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Abstract

Self-Supervised monocular visual odometry (VO) is often
cast into a view synthesis problem based on depth and cam-
era pose estimation. One of the key challenges is to accu-
rately and robustly estimate depth with occlusions and mov-
ing objects in the scene. Existing methods simply detect and
mask out regions of occlusions locally by several convolu-
tional layers, and then perform only partial view synthesis in
the rest of the image. However, occlusion and moving object
detection is an unsolved problem itself which requires glob-
al layout information. Inaccurate detection inevitably results
in incorrect depth as well as pose estimation. In this work,
instead of locally detecting and masking out occlusions and
moving objects, we propose to alleviate their negative effects
on monocular VO implicitly but more effectively from two
global perspectives. First, a multi-scale non-local attention
module, consisting of both intra-stage augmented attention
and cascaded across-stage attention, is proposed for robust
depth estimation given occlusions, alleviating the impacts of
occlusions via global attention modeling. Second, adversarial
learning is introduced in view synthesis for monocular VO.
Unlike existing methods that use pixel-level losses on the
quality of synthesized views, we enforce the synthetic view
to be indistinguishable from the real one at the scene-level.
Such a global constraint again helps cope with occluded and
moving regions. Extensive experiments on the KITTI dataset
show that our approach achieves new state-of-the-art in both
pose estimation and depth recovery.

Introduction
Visual odometry (VO) aims to estimate the relative cam-
era poses from image sequences. It has found applica-
tions in a variety of computer vision fields including au-
tonomous driving (Engel, Stückler, and Cremers 2015; En-
gel, Schöps, and Cremers 2014; Mur-Artal, Montiel, and
Tardos 2015), augmented reality (Yang et al. 2013; Davison
et al. 2007), and interactive collaborative robotics (Geiger,
Ziegler, and Stiller 2011). Early geometric-based approach-
es (Engel, Koltun, and Cremers 2018; Leutenegger et al.
2015; Liu et al. 2018; Engel, Sturm, and Cremers 2013) ex-
ploit artificially designed rigid transformation for VO. This
results in sub-optimal performance when dealing with low
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Figure 1: Example depth estimation obtained using our mod-
el. Top tow to bottom row: sample image, estimated depth,
single-channel attention map, overlay of the sample image
and attention map, attention maps extracted by our cascad-
ed across-stage attention module at each stage of the depth
decoder. Since the car is driving forward, most of the occlu-
sions occur at the edge of the object.

texture, complex scene structures and occlusions. Moreover,
they suffer from the problem of large-scale drift and the need
for hand-crafted feature design. Recent methods (Xue et al.
2019; Henriques and Vedaldi 2018; Clark et al. 2017; Wang
et al. 2017) utilize deep neural networks (DNNs) to solve
the VO problem, because they are able to learn scale priors
from large amounts of data and jointly learn the optimal fea-
ture representation. However, data annotation for VO is very
costly, which limits the scalability of these supervised meth-
ods. As a result, self-supervised monocular VO (SSM-VO)
has attracted increasing attention lately.

SSM-VO is often cast into a view synthesis problem based
on solving two closely intertwined problems: monocular
depth estimation and relative camera pose regression. The
key challenge faced by an SSM-VO method is the pres-
ence of occlusions and moving objects in the scene (Fig-
ure 1). Existing SSM-VO approaches (Bian et al. 2019; Luo
et al. 2018) typically leverage multiple frames and additional
models (e.g., optical flow models) to estimate an occlusion
mask. With the mask, partial view synthesis is performed
by excluding the masked regions. However, occlusion and
moving object detection itself is an unsolved problem. Inac-
curate detection inevitably results in incorrect depth as well
as pose estimation. These methods thus choose to use more
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than two consecutive frames to improve the mask detection
performance, giving rise to higher computational cost.

Humans often pay attention to the global layout of the
scene first when detecting occlusions. Inspired by this, in
this work, a novel SSM-VO approach is proposed (see Fig-
ure 2) which effectively alleviates the negative effect of oc-
clusions and moving objects from two global perspectives.
To this end, first, a new attention module is introduced for
robust depth estimation in an unsupervised manner. Adopt-
ing a deep encoder-decoder architecture, most existing deep
SSM-VO methods (Zhou et al. 2017; Wang et al. 2017; Bian
et al. 2019; Luo et al. 2018) use skip connections to con-
catenate multi-level features computed over different layer-
s. However, this ignores the correlation of attention infor-
mation at different levels. In contrast, we propose a new
cascaded across-stage attention module that contains both
intra-stage augmented attention and cascaded across-stage
attention for accurate perception and better feature extrac-
tion. With such an attention module, the depth estimation
model is able to exploit global and multi-scale information
to better estimate the depth in the occluded regions. Second,
adversarial learning is introduced in view synthesis. Unlike
existing methods that utilize pixel-level losses on the quality
of synthesised views, we enforce the synthetic view to be in-
distinguishable from the real one at the scene-level. Such a
global constraint again makes our proposed model more ro-
bust against occluded and moving regions as shown in Fig-
ure 1. With the improved capability for coping with occlu-
sions and moving objects, our proposed model is able to es-
timate both depth and pose with two frames only instead of
three or five required by most existing methods.

Our main contributions are: (1) A novel attention mod-
ule, consisting of both intra-stage augmented attention and
cascaded across-stage attention, is proposed to learn a bet-
ter global feature representation for multi-scale depth esti-
mation as well as dealing with the problem of occlusion.
(2) We also introduce an adversarial-learning based frame-
work to enforce a global constraint on view synthesis so that
the detrimental effect of occlusion and moving objects can
be mitigated effectively. (3) Extensive experiments demon-
strate that our proposed approach achieves new state-of-the-
art in both unsupervised depth estimation and pose estima-
tion on the KITTI dataset (Geiger et al. 2013).

Related Work
Self-Supervised VO
Existing self-supervised monocular VO (SSM-VO) method-
s differ mostly in how the correlation between consecutive
frames in the video sequence can be utilized as a supervision
signal. Zhou et al. (Zhou et al. 2017) leveraged the geomet-
ric correlation of monocular depth and camera pose based
on warping nearby views to the target. GeoNet (Yin and
Shi 2018) further proposed an adaptive geometric consis-
tency check to improve the robustness of depth estimation.
GANVO (Feng and Gu 2019) formulated unsupervised VO
as a generative learning problem (Goodfellow et al. 2014)
with a depth generator and a discriminator. Based on GAN-
VO (Feng and Gu 2019), (Li et al. 2019) further proposed

to learn a compact representation of frame-to-frame corre-
lation, which is updated by incorporating sequential infor-
mation (with LSTM). Similar geometric constraints were
also used in (Li et al. 2018; Almalioglu et al. 2019; Iyer
et al. 2018). However, the above methods simply estimate
and mask out regions of occlusions locally by several con-
volutional layers without any global information, resulting
in sub-optimal performance. This problem is exacerbated by
using only pixel-level losses. Both issues are resolved in our
model from two global perspectives.

Unsupervised Monocular Depth Estimation
Many existing SSM-VO methods (Zhou et al. 2017; Zhan
et al. 2018; Yin and Shi 2018; Feng and Gu 2019; Li et al.
2019) rely on accurate depth estimation, which sometimes is
studied as a standalone problem (Garg et al. 2016; Godard,
Mac Aodha, and Brostow 2017; Godard et al. 2019). (Garg
et al. 2016) is the first end-to-end unsupervised depth esti-
mation model based on a photometric consistency constrain-
t. MonoDepth (Godard, Mac Aodha, and Brostow 2017) re-
placed the use of explicit depth data during training with
easier-to-obtain binocular stereo footage. It exploited epipo-
lar geometry constraints and generated disparity images by
training the network with an image reconstruction loss. Im-
proved upon (Godard, Mac Aodha, and Brostow 2017), Go-
dard et al. (Godard et al. 2019) proposed to upsample depth
predictions at different scales into the input resolution and
then minimize the photometric reprojection errors to re-
duce visual artifacts, significantly improving the quality of
depth prediction. Recently, (Johnston and Carneiro 2020)
proposed a self-attention module to explore non-contiguous
region features for better depth estimation. However, all ex-
isting methods use skip connections to concatenate multi-
level features, ignoring the correlation of attention informa-
tion at different levels. Importantly, without modeling multi-
level attention, they lack the tool to deal with difficult re-
gions for depth estimation due to occlusions and moving
objects. In our work, a novel cascaded across-stage atten-
tion mechanism is introduced for better feature extraction
and more robust depth estimation.

Methodology
Robust Depth Estimation
As shown in Figure 2, our proposed model consists of a
depth generator, an ego-motion generator, and a discrimi-
nator. The depth generator is used to estimate the depth map
of a target frame. The performance of pose prediction relies
on accurate depth estimation.

We adopt a multi-stage encoder-decoder architecture in
our depth generator Gd to generate multi-scale depth pre-
diction. We use ResNet (He et al. 2016) as our encoder Ed,
and a convolutional neural network with 5 layers as our de-
coder Dd. We denote the feature maps from encoder as fe
and the feature maps from decoder as fd, and they have the
same spatial scale on the corresponding stage. The depth en-
coder Ed encodes the input image It at time t and outputs a
depth latent feature zd, i.e., Ed(It) = zd. After the encod-
ing phase, the depth latent feature zd is decoded into a depth
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Figure 2: Illustration of our framework for self-supervised monocular VO. The depth generator (Gd) extracts the features of
the target image with a convolutional neural network (CNN) and decodes the features with an attention module to generate
the multi-scale depth predictions. The pose generator (Gp) estimates the camera pose and combines it with the multi-scale
depth maps for view synthesis, which is guided by multi-scale soft occlusion maps K̂s estimated correspondingly from our
non-local attention module. The synthesised image and real target image are then fed into the discriminator (D) for authenticity
evaluating. Our attention module includes: (I) cascaded across-stage attention; (II) intra-stage augmented attention.

map space D̂t using Dd(zd) = D̂t. The entire process of
generating a depth map in the depth generator is given by

Gd(It) = Dd(zd) = Dd(Ed(It)) = D̂t. (1)
Intra-Stage Augmented Attention. Inspired by the non-
local networks (Wang et al. 2018b; Buades, Coll, and Morel
2005), we design our intra-stage augmented attention in our
depth generator Gd, as shown in Figure 3. The intra-stage
augmented attention bridges high-level and low-level fea-
tures in each stage and captures long-range dependencies
between the feature maps extracted from Ed and Dd, to pro-
vide context for dealing with occlusion and misalignment.
Concretely, in our intra-stage attention, a non-local opera-
tion is defined on decoder feature maps fd and encoder fea-
ture maps fe as follows:

ki =
1

C(x, y)
∑
∀j

f(xi, yj)g(yj), (2)

where xi is the element of fd, and ki is the element of our
reconstructed feature maps (of the same size as fd), whose
response is to be computed with all possible yj in fe. The
pairwise function f(·, ·) computes a scalar between xi and
yj , which represents the attention score between position i
in decoder feature maps fd and position j in encoder feature
maps fe. The unary function g(·) computes a representation
in an embedded space of the encoder feature maps fe at the
position j. The response is normalized by a factor C(x, y).

There are many functions that can be used to define f ,
including Gaussian, embedded Gaussian, and dot product.
In this work, we choose the embedded Gaussian for f

f(xi, yj) = eθ(xi)
Tφ(yj), (3)

where θ(xi) = Wθxi and φ(yj) = Wφyj are two embed-
dings in our module. The first is for our decoder feature map-
s fd, and the second is for our encoder feature maps fe. We
set C as a softmax operation and have the self-attention:

ki =
∑
∀j

eθ(xi)
Tφ(yj)∑

∀i e
θ(xi)Tφ(yj)

g(yj). (4)

The simplified representation for the above self-attention is:

k = softmax(xTWT
θ Wφy)g(y) = Kg(y). (5)

Our intra-stage augmented attention block is defined as:

zi =Wzki + xi, (6)

where ki is given by Eq. (2), Wz is a weight matrix to be
learned, and ‘+xi’ denotes a residual connection.
Cascaded Across-Stage Attention. Now an intra-stage
non-local block has been introduced to each stage of the de-
coder, but there is still no connection among multiple non-
local attention blocks. To overcome this drawback, we thus
design cross-stage attention, as shown in Figure 2. We de-
fine the previous self-attention map (in the former stage) as
Kc−1. According to Eq. (5), the intermediate self-attention
map of the current block is

K = softmax(xTWT
θ Wφy). (7)

For our cascaded across-stage attention module, we com-
bine the previous self-attention maps Kc−1 and the inter-
mediate self-attention maps K to produce the current self-
attention maps Kc. We first upsample the Kc−1 to the same
size as the K and concatenate them on channels. Then, we
perform dimensionality reduction through a fully-connected
(FC) layer with sigmoid as follows:

Kc = fsig([K, u(Kc−1)]), (8)

where u is the upsampling operation, [·, ·] denotes the con-
catenation, and fsig is the FC layer with sigmoid.

Robust Pose Estimation
As the image sequence I =< It−1, It, It+1 > is given to the
pose generator as input, we choose It as the target view and
Is =< It−1, It+1 > as the source view. The pose generator
is used to regress the relative pose p ∈ SE(3) which is in-
troduced by motion and temporal dynamics across frames.
The image sequence is split into two pairs < It−1, It > and
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Figure 3: Details of our intra-stage augmented attention. x/y denotes the decoding/encoding feature map fd/ fe, and z denotes
the reconstructed feature map. The feature maps are shown as the shape of their tensors, e.g., B ×H ×W ×C for C channels
(proper reshaping is performed when noted) in batch size B. “⊗” denotes matrix multiplication, and “⊕” denotes element-wise
sum. The softmax operation is performed on each row. The orange boxes denote 1× 1× 1 convolutions.

< It, It+1 >, and we denote them as Ip. The pose genera-
tor takes the image pair Ip as input, and outputs 6-DoF pose
values consisting of translation and rotation parameters. Fol-
lowing (Godard et al. 2019), we use a separate network to
encode the image sequences for pose estimation. Given the
pose encoderEp, we can obtain the pose latent feature vector
zp as zp = Ep(I). The relative camera pose T̂t→s is gener-
ated according to the pose latent feature vector zp using the
pose decoder Dp as

Gp(Ip) = Dp(zp) = Dp(Ep(Ip)) = T̂t→s. (9)
In our pose generator, a vanilla self-attention module is

also used to select the effective feature, and the re-weighted
pose feature vector is used for pose estimation:

T̂t→s = fsig(att(zp)) = fsig(zp � fsig(zp)), (10)
where att means the vanilla self-attention module and �
denotes the dot product.

Adversarial Learning
To simplify the notations, we use G to represent the two
decoders, depth decoder Dd and pose decoder Dp, and use
z to represent the two features, depth latent feature zd and
pose latent feature zp. The view synthesis process S(·) can
be defined as follows:

S(z) = S(G(z)) = S(Dd(zd), Dp(zp)). (11)

The rendering of the reconstructed view Îs is based on the
estimated depth map D̂t from the depth generator, the 4× 4

camera transformation matrix T̂t→s from the pose generator,
and the source view Is as in (Fehn 2004). Let the homoge-
neous coordinates of a pixel in the target view be pt, and
the camera intrinsic matrix be K. The coordinates of pt are
projected onto the source view ps as

ps ∼ KT̂t→sD̂t(pt)K
−1pt, (12)

where the coordinates of ps take continuous values. We u-
tilize differentiable bilinear interpolation (Zhou et al. 2016)
that has 4-pixel neighbours of ps to approximate Is(ps):

Îs(pt) = Is(ps) =
∑

i∈{top,bottom},j∈{left,right}

wijIs(p
ij
s ),

(13)
wherewij is the proximity value between the projected pixel
ps and its neighbouring pixels pijs (

∑
i,j wij = 1).

After view reconstruction, the view discriminator D is
trained to discriminate the reconstructed image from the real
image. Following (Arjovsky, Chintala, and Bottou 2017) for
easy convergence, we use the Wasserstein distance in the ad-
versarial learning. Moreover, we simply remove the sigmoid
in the view discriminator. After the weights w are updated,
they are clipped into a stable range. For the discriminator,
the network is trained by optimizing the loss function Ld:

Ld = EI∼pdata(I)[D(I)]−Ez∼p(z)[D(G(z)], (14)

where I is sampled from the data distribution pdata.

Full Learning Objectives
To better mitigate the effect of occlusions and moving ob-
jects, we generate multi-scale pixel-level soft masks {K̂s}
from our intra-stage augmented attention blocks, indicating
the belief of the network in where the synthesized view and
the real target view can match. In each stage of intra-stage
augmented attention, K̂s is generated from Kc through a
convolutional layer. Note that our occlusion map K̂s, as
shown in Figure 5, benefits from our non-local attention,
which in turn helps to learn better attention at each stage of
the network. The view synthesis objective is weighted cor-
respondingly by minimizing the following photometric loss:

Lp =
∑

<I1,I2,...,IN>

∑
p

K̂s||It(p)− Îs(p)||1, (15)
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Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Zhou et al.∗ (Zhou et al. 2017) 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yang et al. (Yang et al. 2018b) 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian et al. (Mahjourian et al. 2018) 0.163 1.240 6.220 0.250 0.762 0.916 0.968
LEGO (Yang et al. 2018a) 0.162 1.352 6.276 0.252 - - -
DDVO (Wang et al. 2018a) 0.151 1.257 5.583 0.228 0.810 0.936 0.971
GANVO (Almalioglu et al. 2019) 0.150 1.141 5.448 0.216 0.808 0.939 0.975
DF-Net (Zou, Luo, and Huang 2018) 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Li et al. (Li et al. 2019) 0.150 1.127 5.564 0.229 0.823 0.936 0.974
GeoNet∗ (Yin and Shi 2018) 0.149 1.060 5.567 0.226 0.796 0.935 0.975
Ranjan et al. (Ranjan et al. 2019) 0.148 1.149 5.464 0.226 0.815 0.935 0.973
EPC++ (Luo et al. 2018) 0.141 1.029 5.350 0.216 0.816 0.941 0.976
S2D’(M)’ (Casser et al. 2019) 0.141 1.026 5.291 0.215 0.816 0.945 0.979
CC (Ranjan et al. 2019) 0.140 1.070 5.326 0.217 0.826 0.941 0.975
Bian et al. (Bian et al. 2019) 0.137 1.089 5.439 0.217 0.830 0.942 0.975
SGDepth (Klingner et al. 2020) 0.117 0.907 4.844 0.196 0.875 0.958 0.980
Monodepth2 (Godard et al. 2019) 0.115 0.903 4.863 0.193 0.877 0.959 0.981
DDV (ResNet18) (Johnston and Carneiro 2020) 0.111 0.941 4.817 0.189 0.885 0.961 0.981
Ours 0.109 0.883 4.827 0.188 0.881 0.962 0.986

Table 1: Comparative results for depth estimation on the KITTI raw dataset. ∗ denotes the newer results obtained using the
authors’ updated implementations.

where < I1, I2, ..., IN > denotes the training image se-
quence, p is the pixel coordinate index, and Îs is the pro-
jected image of the source view Is onto the target coordi-
nate frame using relative pose and depth-based rendering.
We choose the L1 loss due to its robustness to outliers.

To encourage nonzero predictions for occlusion maps
{K̂s} and prevent the network converge to a trivial solution,
we define a regularization term Lreg(K̂s) by minimizing the
cross-entropy loss with constant label 1 at each pixel loca-
tion, as in (Zhou et al. 2017). The regularization term is:

Lreg(K̂s) = BCE(K̂s,1), (16)

where 1 represents a tensor of all ones with the same dimen-
sion as K̂s, and BCE is the binary cross-entropy between
the soft mask K̂s and 1.

The overall appearance loss of the reconstructed imageLa
is measured by both weighted photometric loss and struc-
tural similarity metric (SSIM) (Wang et al. 2004):

La =Lreg(K̂s) + (1− α)Lp
+
α

2
(1− SSIM(It(p), Îs(p))),

(17)

where the hyper-parameter α is set to 0.85 in this work.
As the photometric loss is not informative in the low-

texture or homogeneous region of the scene, we incorporate
an edge-aware smoothness prior (Yin and Shi 2018) to reg-
ularize the estimated depth map:

Le =
∑
pt

|∇D(pt)| · (e|∇I(pt)|)T , (18)

where | · | denotes the element-wise absolute operator, ∇ is
the vector differential operator, and T denotes the transpose
of image gradient weighting.

The full learning objectives for self-supervised monocular
VO (SSM-VO) are defined as follows:

Lfinal =
∑
l

Lld + w1L
l
a + w2L

l
e, (19)

where l indexes over different image scales and w1, w2 are
the weighting hyper-parameters balancing these losses.

Experiments
Implementation Details
KITTI Dataset. For single-view depth estimation, we se-
lect the popular KITTI raw dataset (Geiger et al. 2013) with
the Eigen (Eigen, Puhrsch, and Fergus 2014) split and the
pre-processing method in (Zhou et al. 2017) to remove stat-
ic frames, as in (Yin and Shi 2018; Zou, Luo, and Huang
2018; Ranjan et al. 2019). This provides 39,810 monocular
triplets for training and 4,424 for the test. Moreover, for pose
estimation, the KITTI odometry dataset (Geiger, Lenz, and
Urtasun 2012) is used for performance evaluation. Follow-
ing (Zhan et al. 2018), sequences 00-08 and 09-10 are used
for training and test, respectively.

Network Architecture. The total deep learning frame-
work is implemented on PyTorch (Paszke et al. 2019). For
the depth generator network, we use ResNet18 (He et al.
2016) as the encoder backbone of the depth generator. The
decoder of the depth generator has sigmoids at the output
and ELU nonlinearities (Clevert, Unterthiner, and Hochre-
iter 2015) elsewhere. We also scale the sigmoid output D̂t

of the depth decoder between 0.1 and 100 units. In addition,
for the pose generator network, the backbone ResNet18 is
modified as in (Godard et al. 2019).

Single-View Depth Estimation. In the training phase, we
use a snippet of three sequential video frames as a train-
ing sample, where we set the middle image as the reference
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Figure 4: Qualitative results obtained by various methods for depth estimation on the KITTI Raw Dataset. It is evident that the
estimated depth using our method preserves more accurate boundaries between objects with finer details.

Figure 5: Visualization for our occlusion maps. The ego-
motion is stationary in the first two columns while dynamic
in the last column. For stationary scenarios, only moving
objects are detected. In dynamic scenarios, occlusions (e.g.,
caused by traffic signs), moving objects, and truncation are
detected at the same time. Our occlusion map K̂s helps to
remove ambiguous areas in view synthesis, thereby improv-
ing both the depth prediction and relative pose estimation.

frame to compute the loss, and the other as two for view syn-
thesis. In the test phase, we cap the depth to 80m per stan-
dard practice (Godard, Mac Aodha, and Brostow 2017). We
report the results using the per-image median ground-truth
scaling (Zhou et al. 2017). For data augmentation, we select
horizontal flips, random crop (at a random ratio of 0.7 to 1.0
of the original image size, ensuring the original aspect ratio
for the training samples), and the following strategies (with
50% chance): random brightness, contrast, saturation, and
hue jitter with respective ranges of ±0.2, ±0.2, ±0.2, and
±0.1. Importantly, the color augmentations are only applied
to the images which are fed to the networks, not to those
used to compute the photometric loss Lp. We set w1 = 0.1
and w2 = 0.5 in Eq. (19). Our model is trained with a Titan
XP GPU for 60 epochs using the Adam optimizer. We take a
learning rate of 10−4 for the first 35 epochs and reduce it to
10−5 for the remainder. We set the batch size to 12 and the
input/output resolution to 640× 192 unless otherwise spec-
ified. We employ Eigen et al.’s evaluation metrics (Eigen,
Puhrsch, and Fergus 2014) for depth evaluation.

Pose Estimation. We trained our models on sequences 0-
8 from the KITTI odometry split and tested on sequences 9

Method Frames Sequence 09 Sequence 10

ORB-SLAM - 0.014 ± 0.008 0.012 ± 0.011
(Zhou et al. 2017)∗ 5 0.016 ± 0.009 0.013 ± 0.015
GeoNet (Yin and Shi 2018)∗ 5 0.012 ± 0.007 0.012 ± 0.009
(Ranjan et al. 2019) 5 0.012 ± 0.007 0.012 ± 0.008
GANVO (Feng and Gu 2019) 5 0.009 ± 0.005 0.010 ± 0.013

DDVO (Wang et al. 2018a) 3 0.045 ± 0.018 0.033 ± 0.074
SGANVO (Feng and Gu 2019) 3 0.015 ± 0.006 0.014 ± 0.009
(Mahjourian et al. 2018) 3 0.013 ± 0.010 0.012 ± 0.011
EPC++ (Luo et al. 2018) 3 0.013 ± 0.007 0.012 ± 0.008

Monodepth2 2 0.017 ± 0.008 0.015 ± 0.010
Bian et al. (Bian et al. 2019) 2 0.016 ± 0.007 0.015 ± 0.015
Ours 2 0.013 ± 0.006 0.012 ± 0.006

Table 2: Comparative results on the KITTI odometry dataset.
The absolute trajectory error (ATE) is used as the evaluation
metric. ∗ denotes the authors’ updated results.

and 10. The performance of pose estimation is evaluated us-
ing Absolute Trajectory Error (ATE) for both translation and
rotation. For trajectory evaluation, we choose the evaluation
metrics as in (Zhou et al. 2017; Yin and Shi 2018).

Comparison with the State-of-the-Art
Depth Estimation Results on KITTI Raw Dataset. Ta-
ble 1 compares our proposed model with the existing self-
supervised depth estimation methods. Note that most of the
compared methods are based on deep learning and some
results are updated according to the authors’ updated im-
plementation. The comparative results in Table 1 show that
our depth generator outperforms all self-supervised method-
s and achieves new state-of-the-art on this dataset. Partic-
ularly, with the same backbone, our model beats the latest
and strongest competitor (Johnston and Carneiro 2020) on
five out of seven metrics. The qualitative results for vari-
ous depth estimation methods on the KITTI Eigen split are
shown in Figure 4. It is evident that the estimated depth us-
ing our method preserves more accurate boundaries between
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Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Baseline (BL) 0.163 1.253 6.232 0.263 0.774 0.923 0.965
BL+ISAA (inner) 0.153 1.248 5.593 0.237 0.792 0.939 0.970
BL+ISAA (stage-wise) 0.147 1.142 5.412 0.223 0.816 0.941 0.975
BL+ISAA (non-local) 0.140 1.072 5.339 0.216 0.827 0.946 0.975
BL+ISAA (ours) 0.134 1.065 5.152 0.211 0.834 0.948 0.976
BL+ISAA+CASA 0.119 0.925 4.963 0.197 0.862 0.955 0.981
BL+ISAA+CASA+GC 0.109 0.883 4.827 0.188 0.881 0.962 0.986

Table 3: Ablation study for our proposed model. Notations: ISAA – intra-stage augmented attention; CASA – cascaded across-
stage attention; GC – global constraint. ISAA (inner), ISAA (stage-wise), and ISAA (non-local) are alternatives of ISAA.

Figure 6: Qualitative results obtained by our proposed model
for visual odometry on Sequence 09.

objects with finer details. This is mainly due to the pro-
posed attention module which enables our model to better
cope with occlusion and moving objects (see the visualiza-
tion of our occlusion maps in Figure 5). Note that although
these enhanced edges/details are relatively small in size and
thus contribute little to various depth estimation metrics in
Table 1, visual inspection on Figure 4 suggests that the im-
provement in depth estimation quality is significant.

Pose Estimation Results on KITTI Odometry Dataset.
We compare our proposed approach with recent SSM-VO
methods. We also report the results of ORB-SLAM sys-
tem (without loop closing) (Mur-Artal, Montiel, and Tar-
dos 2015) as a reference. It is worth noting that our simple
frame-to-frame pose estimation framework is not expected
to beat a visual SLAM system, which has a strong back-end
optimization system (i.e., bundle adjustment) for improving
the performance. Also note that our pose generator takes on-
ly two frames as input whilst most other methods take more
frames. The odometry results on the KITTI odometry dataset
are shown in Table 2. Our proposed approach clearly out-

performs other methods using the same 2 input frames and
achieves similar results w.r.t. the methods using more input
frames (3 or 5 frames). Some qualitative results (sequence
09) for visual odometry are shown in Figure 6.

Ablation Study
Ablation Study for Our Full Model. We conduct abla-
tion studies for our full model, which consists of three main
components: intra-stage augmented attention (ISAA), cas-
caded across-stage attention (CASA) and global constrain-
t (GC). Specifically, ISAA bridges high-level and low-level
features in each sub-network and makes it focus more on the
areas that are difficult to estimate from a global perspective;
CASA enables our network to provide gradually refined at-
tention and balance the attention map from different scales;
GC is induced by adversarial learning and enforces the syn-
thetic view to be indistinguishable from the real one to help
cope with occluded and moving regions at the scene-level.
Table 3 clearly demonstrates the contribution of each com-
ponent to the overall performance.

Ablation Study for Our ISAA Module. Note that ISAA
is crucial for feature selection during the whole train pro-
cess. We compare our ISAA with three alternative imple-
mentations: (a) ISAA (inner): The self-attention, like the
vanilla self-attention module in pose generator, implement-
ed on depth latent feature zd existed in the inner of the depth
generator. (b) ISAA (stage-wise): The self-attention imple-
mented on the feature maps fd at each stage of the depth de-
coder. (c) ISAA (non-local): Traditional implementation of
non-local self-attention on feature maps fd at each stage of
the depth decoder. From Table 3, we can see that our ISAA
performs better than alternative implementations. More ab-
lative results can be found in the suppl. material.

Conclusion
We have proposed an adversarial-learning based framework
for monocular VO which learns the depth estimation and
view synthesis from a global perspective. We have also in-
troduced a novel non-local attention module, consisting of
both intra-stage augmented attention and cascaded across-
stage attention, to learn a better feature representation for
depth estimation and deal with the problem of moving ob-
jects and occlusions. With the proposed module, our global
occlusion-aware approach to monocular VO achieves new
state-of-the-art on the KITTI dataset.
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