible to the poor sampling of few
shots. In this work, for the first time, this problem is addressed by exploiting inter-
episode relationships. Specifically, a novel meta-learning via modeling episode-
level relationships (MELR) framework is proposed. By sampling two episodes
containing the same set of classes for meta-training, MELR is designed to en-
sure that the meta-learned model is robust against the presence of poorly-sampled
shots in the meta-test stage. This is achieved through two key components: (1)
a Cross-Episode Attention Module (CEAM) to improve the ability of alleviating
the effects of poorly-sampled shots, and (2) a Cross-Episode Consistency Regu-
larization (CECR) to enforce that the two classifiers learned from the two episodes
are consistent even when there are unrepresentative instances. Extensive experi-
ments for non-transductive standard FSL on two benchmarks show that our MELR
achieves 1.0%–5.0% improvements over the baseline (i.e., ProtoNet) used for FSL
in our model and outperforms the latest competitors under the same settings.

1 INTRODUCTION

Deep convolutional neural networks (CNNs) have achieved tremendous successes in a wide range
of computer vision tasks including object recognition (Krizhevsky et al., 2012; Simonyan & Zisser-
man, 2015; Russakovsky et al., 2015; He et al., 2016a), semantic segmentation (Long et al., 2015;
Chen et al., 2018), and object detection (Ren et al., 2015; Redmon et al., 2016). For most visual
recognition tasks, at least hundreds of labeled training images are required from each class for train-
ing a CNN model. However, collecting a large number of labeled training samples is costly and
may even be impossible in real-life application scenarios (Antonie et al., 2001; Yang et al., 2012).
To reduce the reliance of deep neural networks on large amount of annotated training data, few-shot
learning (FSL) has been studied (Vinyals et al., 2016; Finn et al., 2017; Snell et al., 2017; Sung et al.,
2018), which aims to recognize a set of novel classes with only a few labeled samples by knowledge
transfer from a set of base classes with abundant samples.
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Recently, FSL has been dominated by meta-learning based approaches (Finn et al., 2017; Snell et al.,
2017; Sung et al., 2018; Lee et al., 2019; Ye et al., 2020), which exploit the ample samples from
base classes via episodic training. During meta-training, to imitate an N -way K-shot novel class
recognition task, an N -way K-shot episode/meta-task is sampled in each iteration from the base
classes, consisting of a support set and a query set. By setting up the meta-training episodes exactly
the same way as the meta-test ones (i.e., N -wayK-shot in the support set), the objective is to ensure
that the meta-learned model can generalize to novel tasks. However, this also leads to an unwanted
side-effect, that is, the model will be susceptible to the poor sampling of the few shots.

Outlying training instances are prevalence in vision benchmarks which can be caused by various
factors such as occlusions or unusual pose/lighting conditions. When trained with ample samples,
modern CNN-based recognition models are typically robust against abnormal instances as long as
they are not dominant. However, when as few as one shot per class is used to build a classifier for
FSL, the poorly-sampled few shots could be catastrophic, e.g., when the cat class is represented in
the support set by a single image of a half-occluded cat viewed from behind, it would be extremely
hard to build a classifier to recognize cats in the query set that are mostly full-body visible and
frontal. Existing episodic-training based FSL models do not offer any solution to this problem. The
main reason is that different episodes are sampled randomly and independently. When the cat class
is sampled in two episodes, these models are not aware that they are the same class, and thus cannot
enforce the classifiers independently learned to be consistent to each other, regardless whether there
exist poorly-sampled shots in one of the two episodes.

In this paper, a novel meta-learning via modeling episode-level relationships (MELR) framework is
proposed to address the poor sampling problem of the support set instances in FSL. In contrast to
the existing episodic training strategy, MELR conducts meta learning over two episodes deliberately
sampled to contain the same set of base classes but different instances. In this way, cross-episode
model consistency can be enforced so that the meta-learned model is robust against poorly-sampled
shots in the meta-test stage. Concretely, MELR consists of two key components: Cross-Episode
Attention Module (CEAM) and Cross-Episode Consistency Regularization (CECR). CEAM is com-
posed of a cross-episode transformer which allows the support set instances to be examined through
attention so that unrepresentative support samples can be identified and their negative effects allevi-
ated (especially for computing class prototypes/centers). CECR, on the other hand, exploits the fact
that since the two episodes contain the same set of classes, the obtained classifiers (class prototypes)
should produce consistent predictions regardless whether there are any poorly-sampled instances in
the support set and/or which episode a query instance comes from. This consistency is enforced via
cross-episode knowledge distillation.

Our main contributions are three-fold: (1) For the first time, the poor sampling problem of the few
shots is formally tackled by modeling the episode-level relationships in meta-learning based FSL.
(2) We propose a novel MELR model with two cross-episode components (i.e., CEAM and CECR)
to explicitly enforce that the classifiers of the same classes learned from different episodes need
to be consistent regardless whether there exist poorly-sampled shots. (3) Extensive experiments
for non-transductive standard FSL on two benchmarks show that our MELR achieves significant
improvements over the baseline ProtoNet (Snell et al., 2017) and even outperforms the latest com-
petitors under the same settings. We will release the code and models soon.

2 RELATED WORK

Few-Shot Learning. Few-shot learning (FSL) has become topical recently. Existing methods can
be generally divided into four groups: (1) Metric-based methods either learn a suitable embedding
space for their chosen/proposed distance metrics (e.g., cosine similarity (Vinyals et al., 2016), Eu-
clidean distance (Snell et al., 2017), and a novel measure SEN (Nguyen et al., 2020)) or directly
learn a suitable distance metric (e.g., CNN-based relation module (Sung et al., 2018; Wu et al.,
2019), ridge regression (Bertinetto et al., 2019), and graph neural networks (Satorras & Estrach,
2018; Kim et al., 2019; Yang et al., 2020)). Moreover, several approaches (Yoon et al., 2019; Li
et al., 2019a; Qiao et al., 2019; Ye et al., 2020; Simon et al., 2020) learn task-specific metrics which
are adaptive to each episode instead of learning a shared task-agnostic metric space. (2) Model-based
methods (Finn et al., 2017; Nichol et al., 2018; Rusu et al., 2019) learn good model initializations
on base classes and then quickly adapt (i.e., finetune) them on novel classes with few shots and a
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limited number of gradient update steps. (3) Optimization-based methods (Ravi & Larochelle, 2017;
Munkhdalai & Yu, 2017; Li et al., 2017) aim to learn to optimize, that is, to meta-learn optimiza-
tion algorithms suitable for quick finetuning from base to novel classes. (4) Hallucination-based
methods (Hariharan & Girshick, 2017; Wang et al., 2018; Schwartz et al., 2018; Li et al., 2020)
learn generators on base classes and then hallucinate new novel class data to augment the few shots.
Additionally, there are also other methods that learn to predict network parameters given few novel
class samples (Qiao et al., 2018; Gidaris & Komodakis, 2019; Guo & Cheung, 2020). Although the
metric-based ProtoNet (Snell et al., 2017) is used as our baseline in this paper, our proposed MELR
framework can be easily integrated with other episodic-training based methods.

Modeling Episode-Level Relationships. In the FSL area, relatively less effort has been made to
explicitly model the relationships across episodes. For modeling such episode-level relationships,
there are two recent examples: (1) LGM-Net (Li et al., 2019b) proposes an inter-task normalization
strategy, which applies batch normalization to all support samples across a batch of episodes in each
training iteration. (2) Among a batch of episodes, Meta-Transfer Learning (Sun et al., 2019) records
the class with the lowest accuracy in each episode and then re-samples ‘hard’ meta-tasks from the
set of recorded classes. In this work, instead of utilizing the relationships implicitly, we propose to
model episode-level relationships (MELR) explicitly by focusing on episodes with the same set of
classes. Furthermore, our MELR is specifically designed to cope with the poor sampling of the few
shots – an objective very different from those in (Li et al., 2019b; Sun et al., 2019).

Attention Mechanism. Attention mechanism was first proposed by (Bahdanau et al., 2015) for ma-
chine translation and has now achieved great success in natural language processing (Vaswani et al.,
2017) and computer vision (Xu et al., 2015). An attention module typically takes a triplet (queries,
keys, values) as input and learns interactions between queries and key-value pairs according to cer-
tain task objectives. It is referred to as self-attention or cross-attention depending on whether keys
and queries are the same. Several recent works (Hou et al., 2019; Guo & Cheung, 2020; Ye et al.,
2020) have utilized attention mechanism for meta-learning based FSL. CAN (Hou et al., 2019)
employs cross-attention between support and query samples to learn better feature representations.
AWGIM (Guo & Cheung, 2020) adopts both self- and cross-attention for generating classification
weights. FEAT (Ye et al., 2020) only uses self-attention on the class prototypes of the support set.
The biggest difference between these methods and our MELR lies in whether attention is modeled
within each episode or across episodes. Only MELR allows modeling cross-episode instance at-
tention explicitly so that the meta-learned model can be insensitive to badly-sampled support set
instances. In addition, in our MELR, query set instances are also updated using cross-attention
whilst existing models such as FEAT only apply attention to prototypes obtained using support set
instances. They thus cannot directly handle instance-level anomalies.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Let Db = {(xi, yi)|yi ∈ Cb, i = 1, 2, · · · , Nb} denote an abundant meta-training set from base
classes Cb, where xi is the i-th image, yi denotes the class label of xi, and Nb is the number of
images in Db. Similarly, let Dn = {(xi, yi)|yi ∈ Cn, i = 1, 2, · · · , Nn} denote a few-shot sample
set from a set of novel classes Cn (e.g., K-shot means that each novel class has K labeled images
and Nn = K|Cn|), where Cb ∩ Cn = ∅. We are also given a test set T from Cn, where Dn ∩ T = ∅.
By exploitingDb andDn for training, the objective of few-shot learning (FSL) is to predict the class
labels of test images in T .

3.2 META-LEARNING BASED FSL

Most FSL methods are based on meta-learning (Vinyals et al., 2016; Finn et al., 2017; Snell et al.,
2017; Sung et al., 2018; Lee et al., 2019; Ye et al., 2020), which adopt episodic training on the base
class sample set Db and test their models over few-shot classification tasks sampled from the novel
classes Cn. Concretely, an N -way K-shot Q-query episode e = (Se,Qe) is generated as follows:
(1) We first randomly sample a subset Ce from base classes Cb during meta-training (or from novel
classes Cn during meta-test) and re-index it as Ce = {1, 2, · · · , N}. (2) For each class in Ce, K
support and Q query images are then randomly sampled to form the support set Se = {(xi, yi)|yi ∈
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Figure 1: The schematic illustration of the proposed MELR model. It consists of two main com-
ponents for modeling episode-level relationships: Cross-Episode Attention Module (CEAM) and
Cross-Episode Consistency Regularization (CECR). For clarity, only the 5-way 1-shot setting is
presented here. Each red/blue cuboid denotes a single instance.

Ce, i = 1, 2, · · · , N × K} and the query set Qe = {(xi, yi)|yi ∈ Ce, i = 1, 2, · · · , N × Q}
(Se ∩Qe = ∅), respectively.

A meta-learning based FSL approach typically designs a few-shot classification loss over the query
set Qe for each meta-training episode e:

Lfsc(e) = E(xi,yi)∈Qe
L(yi, f(ψ(xi);Se)), (1)

where ψ denotes a feature extractor with an output dimension d, f(· ;Se) : Rd → RN can be any
scoring function constructed from the support set Se, andL(·, ·) is the classification loss (e.g., widely
used cross-entropy). By minimizing the above loss function via back propagation to update the part
of the model to be meta-learned (e.g., ψ in ProtoNet), the model is trained over many meta-training
episodes and then evaluated on the meta-test episodes.

3.3 MODELING EPISODE-LEVEL RELATIONSHIPS (MELR)

In the FSL area, relatively less effort has been made to explicitly model the relationships across
episodes, and many FSL methods define their loss functions within each episode independently. In
contrast, with our Modeling Episode-Level Relationships (MELR), two N -way episodes are sam-
pled in each training iteration from exactly the same set of N base classes. Cross-Episode Attention
Module (CEAM) and Cross-Episode Consistency Regularization (CECR) are then devised to exploit
this type of episode-level relationship explicitly (see Figure 1).

Cross-Episode Attention Module (CEAM). We are given two N -way K-shot Q-query episodes
e(1) = (S(1)

e ,Q(1)
e ) and e(2) = (S(2)

e ,Q(2)
e ) sampled from the same subset Ce of Cb, where Ce is

re-indexed as Ce = {1, 2, · · · , N}, and e(1) ∩ e(2) = ∅. For both episodes, to minimize the negative
impact of badly-sampled few shots for a given query instance, we propose CEAM for cross-episode
attention modeling, which is detailed below.

Concretely, let S(1) = [ψ(xi)
T ;xi ∈ S(1)

e ] ∈ RNK×d (or S(2)) and Q(1) = [ψ(xi)
T ;xi ∈ Q(1)

e ] ∈
RNQ×d (or Q(2)) denote the feature matrices of support and query samples in e(1) (or e(2)), respec-
tively, and let F(1) = [S(1);Q(1)] ∈ RN(K+Q)×d (or F(2) = [S(2);Q(2)]) be the feature matrix of
all samples in e(1) (or e(2)). For episode e(1), CEAM takes the triplet (F(1),S(2),S(2)) as input,
which corresponds to the input (queries, keys, values) in a typical attention module:

F̂(1) = CEAM(F(1),S(2),S(2)) = F(1) + softmax(
F

(1)
Q S

(2)T
K√
d

)S
(2)
V , (2)
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where the inputs are first linearly mapped into a latent space with the same dimension of the feature
space (using projection matrices WQ,WK ,WV ∈ Rd×d):

F
(1)
Q = F(1)WQ ∈ RN(K+Q)×d, (3)

S
(2)
K = S(2)WK ∈ RNK×d, (4)

S
(2)
V = S(2)WV ∈ RNK×d. (5)

Similarly, for episode e(2), we have (analogous to Eq. (2)):

F̂(2) = CEAM(F(2),S(1),S(1)) = F(2) + softmax(
F

(2)
Q S

(1)T
K√
d

)S
(1)
V , (6)

where the learnable parameters of fully connected layers (i.e., WQ, WK and WV ) are shared across
Eq. (2) and Eq. (6). We can then obtain the transformed support and query embedding matrices in
e(1) (or e(2)) from F̂(1) = [Ŝ(1); Q̂(1)] (or F̂(2) = [Ŝ(2); Q̂(2)]).

Cross-Episode Consistency Regularization (CECR). In our MELR model, CEAM utilizes
instance-level attention to alleviate the negative effects of the poor support set instance sampling
so that each query set instance can be assigned to the right class with minimal loss. Our CECR
is designed to further reduce the model sensitivity to badly-sampled shots in different episodes by
forcing the two classifiers learned over the two episodes to produce consistent predictions. There are
various options on how to enforce such consistency. CECR adopts a knowledge distillation based
strategy as empirically it is the most effective one (see Section 4.3).

Let f(·; Ŝ(1)) : Rd → RN and f(·; Ŝ(2)) : Rd → RN be the scoring functions of the two clas-
sifiers constructed from Ŝ(1) and Ŝ(2), respectively. To determine which classifier/scoring func-
tion is stronger, we compute the few-shot classification accuracies of the two classifiers on the
merged query samples from both episodes. Concretely, let Q̂(1)

e = {(q̂(1)
i , y

(1)
i )|q̂(1)

i ∈ Rd, i =

1, 2, · · · , NQ} (or Q̂(2)
e ) denote the set of transformed embedding vectors of query samples in e(1)

(or e(2)), where q̂
(1)
i (or q̂(2)

i ) denotes the i-th row of the transformed embedding matrix Q̂(1) (or
Q̂(2)). With Q̂(1,2)

e = Q̂(1)
e ∪ Q̂(2)

e = {(q̂(1,2)
i , y

(1,2)
i ), i = 1, 2, · · · , 2NQ}), we are able to com-

pute the few-shot classification accuracies of the two classifiers w.r.t. the ground-truth labels and the
corresponding predicted ones (i.e., arg maxj σj(f(q̂

(1,2)
i ; Ŝ(1))) and arg maxj σj(f(q̂

(1,2)
i ; Ŝ(2)))

(j = 1, 2, · · · , N ) for (q̂
(1,2)
i , y

(1,2)
i ) ∈ Q̂(1,2)

e , where σj(v) , exp(vj)∑N
j′=1

exp(vj′ )
(v ∈ RN ) is the

softmax function).

The classifier with higher accuracy is thus considered to be the stronger one and subsequently used
as the teacher classifier for the student to behave consistently with it. Without loss of generality, we
assume that f(·; Ŝ(1)) is stronger than f(·; Ŝ(2)). We choose the knowledge distillation loss (Hinton
et al., 2015) for CECR, which is stated as:

Lcecr(e
(1), e(2);T ) = E

(q̂
(1,2)
i ,y

(1,2)
i )∈Q̂(1,2)

e
L′(f(q̂

(1,2)
i ; Ŝ(1)), f(q̂

(1,2)
i ; Ŝ(2));T ), (7)

where T is the temperature parameter as used in (Hinton et al., 2015). More specifically, when
the softmax function σj(v;T ) , exp(vj/T )∑N

j′=1
exp(vj′/T )

(v ∈ RN , j = 1, 2, · · · , N ) is used, we define

L′(f(q̂
(1,2)
i ; Ŝ(1)), f(q̂

(1,2)
i ; Ŝ(2));T ) in Eq. (7) with the cross-entropy loss:

L′(f(q̂
(1,2)
i ; Ŝ(1)), f(q̂

(1,2)
i ; Ŝ(2));T )

=−
N∑
j=1

σj(f(q̂
(1,2)
i ; Ŝ(1));T ) log

(
σj(f(q̂

(1,2)
i ; Ŝ(2));T )

)
. (8)

Note that we cut off the gradients over f(·; Ŝ(1)) when back-propagating since the output of the
teacher scoring function is treated as the soft target for the student.
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Algorithm 1 MELR-based FSL
Input: Our MELR model with the set of all parameters Θ

The base class sample set Db
Hyper-parameters λ, T

Output: The learned model
1: for all iteration = 1, 2, · · · , MaxIteration do
2: Randomly sample e(1) and e(2) from Db, satisfying that C(1)

e = C(2)
e , e(1) ∩ e(2) = ∅;

3: Compute F̂(1) for e(1) using CEAM with Eq. (2), and obtain F̂(2) with Eq. (6) similarly.
4: Compute Lfsc(e(1)) and Lfsc(e(2)) with Eq. (9), respectively;
5: Construct Q̂(1,2)

e = Q̂(1)
e ∪ Q̂(2)

e based on the two episodes;
6: Determine the teacher episode e(t) and the student e(s) by computing the few-shot classifica-

tion accuracies of the two classifiers within e(1) and e(2), respectively;
7: Compute the CECR loss Lcecr(e(t), e(s);T ) with Eq. (7);
8: Compute the total loss Ltotal with Eq. (10);
9: Compute the gradients∇ΘLtotal;

10: Update Θ using stochastic gradient descent;
11: end for
12: return The learned model.

3.4 MELR-BASED FSL ALGORITHM

As we have mentioned above, in each training iteration, we randomly sample twoN -wayK-shotQ-
query episodes e(1) = (S(1)

e ,Q(1)
e ) and e(2) = (S(2)

e ,Q(2)
e ), which must have exactly the same set of

classes but with different instances. We first transform the feature embeddings with Cross-Episode
Attention Module (CEAM) and then compute the few-shot classification loss adopting ProtoNet
(Snell et al., 2017) for both episodes (e ∈ {e(1), e(2)}):

Lfsc(e) = E(q̂i,yi)∈Q̂e
L(yi, fProtoNet(q̂i; Ŝ))

= E(q̂i,yi)∈Q̂e
− log σyi(fProtoNet(q̂i; Ŝ)). (9)

Next we determine the stronger/teacher episode to compute the Cross-Episode Consistency Regu-
larization (CECR) loss between the two episodes. The total loss for MELR is finally given by:

Ltotal =
1

2
(Lfsc(e

(1)) + Lfsc(e
(2))) + λLcecr(e

(t), e(s);T ), (10)

where e(t) ∈ {e(1), e(2)} denotes the teacher episode, and e(s) ∈ {e(1), e(2)} is the student.

By combining CEAM and CECR for episodic training, our MELR-based FSL algorithm is summa-
rized in Algorithm 1. Once learned, with the optimal model found by our algorithm, we randomly
sample multiple N -way K-shot meta-test episodes from Cn for evaluation. In other words, the
episode-level relationship is only exploited during meta-training.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

Datasets. Two widely-used benchmarks are selected: (1) miniImageNet (Vinyals et al., 2016): It
contains 100 classes from ILSVRC-12 (Russakovsky et al., 2015). Each class has 600 images. We
split it into 64 training classes, 16 validation classes and 20 test classes, as in (Ravi & Larochelle,
2017). (2) tieredImageNet (Ren et al., 2018): It is a larger subset of ILSVRC-12, containing 608
classes and 779,165 images in total. We split it into 351 training classes, 97 validation classes and
160 test classes, as in (Ren et al., 2018). All images of the two datasets are resized to 84× 84.

Evaluation Protocols. The 5-way 5-shot/1-shot settings are used. Each test episode e(test) =

(S(test)
e ,Q(test)

e ) has 5 classes randomly sampled from the test split, with 5 or 1 shots and 15 queries
per class. We thus have N = 5, K = 5 or 1, Q = 15 as in previous works. Although we meta-train
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Table 1: Comparative results of standard FSL on two benchmark datasets. The average 5-way few-
shot classification accuracies (%, top-1) along with the 95% confidence intervals are reported.

miniImageNet tieredImageNet
Method Backbone 1-shot 5-shot 1-shot 5-shot
MatchingNet (Vinyals et al., 2016) Conv4-64 43.56± 0.84 55.31± 0.73 – –
ProtoNet† (Snell et al., 2017) Conv4-64 52.78± 0.45 71.26± 0.36 53.82± 0.48 71.77± 0.41
MAML (Finn et al., 2017) Conv4-64 48.70± 1.84 63.10± 0.92 51.67± 1.81 70.30± 0.08
RelationNet (Sung et al., 2018) Conv4-64 50.40± 0.80 65.30± 0.70 54.48± 0.93 71.32± 0.78
IMP (Allen et al., 2019) Conv4-64 49.60± 0.80 68.10± 0.80 – –
DN4 (Li et al., 2019c) Conv4-64 51.24± 0.74 71.02± 0.64 – –
PARN (Wu et al., 2019) Conv4-64 55.22± 0.84 71.55± 0.66 – –
PN+rot (Gidaris et al., 2019) Conv4-64 53.63± 0.43 71.70± 0.36 – –
CC+rot (Gidaris et al., 2019) Conv4-64 54.83± 0.43 71.86± 0.33 – –
Centroid (Afrasiyabi Arman, 2020) Conv4-64 53.14± 1.06 71.45± 0.72 – –
Neg-Cosine (Liu et al., 2020) Conv4-64 52.84± 0.76 70.41± 0.66 – –
FEAT (Ye et al., 2020) Conv4-64 55.15± 0.20 71.61± 0.16 – –
MELR (ours) Conv4-64 55.35± 0.43 72.27± 0.35 56.38± 0.48 73.22± 0.41

ProtoNet† (Snell et al., 2017) Conv4-512 53.52± 0.43 73.34± 0.36 55.52± 0.48 74.07± 0.40
MAML (Finn et al., 2017) Conv4-512 49.33± 0.60 65.17± 0.49 52.84± 0.56 70.91± 0.46
Relation Net (Sung et al., 2018) Conv4-512 50.86± 0.57 67.32± 0.44 54.69± 0.59 72.71± 0.43
PN+rot (Gidaris et al., 2019) Conv4-512 56.02± 0.46 74.00± 0.35 – –
CC+rot (Gidaris et al., 2019) Conv4-512 56.27± 0.43 74.30± 0.33 – –
MELR (ours) Conv4-512 57.54± 0.44 74.37± 0.34 60.26± 0.51 77.25± 0.40

ProtoNet† (Snell et al., 2017) ResNet-12 62.41± 0.44 80.49± 0.29 69.63± 0.53 84.82± 0.36
TADAM (Oreshkin et al., 2018) ResNet-12 58.50± 0.30 76.70± 0.38 – –
MetaOptNet (Lee et al., 2019) ResNet-12 62.64± 0.61 78.63± 0.46 65.99± 0.72 81.56± 0.63
MTL (Sun et al., 2019) ResNet-12 61.20± 1.80 75.50± 0.80 65.62± 1.80 80.61± 0.90
AM3 (Xing et al., 2019) ResNet-12 65.21± 0.49 75.20± 0.36 67.23± 0.34 78.95± 0.22
Shot-Free (Ravichandran et al., 2019) ResNet-12 59.04± 0.43 77.64± 0.39 66.87± 0.43 82.64± 0.43
Neg-Cosine (Liu et al., 2020) ResNet-12 63.85± 0.81 81.57± 0.56 – –
Distill (Tian et al., 2020) ResNet-12 64.82± 0.60 82.14± 0.43 71.52± 0.69 86.03± 0.49
DSN-MR (Simon et al., 2020) ResNet-12 64.60± 0.72 79.51± 0.50 67.39± 0.82 82.85± 0.56
DeepEMD (Zhang et al., 2020) ResNet-12 65.91± 0.82 82.41± 0.56 71.16± 0.87 86.03± 0.58
FEAT (Ye et al., 2020) ResNet-12 66.78± 0.20 82.05± 0.14 70.80± 0.23 84.79± 0.16
MELR (ours) ResNet-12 67.40± 0.43 83.40± 0.28 72.14± 0.51 87.01± 0.35

our MELR with two episodes in each training iteration, we still evaluate it over test episodes one by
one, strictly following the standard setting. Moreover, since no cross-episode relationships can be
used when testing, we take (F(test), S(test), S(test)) as the input of CEAM. Note that the meta-test
process is non-transductive since the embedding of each query sample in e(test) is independently up-
dated using the keys and values coming from the support set. We report average 5-way classification
accuracy (%, top-1) over 2,000 test episodes as well as the 95% confidence interval.

Implementation Details. Our MELR algorithm adopts Conv4-64 (Vinyals et al., 2016), Conv4-
512 and ResNet-12 (He et al., 2016b) as the feature extractors ψ for fair comparison with published
results. The output feature dimensions of Conv4-64, Conv4-512 and ResNet-12 are 64, 512, and
640, respectively. To accelerate the entire training process, we pre-train all three backbones on
the training split of each dataset as in many previous works (Zhang et al., 2020; Ye et al., 2020;
Simon et al., 2020). We use data augmentation during pre-training (as well as meta-training with
ResNet-12 on miniImageNet). For ResNet-12, the stochastic gradient descent (SGD) optimizer is
employed with the initial learning rate of 1e-4, the weight decay of 5e-4, and the Nesterov momen-
tum of 0.9. For Conv4-64 and Conv4-512, the Adam optimizer (Kingma & Ba, 2015) is adopted
with the initial learning rate of 1e-4. The hyper-parameters λ and T are respectively selected from
{0.02, 0.05, 0.1, 0.2} and {16, 32, 64, 128} according to the validation performances of our MELR
algorithm (see Appendix A.5 for more details). The code and models will be released soon.

4.2 MAIN RESULTS

We compare our MELR with the representative/state-of-the-art methods for standard FSL on the
two benchmark datasets in Table 1. Note that we re-implement our baseline (i.e., ProtoNet, denoted
with †) by sampling two episodes in each training iteration since it is still considered as a strong
FSL approach especially when the backbone is deep. We can observe from Table 1 that: (1) Meth-
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Figure 2: (a) Ablative results for our MELR. (b) Comparison among different ProtoNet†+CEAM
alternatives. (c) Comparison among different ProtoNet†+CECR alternatives. All results are obtained
under the 5-way 1-shot and 5-shot settings on miniImageNet with Conv4-64 as the feature extractor.

ods trained with ResNet-12 generally perform better than those employing shallower backbones.
Also, methods trained with Conv4-512 generally perform better than those employing Conv4-64
even though the two backbones are of the same depth. This is expected because deeper and wider
backbones have better representation learning abilities. (2) Our MELR achieves the new state-of-
the-art performance on both benchmarks under all settings. Particularly, the improvements over the
baseline (i.e., ProtoNet†) range from 1.0% to 5.0%, which clearly validates the effectiveness and
the strong generalization ability of our MELR. (3) On both benchmarks, the improvements obtained
by our MELR over ProtoNet† under the 1-shot setting are significantly larger than those under the
5-shot setting. This demonstrates the superior performance of our MELR for FSL with less shots.
Again this is expected: FSL with less shots is more likely to suffer from the poor sampling of the
few support instances; such a challenging problem is exactly what our MELR is designed for.

4.3 FURTHER EVALUATION

Ablation Study. To demonstrate the contributions of each cross-episode learning objective in our
MELR, we conduct experiments on miniImageNet by adding these learning objectives to the base-
line (one at a time) under the 5-way 1-shot and 5-shot settings. Note that ProtoNet without † is
trained with one episode in each training iteration while ProtoNet† is trained with two episodes per
iteration. The ablation study results in Figure 2(a) show that: (1) Increasing mini-batch size helps
little for ProtoNet, indicating that our MELR benefits from two cross-episode objectives rather than
doubling the mini-batch size. (2) CEAM or CECR alone clearly improves the performance of the
baseline model and CEAM appears to be more beneficial to FSL than CECR. (3) The combination of
the two cross-episode learning objectives in our full model (i.e., MELR) achieves further improve-
ments, suggesting that these two learning objectives are complementary to each other. Moreover, in
Appendix A.2, we conduct more ablative experiments when the attention module is applied within
each episode, validating the necessity of cross-episode attention.

Comparison to CEAM Alternatives. As we have described, our CEAM takes the support samples
as ‘keys’ and ‘values’, and all samples in one episode as ‘queries’ for attention module (denoted
as Support→All). We can also input prototypes (mean representations of support samples from the
same class) as ‘keys’ and ‘values’ or input only query samples as ‘queries’ for attention. This re-
sults in other three alternatives of CEAM: Prototype→Query, Support→Query, and Prototype→All.
Note that under the 5-way 1-shot setting, Prototype→Query is equal to Support→Query and
Prototype→All is the same as Support→All. Additionally, we compare to All→All: inputting all
samples from the other episode as ‘keys’ and ‘values’ for CEAM when training but still testing as
Support→All (not violating the non-transductive setting). From the comparative results of different
choices in Figure 2(b), we can see that Support→All is the best for CEAM. Moreover, All→All
works worse than both Prototype→All and Support→All. One possible explanation is that All→All
exploits all query set instances during meta-training but only has access to the support set during
meta-test to conform to the inductive learning setting. This mis-match reduces its effectiveness.

Comparison to CECR Alternatives. Our consistency regularization loss Lcecr in Eq. (7) is de-
fined with the knowledge distillation (KD) loss, which can be easily replaced by the negative cosine
similarity (NegCos), symmetric Kullback–Leibler divergence (symKL), or the L2 distance (see Ap-
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Figure 3: (a) – (c) Visualizations of data distributions obtained by ProtoNet†, ProtoNet†+CEAM,
and ProtoNet†+CEAM+CECR (i.e., our MELR) for the same meta-test episode, respectively. (d) –
(e) Visualizations of attention maps for query and support sets, respectively. All results are obtained
under the 5-way 5-shot setting on miniImageNet with Conv4-64 as the feature extractor.

pendix A.1 for more details). The results obtained by ProtoNet†+CECR using different consistency
losses are shown in Figure 2(c). It can be seen that ProtoNet†+KD performs slightly better than
other implementations. We thus choose KD as our CECR loss.

Visualizations of Data Distributions and Attention Maps. MELR is designed to alleviate the
negative effects of poorly-sampled few shots. To validate this, we further provide some visual-
ization results in Figure 3. (1) We sample one episode in the test split of miniImageNet under the
5-way 5-shot setting and obtain the embeddings of all images using the trained models of ProtoNet†,
ProtoNet†+CEAM, and our MELR (i.e., ProtoNet†+CEAM+CECR), respectively. We then apply t-
SNE to project these embeddings into a 2-dimensional space in Figure 3(a) – 3(c). Across three
subfigures, samples with the same color belong to the same class and diamonds are class proto-
types/centers. We can observe that adding CEAM makes the distribution of different classes more
separable (see Figure 3(b) vs. 3(a)), validating the effectiveness of our CEAM. Moreover, the embed-
dings obtained by our MELR are clearly much more evenly distributed with the prototypes right in
the center, indicating less outlying instances (see Figure 3(c) vs. 3(b)). This shows that when CECR
is combined with CEAM, those badly-sampled shots in Figure 3(a) are now pulled back to the center
of the class distributions. (2) We also visualize the attention maps over the meta-test episode using
our trained MELR. Since we take all samples in the episode as ‘queries’, and support samples as
‘keys’ and ‘values’ for CEAM when meta-testing, each of 100 samples has a 25-dimensional weight
vector under the 5-way 5-shot setting. For each weight vector, we average the weights of the same
class and obtain a 5-dimensional vector. For 75 query samples, we average the vectors of samples
with the same class, resulting in a 5× 5 instance attention map (see Figure 3(d)). Similarly, we ob-
tain the attention map for 25 support samples (see Figure 3(e)). It can be seen that the two attention
maps are very much alike, indicating that support and query sample embeddings are transformed by
our CEAM in a similar way, which thus brings performance improvements for FSL.

5 CONCLUSION

We have investigated the challenging problem of how to counter the negative effects of badly-
sampled few shots for FSL. For the first time, we propose to exploit the underlying relationships be-
tween training episodes with identical sets of classes explicitly for meta-learning. This is achieved by
two key components: CEAM is designed for neutralizing unrepresentative support set instances, and
CECR is to enforce the prediction consistency of few-shot classifiers obtained in the two episodes.
Extensive experiments for non-transductive standard FSL on two benchmarks show that our MELR
achieves 1.0%–5.0% improvements over the baseline (i.e., ProtoNet) used for FSL in our model and
outperforms the latest competitors under the same settings.
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Rogério Schmidt Feris, Raja Giryes, and Alexander M. Bronstein. Delta-encoder: an effective sample
synthesis method for few-shot object recognition. In Advances in Neural Information Processing Systems,
pp. 2850–2860, 2018.

Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash Harandi. Adaptive subspaces for few-shot learn-
ing. In CVPR, pp. 4136–4145, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
In ICLR, 2015.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. In Advances in
Neural Information Processing Systems, pp. 4080–4090, 2017.

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for few-shot learning. In
CVPR, pp. 403–412, 2019.

11



Published as a conference paper at ICLR 2021

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, and Timothy M. Hospedales. Learning to
compare: Relation network for few-shot learning. In CVPR, pp. 1199–1208, 2018.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking few-shot image
classification: a good embedding is all you need? ECCV, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, pp.
5998–6008, 2017.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching networks
for one shot learning. In Advances in Neural Information Processing Systems, pp. 3630–3638, 2016.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset. Tech-
nical Report CNS-TR-2011-001, California Institute of Technology, 2011.

Yu-Xiong Wang, Ross B. Girshick, Martial Hebert, and Bharath Hariharan. Low-shot learning from imaginary
data. In CVPR, pp. 7278–7286, 2018.

Ziyang Wu, Yuwei Li, Lihua Guo, and Kui Jia. Parn: Position-aware relation networks for few-shot learning.
In ICCV, pp. 6659–6667, 2019.

Chen Xing, Negar Rostamzadeh, Boris Oreshkin, and Pedro O O. Pinheiro. Adaptive cross-modal few-shot
learning. In NIPS, pp. 4847–4857, 2019.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov, Richard S.
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual attention. In
ICML, pp. 2048–2057, 2015.

Ling Yang, Liangliang Li, Zilun Zhang, Xinyu Zhou, Erjin Zhou, and Yu Liu. DPGN: distribution propagation
graph network for few-shot learning. In CVPR, pp. 13387–13396, 2020.

Shulin Yang, Liefeng Bo, Jue Wang, and Linda G Shapiro. Unsupervised template learning for fine-grained
object recognition. In Advances in Neural Information Processing Systems, pp. 3122–3130, 2012.

Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-shot learning via embedding adaptation with
set-to-set functions. In CVPR, 2020.

Sung Whan Yoon, Jun Seo, and Jaekyun Moon. Tapnet: Neural network augmented with task-adaptive projec-
tion for few-shot learning. In ICML, pp. 7115–7123, 2019.

Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. Deepemd: Few-shot image classification with
differentiable earth mover’s distance and structured classifiers. In CVPR, pp. 12203–12213, 2020.

12



Published as a conference paper at ICLR 2021

A APPENDIX

A.1 DETAILS ABOUT CECR ALTERNATIVES

For the cross-episode consistency regularization (CECR) loss Lcecr in Eq. (7), we compare the
knowledge distillation (KD) loss to the negative cosine similarity (NegCos), the L2 distance, and the
symmetric Kullback-Leibler (KL) divergence (SymKL) in the main paper. Here we give the details
about three CECR alternatives. Concretely, let σ(1)(q̂
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i ; Ŝ(1)), f(q̂

(1,2)
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i ; Ŝ(2)), f(q̂

(1,2)
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where < ·, · > is the inner product of two vectors, T is the temperature parameter, and KL(u,v) =∑N
j=1 σj(u) log

σj(u)
σj(v) (u, v ∈ RN are two unnormalized scoring vectors, σ denotes the softmax

function, and σj(u) denotes the j-th element of σ(u)).

A.2 MORE ABLATIVE RESULTS

In Table 2, we show more ablative results when the attention module is applied within each episode
independently (named as Intra-Episode Attention Module (IEAM)). Concretely, IEAM is used for
ProtoNet†+IEAM († means that ProtoNet is trained with two episodes in each training iteration for
fair comparison) as follows (i = 1, 2):

F̂(i) = IEAM(F(i),S(i),S(i)) = F(i) + softmax(
F

(i)
Q S

(i)T
K√
d

)S
(i)
V . (14)

We also add our Cross-Episode Consistency Regularization (CECR) for ProtoNet†+IEAM+CECR
to see the performance when IEAM instead of our CEAM is adopted.

We can see from Table 2 that adding IEAM to the baseline ProtoNet† also improves its performance,
but IEAM is not as beneficial as our CEAM (see ProtoNet†+IEAM vs. ProtoNet†+CEAM). When
our CECR is applied on top of ProtoNet†+IEAM (i.e., ProtoNet†+IEAM+CECR), the improvement
is rather minor under the 5-way 1-shot setting and the result even gets worse under the 5-shot setting.
However, our MELR can still benefit from CECR (see MELR vs. ProtoNet†+CEAM), indicating
that CECR is not suitable for IEAM and our CEAM is necessary.

Table 2: Comparative results when IEAM is used on miniImageNet. The average 5-way few-shot
classification accuracies (%, top-1) along with the 95% confidence intervals are reported.

miniImageNet
Method Backbone 1-shot 5-shot
ProtoNet† (Snell et al., 2017) Conv4-64 52.61± 0.42 71.33± 0.36
ProtoNet†+IEAM Conv4-64 54.83± 0.43 71.81± 0.35
ProtoNet†+IEAM+CECR Conv4-64 54.97± 0.44 71.72± 0.35
ProtoNet†+CEAM (ours) Conv4-64 55.01± 0.43 72.01± 0.35
MELR (ours) Conv4-64 55.35± 0.43 72.27± 0.35
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Figure 4: The first three subfigures in each row are the visualizations of data distributions obtained by
ProtoNet†, ProtoNet†+CEAM, and ProtoNet†+CEAM+CECR (i.e., our MELR) for the same meta-
test episode, respectively. The last two subfigures in each row are the visualizations of attention maps
for query and support sets, respectively. All results are obtained under the 5-way 5-shot setting on
miniImageNet with Conv4-64 as the feature extractor.

A.3 MORE VISUALIZATION RESULTS

Similar to Section 4.3, we provide more visualization results in Figure 4. (1) We sample five episodes
(corresponding to five rows in Figure 4) in the test split of miniImageNet under the 5-way 5-shot
setting and visualize the data distributions in the first three columns using the trained models of
ProtoNet†, ProtoNet†+CEAM, and our MELR (i.e., ProtoNet†+CEAM+CECR), respectively. We
can observe that adding CEAM makes the distributions of different classes more separable in the
first four rows (see the second column vs. the first column), validating the effectiveness of our
CEAM. Moreover, the embeddings obtained by our MELR are clearly much more evenly distributed
with the prototypes generally right in the center, indicating less poorly-sampled instances (see the
third column vs. the second column). Specifically, ProtoNet†+CEAM brings an obvious outlying
instance in the last row, but adding CECR stabilizes the training of CEAM. In a word, when CECR
is combined with CEAM, the badly-sampled shots can be pulled back to the center of the class
distributions. (2) We also visualize the attention maps over each meta-test episode using our trained
MELR model. For each of the five episodes, we obtain two 5 × 5 attention maps for query and
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Table 3: Comparative results of fine-grained FSL on CUB. The average 5-way few-shot classifica-
tion accuracies (%, top-1) along with the 95% confidence intervals are reported.

CUB
Method Backbone 1-shot 5-shot
MatchingNet (Vinyals et al., 2016) Conv4-64 61.16± 0.89 72.86± 0.70
ProtoNet† (Snell et al., 2017) Conv4-64 64.42± 0.48 81.82± 0.35
MAML (Finn et al., 2017) Conv4-64 55.92± 0.95 72.09± 0.76
Relation Net (Sung et al., 2018) Conv4-64 62.45± 0.98 76.11± 0.69
FEAT (Ye et al., 2020) Conv4-64 68.87± 0.22 82.90± 0.15
ProtoNet†+CEAM (ours) Conv4-64 68.92± 0.50 84.54± 0.32
MELR (ours) Conv4-64 70.26± 0.50 85.01± 0.32
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Figure 5: Illustration of hyper-parameter analysis on the miniImageNet dataset. Conv4-64 is used
as the feature extractor.

support sets in the last two subfigures of each row, respectively. It can be seen that the two attention
maps in each row are very much alike, indicating that support and query sample embeddings are
transformed by our CEAM in a similar way, which thus brings performance improvements for FSL.

A.4 RESULTS FOR FINE-GRAINED FSL

To evaluate our MELR under the fine-grained setting where the poorly-sampled shots may have
greater negative impact since the classes are much more close, we conduct experiments on CUB-
200-2011 Birds (CUB) (Wah et al., 2011) with Conv4-64 as the feature extractor. CUB has 200 fine-
grained classes of birds and 11,788 images in total. We follow (Ye et al., 2020) and split the dataset
into 100, 50, and 50 classes for training, validation, and test, respectively. For direct comparison,
we also use the pre-trained backbone model released by (Ye et al., 2020), which is pre-trained on the
training set. The comparative results in Table 3 show that: (1) Our MELR achieves the best results
and improves over the second-best FEAT by 1.4% – 2.1%, validating the effectiveness of MELR
under the fine-grained setting. (2) Our ProtoNet†+CEAM alone outperforms all the competitors,
and adding CECR into ProtoNet†+CEAM (i.e., our MELR) further brings noticeable improvements
(0.5% – 1.3%), indicating that both CEAM and CECR are crucial for fine-grained FSL.

A.5 ANALYSIS OF HYPER-PARAMETER SENSITIVITY

As we have mentioned in Section 4.1, the hyper-parameters λ and T are respectively selected from
{0.02, 0.05, 0.1, 0.2} and {16, 32, 64, 128} according to the validation performance of our MELR
algorithm. Concretely, on miniImageNet (with Conv4-64 as the feature extractor), we choose λ =
0.1 and T = 128 under the 5-way 1-shot setting, and choose λ = 0.05 and T = 64 under the 5-way
5-shot setting. In Figure 5, we further present our hyper-parameter analysis on miniImageNet. The
results show that our algorithm is quite insensitive to these parameters.
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Table 4: Results obtained by varying the number of episodes in each training iteration on
miniImageNet (with Conv4-64 as the backbone). The average 5-way classification accuracies (%,
top-1) along with the 95% confidence intervals are reported.

Implement. (1) Implement. (2)
Method # Episodes 1-shot 5-shot 1-shot 5-shot
MELR 2 55.35± 0.43 72.27± 0.35 55.35± 0.43 72.27± 0.35

MELR 3 55.26± 0.44 71.88± 0.35 55.19± 0.43 71.90± 0.35

MELR 4 55.15± 0.43 71.63± 0.35 55.03± 0.44 71.76± 0.35

Table 5: Comparison regarding the number of parameters (‘K’ denotes ‘×103’ and ‘M’ denotes
‘×106’) among various FSL methods.

miniImageNet
Method Backbone # Parameters 1-shot 5-shot
ProtoNet† (Snell et al., 2017) Conv4-64 113.09K 52.78± 0.45 71.26± 0.36
PARN (Wu et al., 2019) Conv4-64 405.49K 55.22± 0.84 71.55± 0.66
FEAT (Ye et al., 2020) Conv4-64 129.66K 55.15± 0.20 71.61± 0.16
MELR (ours) Conv4-64 129.66K 55.35± 0.43 72.27± 0.35
ProtoNet† (Snell et al., 2017) ResNet-12 12.42M 62.41± 0.44 80.49± 0.29
FEAT (Ye et al., 2020) ResNet-12 14.06M 66.78± 0.20 82.05± 0.14
MELR (ours) ResNet-12 14.06M 67.40± 0.43 83.40± 0.28

A.6 RESULTS BY VARYING THE NUMBER OF EPISODES

We also conduct experiments by varying the number of episodes Ne in each training iteration. For
the implementation of CEAM, we have two slightly different choices. Concretely, for each episode
e(i) (i = 1, · · · , Ne), the output of CEAM can be defined as:

Implement. (1): F̂(i) =
1

Ne − 1

∑
j=1,··· ,Ne,j 6=i

CEAM(F(i),S(j),S(j)); (15)

Implement. (2): F̂(i) = CEAM(F(i), [S(j)]Ne

j=1,j 6=i, [S
(j)]Ne

j=1,j 6=i), (16)

where [S(j)]Ne

j=1,j 6=i ∈ RNK(Ne−1)×d is the concatenation of S(j) ∈ RNK×d (j = 1, · · · , i− 1, i+
1, · · · , Ne). As for CECR, we determine the episode with the best accuracy as the teacher and distill
knowledge to the rest Ne − 1 student episodes.

The results on miniImageNet using Conv4-64 in Table 4 show that the performance drops slightly as
the number of episodes in each training iteration increases for both implementations. One possible
explanation is that too much training data make the model fit better on the training set but fail to
improve its generalization ability on novel classes.

A.7 COMPARISON REGARDING THE NUMBER OF PARAMETERS

We select several representative/latest FSL models from Table 1 of the main paper and list their
numbers of parameters in Table 5. We can observe that: (1) With an extra CEAM in addition to the
backbone (Conv4-64 or ResNet-12), our MELR has about 13% – 15% relatively more parameters
than the baseline ProtoNet. Note that CECR (in our MELR) leads to no extra parameters. Consid-
ering the (statistically) significant improvements achieved by our MELR over ProtoNet, we think
that our MELR is cost-effective because it requires not much additional parameters. (2) The number
of MELR’s parameters is almost the same as that of FEAT’s and is much less than that of PARN’s,
but our MELR achieves better results than FEAT and PARN, indicating that our MELR is the most
cost-effective among these three methods.

16



Published as a conference paper at ICLR 2021

!

! !
!

!
!

!
!

!

! !

!
!

!

!

!

! !!
!

!
!
!

!!

!

! !
!

!

!!
!

!

! !

!
!

!

!

!

! !!
!

!
!
!

!!!

!𝐱 = CEAM 𝐱, 𝐒 𝟐 , 𝐒 𝟐 ≈ 𝐱 +𝐖𝐒(𝟐) ≈ 𝐱 + -𝐖.𝐒(𝟏)

𝐱
!𝐱

𝑆(%) 𝑆(&)

Figure 6: Schematic illustration of our CEAM with a pair of episodes as its input. For easy un-
derstanding (but without loss of generality), a toy visual example is considered: only one outlying
instance x exists in the support set S(1) of the first episode, but the support set S(2) of the second
episode is properly sampled. Since S̃(1)=S(1) \ {x} and S(2) have similar data distributions (from
the same classes), the outlying instance x is pulled back to S̃(1) by attending on it with S(2) (which
can not be done by attending on it with S(1)), i.e., its negative effect is mitigated by our CEAM.

Table 6: Results by inputting only support samples as ‘queries’ into CEAM (denote as ‘Sup-
port→ Support’) on miniImageNet.

Method Backbone 1-shot 5-shot
ProtoNet† Conv4-64 52.61± 0.42 71.33± 0.36
ProtoNet†+CEAM (Support→ Support) Conv4-64 54.79± 0.43 71.40± 0.36
ProtoNet†+CEAM (Support→ All, ours) Conv4-64 55.01± 0.43 72.01± 0.35

A.8 SCHEMATIC ILLUSTRATION OF CEAM

To demonstrate how our proposed CEAM can alleviate the negative effect of the poorly sampled
shots, we present a schematic illustration of CEAM with a pair of episodes as its input in Figure 6.
For easy understanding (but without loss of generality), a toy visual example is considered: only
one outlying instance x exists in the support set S(1) of the first episode, but the support set S(2)

of the second episode is properly sampled. Since the two episodes are sampled from the same set
of classes, the data distributions of S̃(1) = S(1) \ {x} and S(2) are similar. On one hand, when
S(1) (including the outlier x) is used as keys and values to update S(2), the distribution of S(2) will
not be influenced too much by the outlier x since all the shots in S(2) are far away from x and the
weights on x will be very small. That is, our CEAM is insensitive to few outliers in the keys and
values. On the other hand, when S(1) is transformed based on S(2), the distribution of S̃(1) will
be changed little (the data distributions of S̃(1) and S(2) are similar). Particularly, for the outlier
x, its updated embedding x̂ will be pulled back to S̃(1) (i.e., its negative effect is mitigated) since
x̂ = CEAM(x,S(2),S(2)) ≈ x + WS(2) ≈ x + W̃S̃(1), where x is the original embedding of x,
S(2) and S̃(1) are respectively the feature matrices of S(2) and S̃(1), W and W̃ are two normalized
weight matrices. Note that this cannot be done by attending on x with S(1).

Additionally, we provide the results obtained by an extra CEAM alternative in Table 6: only the
embeddings of support samples are transformed (denoted as ‘Support→ Support’) instead of trans-
forming all samples as our choice. We can see from Table 6 and also Figure 2(b) that our choice (i.e.,
Support → All) achieves the best results among all CEAM alternatives. One possible explanation
for why we resort to updating all samples is that transforming support and query samples into the
same embedding space is beneficial to the model learning.
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Figure 7: Visualization results of 10 meta-test episodes on miniImageNet under the 5-way 5-shot
setting (Conv4-64 is used as the backbone). For each meta-test episode, we visualize three data
distributions (from left to right) obtained by ProtoNet†, ProtoNet†+CEAM, and our MELR, respec-
tively. That is, each meta-test episode is denoted by three subfigures and each row has two episodes.
In each subfigure, we compute the test accuracy over query samples and present it as the title.

A.9 SIGNIFICANCE ANALYSIS OF CECR

Since CECR (in our MELR) requires no extra learnable parameters and only computes a loss for
consistency constraint, it brings very limited computational cost. Empirically, the meta-training
time of MELR is almost the same as that of ProtoNet†+CEAM, indicating that the performance
improvement over ProtoNet†+CEAM is obtained by CECR at an extremely low cost.

To study when CECR has a significant impact on the final FSL performance, we select 10 meta-test
episodes from the 2,000 ones used in the evaluation stage and visualize them in Figure 7. Con-
cretely, for each of the 10 selected meta-test episodes, we visualize three data distributions (from
left to right) obtained by ProtoNet†, ProtoNet†+CEAM, and our MELR, respectively. That is, each
meta-test episode is denoted by a group of three subfigures. In each subfigure, we compute the test
accuracy over query samples and present it as the title. We can see that: (1) When the few-shot clas-
sification task is hard (i.e., ProtoNet† obtains relatively low accuracy), CEAM leads to significant
improvements (about 3% – 9%). (2) In the same hard situation, CECR further achieves significant
improvements (about 5% – 8%) on top of CEAM and shows its great effect on the final FSL perfor-
mance. This indicates that CECR and CEAM are complementary to each other in hard situations,
and thus both are crucial for solving the poor sampling problem in meta-learning based FSL.

A.10 RESULTS OF TRANSDUCTIVE FSL

The main difference between standard and transductive FSL is whether query samples are tested one
at a time or all simultaneously. As we have mentioned in Section 4.1, we evaluate our MELR model
strictly following the non-transductive setting for standard FSL since the embedding of each query
sample in the test episode is independently transformed using the keys and values coming from the
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Table 7: Comparative results of transductive FSL on miniImageNet. The average 5-way few-shot
classification accuracies (%, top-1) along with the 95% confidence intervals are reported. We cite
the results of the competitors from (Ye et al., 2020).

miniImageNet
Method Backbone 1-shot 5-shot
Standard FSL:
ProtoNet† (Snell et al., 2017) Conv4-64 52.78± 0.45 71.26± 0.36
MELR (ours) Conv4-64 55.35± 0.43 72.27± 0.35
Transductive FSL:
Semi-ProtoNet (Ren et al., 2018) Conv4-64 55.50± 0.10 71.76± 0.08
TPN (Liu et al., 2019) Conv4-64 55.51± 0.84 69.86± 0.67
TEAM (Qiao et al., 2019) Conv4-64 56.57 72.04
FEAT (Ye et al., 2020) Conv4-64 57.04± 0.16 72.89± 0.20
ProtoNet†+CEAM (ours) Conv4-64 60.30± 0.49 74.28± 0.36
MELR (ours) Conv4-64 61.67± 0.51 74.87± 0.35
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Figure 8: Visualization of the generalization ability of our MELR on the test split of miniImageNet
under the 5-way 1-shot setting with Conv4-64 as the backbone. Note that we check the test perfor-
mance of the model at each training epoch (i.e., every 100 training iterations).

support set. However, in this section, we further conduct experiments under the transductive FSL
setting to study how well our MELR can make use of the unlabeled query samples.

Concretely, for each meta-test episode e(test), we input all samples (both support and query ones)
as keys and values into the trained CEAM:

F̂(test) = CEAM(F(test),F(test),F(test)), (17)

such that the relationships of all unlabeled query samples can be taken into consideration. With the
transformed embeddings, we make predictions for all query samples based on Semi-ProtoNet (Ren
et al., 2018), which utilizes the unlabeled query samples to help construct better class prototypes
and then makes predictions similar to ProtoNet. To match the meta-test process, we also make
changes to meta-training accordingly. Specifically, for one episode (out of the two) in each training
iteration, we use all samples from the other episode as keys and values for CEAM to update all of
its own embeddings. This is followed by obtaining the prototypes based on Semi-ProtoNet as well
as computing the FSL loss and CECR loss.

The results of transductive FSL on miniImageNet are shown in Table 7. It can be seen that: (1)
By utilizing the unlabeled query samples under transductive FSL, our MELR achieves further im-
provements, as compared to MELR under standard FSL. Particularly, the performance improvement
under 1-shot (i.e., 6.3%) is more significant than that under 5-shot (i.e., 2.6%), indicating that ex-
ploiting unlabeled query samples brings more benefits to FSL with less labeled support samples.
(2) Our MELR achieves the best results among all the transductive FSL methods. Specifically,
MELR outperforms FEAT by a large margin (2.0% – 4.6%). Since FEAT also makes predictions
based on Semi-ProtoNet, this clearly validates the effectiveness of our MELR under the transductive
setting. (3) Our ProtoNet†+CEAM alone outperforms all the competitors, and adding CECR into
ProtoNet†+CEAM (i.e., our MELR is obtained) further brings noticeable improvements (0.6% –
1.4%), indicating that both CEAM and CECR play important roles under transductive FSL.
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A.11 VISUALIZATIONS OF THE GENERALIZATION ABILITY OF MELR

We further provide the visualization of the generalization ability of our MELR during meta-test in
Figure 8. Concretely, we randomly sample 1,000 episode pairs from the test split of miniImageNet
under the 5-way 1-shot setting, where the two episodes in each pair have identical sets of classes.
We then compute the average 5-way classification accuracy over all 2,000 episodes (from the 1,000
episode pairs) and the average Lcecr in Eq. (7) over all 1,000 episode pairs at each training epoch.
We present the visualization results w.r.t. accuracy and CECR loss in Figure 8. As expected, the
accuracy of our MELR is consistently higher than that of our baseline ProtoNet†. Moreover, as com-
pared with ProtoNet†, the CECR loss of our MELR is also lower across the whole training process,
indicating that MELR has better performance consistency between two episodes. This provides di-
rect evidence that our CEAM and CECR can boost the generalization ability of the learned model
on novel classes.
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