
HR-NAS: Searching Efficient High-Resolution Neural Architectures
with Lightweight Transformers

Mingyu Ding1* Xiaochen Lian2 Linjie Yang2 Peng Wang2 Xiaojie Jin2 Zhiwu Lu3 Ping Luo1

1The University of Hong Kong 2Bytedance Inc.
3Gaoling School of Artificial Intelligence, Renmin University of China
{myding, pluo}@cs.hku.hk luzhiwu@ruc.edu.cn

{xiaochen.lian, linjie.yang, peng.wang, jinxiaojie}@bytedance.com

Abstract

High-resolution representations (HR) are essential for
dense prediction tasks such as segmentation, detection, and
pose estimation. Learning HR representations is typically
ignored in previous Neural Architecture Search (NAS) meth-
ods that focus on image classification. This work proposes
a novel NAS method, called HR-NAS, which is able to find
efficient and accurate networks for different tasks, by ef-
fectively encoding multiscale contextual information while
maintaining high-resolution representations. In HR-NAS,
we renovate the NAS search space as well as its search-
ing strategy. To better encode multiscale image contexts
in the search space of HR-NAS, we first carefully design
a lightweight transformer, whose computational complexity
can be dynamically changed with respect to different objec-
tive functions and computation budgets. To maintain high-
resolution representations of the learned networks, HR-NAS
adopts a multi-branch architecture that provides convolu-
tional encoding of multiple feature resolutions, inspired by
HRNet [73]. Last, we proposed an efficient fine-grained
search strategy to train HR-NAS, which effectively explores
the search space, and finds optimal architectures given var-
ious tasks and computation resources. As shown in Fig.1
(a), HR-NAS is capable of achieving state-of-the-art trade-
offs between performance and FLOPs for three dense pre-
diction tasks and an image classification task, given only
small computational budgets. For example, HR-NAS sur-
passes SqueezeNAS [63] that is specially designed for se-
mantic segmentation while improving efficiency by 45.9%.
Code is available at https://github.com/dingmyu/HR-NAS.

1. Introduction
Neural architecture search (NAS) has achieved remark-

able success in automatically designing efficient models for
image classification [76, 43, 47, 53, 6, 79, 5, 64, 92, 26].

*This work was done when Mingyu was a research intern at Bytedance.

260 270 280 290 300 310 320 330
FLOPs (M)

74

75

76

Ac
c

(%
)

Ours A

Ours B

FBNet-B
AutoSlim

Proxyless
AtomNas-A SinglePath

FairNas-C

MnasNet-A

SCARLET-B
ST-NAS-A

Image Classification

0 2 4 6 8
FLOPs (G)

58
60
62
64
66
68
70
72
74

AP
 (%

) Ours A

Ours B

ShuffleNetV1
ShuffleNetV2

MobileNetV2

NAS-CSS
DA-NAS

CPN
SimpleBaseline

HRNet-W32

Human Pose Estimation

0 5 10 15 20 25
FLOPs (G)

69
70
71
72
73
74
75
76
77

m
Io

U
(%

)

Ours A

Ours B

BiSeNet

MobileNetV2

MobileNetV3

HRNet-W18s

SwiftNet

DFANet

DPC
SqueezeNAS

Semantic Segmentation

0 10 20 30 40 50 60
FLOPs (G)

68

70

72

74

76

78

AP
 (M

od
er

at
e)

 (%
)

Ours A

Ours B Pointpillar

ShuffleNetV2
MobileNetV2

3D Detection
Figure 1. Comparisons of the efficiency (i.e., FLOPs) and the per-
formance (e.g., Acc, mIoU, AP) on 4 computer vision tasks, i.e.,
classification (ImageNet), segmentation (CityScapes), pose esti-
mation (COCO), and 3D detection (KITTI), between the proposed
approach and existing SoTA methods. Each method is represented
by a circle, whose size represents the number of parameters. F
represents the optimal model with both high performance and low
FLOPs. Our approach achieves superior performance under simi-
lar FLOPs compared to its counterparts on all four benchmarks.

NAS has also been applied to improve the efficiency of
models for dense prediction tasks such as semantic segmen-
tation [63, 8] and pose estimation [19]. However, existing
NAS methods for dense prediction either directly extend the
search space designed for image classification [19, 44], only
search for a feature aggregation head [54, 8], organizing
network cells in a chain-like single-branch manner [46, 63].
This lack of consideration to the specificity of dense predic-
tion hinders the performance advancement of NAS methods
compared to the best hand-crafted models [73, 23].

In principle, dense prediction tasks require the integrity
of the global context and the high-resolution (HR) represen-
tation; the former is critical to clarify ambiguous local fea-
tures [87] at each pixel, and the latter is useful for the accu-

rate prediction of fine details [39], such as semantic bound-
aries and keypoint locations. However, these two aspects,
especially the HR representations, have not got enough at-
tention in existing NAS algorithms for classification. The
straightforward strategy to implement the principle is man-
ually combining multi-scale features at the end of the net-
work [46, 9, 41], while recent approaches [23, 73, 88] show
the performance can be enhanced by putting multi-scale
feature processing within the network backbone. Another
observation from recent research is that multi-scale con-
volutional representations can not guarantee a global out-
look of the image since dense prediction tasks often come
with high input resolution but a network often only covers
a fixed receptive field. Therefore, global attention strate-
gies such as SENet [34] and non-local network [75] have
been proposed to enrich image convolutional features. Most
recently, inspired by its success in natural language pro-
cessing, Transformer architectures [72, 66], which contain
global attention with spatial encoding, have also shown su-
perior results when combined with convolutional neural net-
work for image classification [24] and object detection [7].

Motivated by the above observations, in this work, we
propose a NAS algorithm, which incorporates these strate-
gies, i.e. in-network multi-scale features and transformers,
and enables their adaptive changing with respect to task
objectives and resource constraints. In practice, it is non-
trivial to put them together. Firstly, Transformer has a high
computational cost that is quadratic w.r.t. image pixels and
hence unfriendly to the NAS search space of efficient archi-
tectures. We solve this through a dynamic down projection
strategy, yielding a lightweight and plug-and-play trans-
former architecture that can be combined with other convo-
lutional neural architectures. In addition, searching a fused
space of multi-scale convolution and transformers needs
proper feature normalization, selection of fusion strategies
and balancing. We did extensive studies to calibrate various
model choices that generalize to multiple tasks.

In summary, HR-NAS works as follows. We first setup
a super network, where each layer contains a multi-branch
parallel module followed by a fusion module. The parallel
module contains searching blocks with multiple resolutions,
and the fusion module contains searching blocks of feature
fusion determining how feature from different resolutions
fuses. Then, based on the computational budget and the
task objective, a fine-grained progressive shrinking search
strategy is introduced to prune redundant channels in convo-
lutions and queries in transformers, resulting in an efficient
model that provides the best trade-off between performance
and computational costs. With extensive experiments, HR-
NAS achieves state-of-the-art on multiple dense prediction
tasks and competitive results on image classification under
highly efficient settings with a single search. Fig. 1 shows a
comprehensive comparison of our proposed approach with

previous NAS approaches as well as manually designed net-
works on four different tasks.

Our main contributions are three-fold. (1) We introduce
a novel lightweight and plug-and-play transformer, which
is highly efficient and can be easily combined with convo-
lutional networks for computer vision tasks. (2) We pro-
pose a well-designed multi-resolution search space contain-
ing both convolutions and transformers to model in-network
multi-scale information and global contexts for dense pre-
diction tasks. To our best knowledge, we are the first to in-
tegrate transformers in a resource-constrained NAS search
space for computer vision. (3) A resource-aware search
strategy allows us to customize efficient architectures for
different tasks. Extensive experiments show models pro-
duced by our NAS algorithm achieve state-of-the-art on
three dense prediction tasks and four widely used bench-
marks with lower computational costs.

2. Related Work
Transformers. Transformer [72, 66], a model architecture
relying on a self-attention mechanism to learn dependen-
cies between input and target, is used primarily in natural
language processing. Generative Pre-trained Transformer
(GPT) uses language modeling as a pre-training task [58, 4].
BERT [21] improves Transformer with a masked language
model and a learned positional embedding to replace the si-
nusoidal positional encoding [72].

Since Transformer is suitable for capturing global infor-
mation and pairwise interactions, some attempts [75, 7, 24,
77] have been made to adapt it to computer vision. Non-
local networks [75] proposed a self-attention architecture
to capture long-range interactions which can be viewed as
a simplified version of Transformer. DETR [7] formulates
object detection as a set prediction problem, which is nat-
urally modeled as a sequence prediction task by the Trans-
former. Visual Transformers [77] represent images as a set
of visual tokens and apply a Transformer-based structure to
detect relationships between visual semantic concepts for
semantic segmentation. iGPT [10] uses a standard Trans-
former to unsupervisedly learn generative relationships of
image pixels. However, since its computational complexity
grows quadratically with the number of pixels, such appli-
cations of Transformers in computer vision are computa-
tionally expensive. Some approaches [61, 48, 37, 74, 13]
leverage network compression techniques, such as dynamic
routing and knowledge distillation, to improve the effi-
ciency of Transformers in NLP. However, efficient Trans-
formers are seldom explored in computer vision. In light of
this, we formulate Transformer into an efficient and plug-
and-play module that is seamlessly integrated into a well-
designed NAS search space.
Neural Architecture Search for Efficient models. Early
approaches utilize reinforcement learning [93] and evo-

lution algorithms [60, 51] to find efficient and powerful
network structures. However, these methods are usually
computationally expensive. To improve the efficiency of
the search process, differentiable search methods such as
Darts [47, 38, 80] and ProxylessNAS [6] formulate the
search space as a super-graph where the probability to
adopt an operator is represented by a continuous importance
weight, allowing an efficient search of the architecture us-
ing gradient descent. Other approaches [3, 67, 31] utilize
a random sampling approach when training the super-net
and search for the best model candidate after the network
converges. Inspired by the manually designed structures,
[68, 33] use a search space based on MobileNetV2 [62] to
search for efficient structures. Mixed convolution [70, 53]
is also adopted in NAS search spaces due to its multi-scale
feature modeling capability. Recently, model scaling tech-
niques are used to expand the search space from operators
to other hyper-parameters such as input resolutions, chan-
nel numbers, and layer numbers [5, 84]. In order to search
for efficient models, the existing methods usually borrow
efficient operators from manually designed networks, such
as depthwise convolution and Inverted Residual Block [62].
To construct the search space with more powerful operators,
we design a new efficient Transformer structure that can be
directly inserted into existing NAS search spaces.
Neural Architecture Search for Dense Prediction. The
current NAS algorithms either reuse search spaces for im-
age classification or only search for a feature aggregation
head for dense prediction tasks. A single branch super-
net structure is usually utilized for dense prediction tasks
such as semantic segmentation [63, 46, 44], object detec-
tion [25, 12, 28], and human pose estimation [19]. Struc-
tures of feature aggregation head are also discovered using
NAS algorithms for semantic segmentation [8, 54]. Recent
explorations [29, 88] aim to find an optimal network lay-
out in a hierarchical multi-scale search space. However,
their search spaces use fixed width of layers which result
in computationally heavy models. In contrast, we propose
a multi-branch search space where each branch specializes
for a typical feature resolution. The same search space can
be directly used for various dense prediction tasks that have
different preferences on the granularity of features, in which
the computation budget is allocated for different resolutions
through an end-to-end optimization.

3. Methodology
Our method aims to search for network structures within

a multi-branch search space containing both Convolutions
and Transformers with a resource-aware search strategy. In
this section, we first introduce our lightweight Transform-
ers. We then detail our multi-branch search space and how
to integrate our Transformers into it. Finally, we describe
the resource-aware fine-grained search strategy.

Add & Norm

FFN

Add & Norm

 Multi-Head Self-Attention

Image Features X

2D Positional Map P

Projected Features X'

QK V

Add & Norm

FFN

Add & Norm

 Multi-Head Self-Attention

QK V

Semantic Queries S

Attented Features

Inverse Projection

AddEncoder

Decoder

Concat

P̂

A

F

F

A

Projector

Projection P

Figure 2. The architecture of our lightweight Transformer, which
contains a projector, an encoder, and a decoder. It can be used
plug-and-play to enhance the global context of image features.

3.1. Lightweight Transformers

The standard Transformer [72, 7] cannot be directly ap-
plied to high-resolution images and mobile scenarios, as its
computational cost grows quadratically to the number of
pixels. Our lightweight Transformer shown in Fig. 2, which
consists of a projector, an encoder, and a decoder, is pro-
posed to solve this issue (see Fig. 2).
Projector. To reduce the computational costs, we project
the input feature X ∈ Rc×h×w, together with the positional
encoding, into a reduced size of n × s × s by a projection
function P(·), where n denotes the number of queries and
s × s is the reduced spatial size. Formally, the projection
process can be represented by:

X′ = P(Concat(X,P)), (1)

where Concat denotes the concatenation operator, P ∈
Rdp×h×w is a positional encoding which compensates for
the loss of spatial information during the self-attention pro-
cess, andX ′ ∈ Rn×s2 is the projected and flattened embed-
ding. The projector P first uses a point-wise convolution
(with a Batch Normalization layer) to reduce the channel
dimension of the feature map from c + dp to a smaller di-
mension n and then uses a bilinear interpolation operation
to resize the spatial dimension of the feature map to s × s.
The positional encoding P in Eq. 1, is simply a normalized
2D positional map:

P [0, i, j] = i/h, i ∈ [0, h− 1]

P [1, i, j] = j/w, j ∈ [0, w − 1] (2)

The 2D positional map P is very efficient as it contains
only 2 channels (i.e., dp = 2). Later in the experiments, we
show that this simple encoding outperforms the sinusoidal
positional encoding [72] and the learned embedding [7].
Encoder. After the projection, the original feature X is
transformed into a set of n tokens X ′; each token is an s2-
dimensional semantic embedding with positional informa-
tion. X ′, is then fed into our encoder as queries, keys, and

m=2
nc1=2
nc2=2

Parallel Module

min=3
mout=4

Fusion Module

c

rc rc rc

n

n

c'

Searching block

Projection
𝒫

Inverse
Projection

"𝒫
Add

Concat

1x1𝒞0

1x1𝒞4

5x5𝒞2 7x7𝒞33x3𝒞1

SuperNet
Input Conv Layers

Parallel Module

Fusion Module

Parallel Module

Concat & Final Cls/Reg

1/4

Parallel Module

Fusion Module

𝒯
Transformer

rc
rc
rc

(a) (b) (c)

1/4 1/8

1/4 1/8 1/16

1/4 1/8 1/16 1/32

1/4 1/8 1/16 1/32

1/4 1/8 1/16

1/4 1/8

Figure 3. (a) Our multi-branch search space, which is composed of parallel modules and fusion modules alternately. “1/4, 1/8, . . .” denote
the down-sampling ratios. (b) Illustration of parallel modules and fusion modules. The red, black, and blue arrows represent the reduction
searching blocks, normal searching blocks, and normal searching blocks with upsampling, respectively. The cubes represent feature maps.
In this example, the fusion module generates an extra branch from the previous lowest-resolution branch by a reduction searching block.
(c) The proposed searching block that contains both convolutions with different kernel sizes C1, C2, C3 and a lightweight Transformer T .

values Q,K, V ∈ Rn×s2 . Following the standard Trans-
former [72], our lightweight Transformer is built upon the
Multi-Head Self-Attention A(·), which allows the model to
jointly attend to information at different positions. It is de-
fined as:

Aenc(Q,K, V) = Concat(head1, . . . , headh)WO

where headi = Attention(QWQ
i ,KW

K
i , V WV

i)

= softmax

[
QWQ

i (KWK
i)T

√
d

]
VWV

i (3)

where h is the number of heads, d is the hidden dimen-
sions of the attended subspaces, and WQ

i ,W
K
i ,WV

i ∈
Rs2×d,WO ∈ Rhd×s2 are learned embeddings (weights).
A position-wise Feed-Forward Network (FFN) Fenc(·),
which consists of two linear transformations with a ReLU
activation in between, is then applied to the attended fea-
tures:

Fenc(x) = max(0, xW1 + b1)W2 + b2 (4)

where W1 ∈ Rs2×4s2 ,W2 ∈ R4s2×s2 , b1 and b2 are the
weights and biases of the linear layers respectively. We em-
ploy residual connections [32] around both the Multi-Head
Self-Attention layer and the Feed-Forward Network, which
are followed by layer normalization [1] as in [72].
Decoder. Our decoder follows the same paradigm of the en-
coder: Multi-Head Self-Attention layer and Feed-Forward
Networks. It uses the output of the encoder F as keys and
values and a set of n learnable s2-dimensional semantic em-
beddings S ∈ Rn×s2 as queries. The decoder can be for-
malized as Fdec(Adec(S, F, F)). Finally, the output of the
decoder is transformed back to the proper shape by an in-
verse projection function P̂(·). Like the projector P , the
inverse projector P̂(·) consists of a point-wise convolution
(with a Batch Normalization layer) and a bilinear interpola-

tion operation. Note that since image modeling is not a se-
quence prediction task, and there is no temporal relationship
between the semantic tokens, we remove the first Multi-
Head Attention in the standard Transformer decoder [72].
Time Complexity. The time complexities of our Multi-
Head Self-Attention and our FFN are O(4nds2 + 2n2d)
andO(8ns4), respectively, where s2, d and n are in the pro-
jected low-dimensional space. Since s2 is a projected small
spatial size, the overall time complexity (FLOPs) OT (n)
of our Transformer is approximately linear with n2d. In
the following part, we will further introduce a fine-grained
search strategy to reduce the number of tokens n in order to
make the lightweight Transformer more efficient.

In summary, the main difference between our
lightweight Transformer and the standard Transformer [72,
7] lies in: (1) A projection function P(·) is used to learn
self-attention in a low-dimensional space. (2) A simpler
yet effective 2D positional map P is used for positional en-
coding. (3) The first Multi-Head Attention and the spatial
encoding in the standard Transformer decoder are removed.

3.2. Multi-branch Search Space

Inspired by HRNet [73], we design a multi-branch
search space for dense predictions that contains both multi-
scale features and global contexts while maintaining high-
resolution representations throughout the network.
Overview. The network consists of two modules: the par-
allel module and the fusion module. Both of the two mod-
ules are constructed with our searching blocks. As shown
in Fig. 3 (a), after two convolutions which decrease the
feature resolution to 1/4 of the input image size, we start
with this high-resolution branch and gradually add high-to-
low resolution branches through fusion modules, and con-

nect the multi-resolution branches in parallel through paral-
lel modules. Finally, multi-branch features are resized and
concatenated together, and connected to the final classifica-
tion/regression layer without any additional heads.

The parallel module obtains larger receptive fields and
multi-scale features by stacking searching blocks in each
branch. It has m ∈ [1, 4] branches containing nc1, . . . , ncm
convolutions with nw1, . . . , nwm channels in each branch.
A fusion module is used after a parallel module to ex-
change information across multiple branches. An extra
lower-resolution branch is also generated from the previ-
ously lowest-resolution branch until it reaches 1/32 down-
sampling ratios. A fusion module takes min branches from
the previous parallel module as input and outputs mout

branches. For each output branch, all its neighboring in-
put branches are fused by using the searching block to
unify their feature map sizes. For example, a 1/8 output
branch integrates information of 1/4, 1/8, and 1/16 input
branches. In our fusion module, the high-to-low resolution
feature transformation is realized by the reduction searching
block, while the low-to-high resolution feature transforma-
tion is implemented with the normal searching block and
upsampling.
Searching block. As shown in Fig. 3 (c), our searching
block contains two paths: one path is a MixConv [70], the
other path is a lightweight Transformer which aims to pro-
vide more global contexts. The number of convolutional
channels and the number of tokens in the Transformer are
searchable parameters.

Formally, let X be the input of c feature channels (the
spatial dimension is omitted for simplicity). In the Mix-
Conv path, the first layer is a point-wise convolution C0
which expands X to a 3r× c dimension (i.e., the expansion
ratio is 3r); the output is split into three parts with an equal
number of channels (i.e., each with r × c channels), which
are then fed into three depth-wise convolutions C1, C2, C3
with kernel sizes of 3 × 3, 5 × 5, and 7 × 7, respectively.
The outputs of these three layers are concatenated, followed
by another point-wise convolution C4 that produces the fea-
ture map with the desired number of channels c′. In the
Transformer path, a lightweight Transformer T with n to-
kens is applied to the input feature X to obtain the global
self-attention. The outputs of two branches are added as the
final output of the searching block. Intuitively, the Trans-
former path can be regarded as a residual path for enhancing
the global context within the searching block. The informa-
tion flow in a searching block can be written as:

X′ = C4(Concat(C1(C0(X)1), C2(C0(X)2), C3(C0(X)3))) + T (X)
(5)

where C0(X)i represents the i-th part of the output of
C0(X), as shown in Fig. 3 (c). Note that when the strides of
the convolutions C1, C2, C3 are equal to 2, as in the reduction
searching block, the inverse projection P̂(·) in Transformer

resizes its input into half size of the original spatial dimen-
sion in order to match the output shape of C4.

3.3. Resource-aware Fine-grained Search

Our supernet is a multi-branch network where each
branch is a chain of searching blocks operating at differ-
ent resolutions; each searching block combines a MixConv
and a Transformer. Unlike previous searching methods that
are designed for specific tasks, we aim to customize the net-
work for various tasks. Specifically, we propose a resource-
aware channel/query-wise fine-grained search strategy to
explore the optimal feature combination for different tasks.

We adopt a progressive shrinking NAS paradigm which
generates lightweight models by discarding some of the
convolutional channels and Transformer queries during
training. As described in [53], as channels in depth-wise
convolutions are independent in our searching block, any
channels from these convolutions can be easily removed
without affecting the other searching blocks; we only need
to remove the corresponding weights from the convolutions.
Similarly, if a token of the Transformer is discarded, we just
remove the corresponding weights from the 1× 1 convolu-
tions of the projections P(·) and P̂(·), and the correspond-
ing embedding from queries S.

In the rest of this paper, we call a channel of the depth-
wise convolutions or a token in Transformers a search unit.
A searching block with c input channels, the expansion ratio
of 3r, and n tokens has 3rc+ n search units in total.

Following Darts [47], we introduce an importance factor
α > 0 that can be learned jointly with the network weights
for each search unit of the searching block. We then pro-
gressively discard those with low importance while main-
taining overall performance. Inspired by works on channel
pruning [85, 49, 53], we add a resource-aware L1 penalty
on α, which effectively pushes importance factors of high
computational costs to zero. Specifically, the L1 penalty of
a search unit is weighted by the amount of the reduction in
computational cost ∆ > 0 (i.e. FLOPs in this case):

∆i =

3× 3× h× w, i ∈ [0, rc)

5× 5× h× w, i ∈ [rc, 2rc)

7× 7× h× w, i ∈ [2rc, 3rc)

OT (n′)−OT (n′ − 1), i ∈ [3rc, 3rc+ n)

(6)

where OT is the FLOPs of the Transformer defined in
Sec. 3.1, i is the index of the search unit, n′ is the number of
remaining tokens. Note that ∆’s for search units of convo-
lutions are fixed, while in the Transformer, ∆’s is a function
of the number of remaining tokens. It is worth mentioning
that, although FLOPs is not always a good measure of la-
tency, we use it anyway as it is the most widely and easily
used metric. The Eq. 7 can be easily adapted to use other
metrics, e.g., latency and energy cost.

With the added resource-aware penalty term, the overall
training loss is:

L = Ltask + λ
∑

i∈[0,3rc+n)

∆i|αi| (7)

where Ltask denotes the standard classification/regression
loss, and λ denotes the coefficient of the L1 penalty term.

During training, after every few epochs, we progres-
sively remove the search units whose importance factors are
below a predefined threshold ε and re-calibrate the running
statistics of Batch Normalization (BN) layers. Note that if
all tokens of a Transformer are removed, the Transformer
will degenerate into a residual path, as shown in Fig. 2.

When the search ends, the remaining structure not only
represents the best accuracy-efficiency trade-offs, but also
has the optimal low-level/high-level and local/global fea-
ture combination for a specific task. In addition, since the
network training and architecture search are conducted in
a unified end-to-end manner, the resulting network can be
used directly without fine-tuning.

4. Experiments
4.1. Implementation Details

To validate the generalizability of our method, we se-
lect five benchmark datasets on four representative tasks
for performance evaluation: image classification on Im-
ageNet [20], human pose estimation on COCO key-
point [45], semantic segmentation on Cityscapes [16] and
ADE20K [91], and 3D object detection on KITTI [27].
These benchmarks are carefully selected as they require
different receptive fields, global/local contexts, and 2D/3D
perceptions. In this work, the same supernet is used for
all five benchmarks; It begins with two 3 × 3 convolutions
with stride 2, which is followed by five parallel modules
(respectively with 1, 2, 3, 4, 4 branches); a fusion module
is inserted between every two adjacent parallel modules, to
obtain multi-scale features. For Transformers, we set s = 8,
d = s2 = 64, and h = 1. In some evaluation experiments
without search, we fix d = 8. The expansion ratio r of
the searching block is set to be 4. For the MixConv, we
use the scales from the batch normalization layers after the
depth-wise convolutions as the importance factors; for the
Transformer, we use the scales from the batch normalization
layer in the projector P as the importance factors. On each
benchmark, we obtain HR-NAS-A and HR-NAS-B using
different λ values. Search units with α < 0.001 are deemed
unimportant and removed every five epochs. Unless speci-
fied, all experiments in this paper use standard training pro-
tocols, e.g., we don’t apply techniques like AutoAug [17],
Mixup [86], and Cutout [22]. All our models are trained
from scratch without pretraining on the ImageNet dataset,
and are evaluated with single-scale input and without multi-
crop. Details of the datasets and the training settings for
each task can be found in Supplemental Materials.

Table 1. Comparision with state-of-the-arts on ImageNet under the
mobile setting. † denotes methods using Swish activation [59],
‡ denotes methods trained on AutoAugment [17] or RandAug-
ment [18]. FLOPs is measured using an input size of 224× 224.

Model Params FLOPs Top-1(%)

CondenseNet [36] 2.9M 274M 71.0
ShuffleNetV1 [89] 3.4M 292M 71.5
ShuffleNetV2 [52] 3.5M 299M 72.6
MobileNetV2 [62] 3.4M 300M 72.0
MobileNetV3 [33]† 5.4M 219M 75.2
EfficientNet-B0 [69]†‡ 5.3M 390M 77.3

FBNet-B [76] 4.5M 295M 74.1
AutoSlim-MobileNetV2 [83] 5.7M 305M 74.2
Proxyless [6] 4.1M 320M 74.6
DA-NAS [19] − 323M 74.3
AtomNAS-A [53] 3.9M 258M 74.6
SinglePathOneShot [31] 3.4M 328M 74.7
FairNAS-C [15] 4.4M 321M 74.7
MnasNet-A1 [68] 3.9M 312M 75.2
TF-NAS-C [35] − 284M 75.2
SCARLET-B [14] 6.5M 329M 76.3
ST-NAS-A [30] 5.2M 326M 76.4

HR-NAS-A 5.5M 267M 75.7
HR-NAS-B 6.4M 325M 76.5

MixNet-S [70]† 4.1M 256M 75.8
AtomNAS-A+ [53]† 4.7M 260M 76.3
Once-for-all [5]† 4.4M 230M 76.0
Once-for-all (finetuned) [5]† 4.4M 230M 76.9
BigNAS [84]†‡ 4.5M 242M 76.5
FairNAS-C+ [15]† 5.6M 325M 76.7

HR-NAS-A †‡ 5.5M 267M 76.6
HR-NAS-B †‡ 6.4M 325M 77.3

4.2. Comparative Results

We conduct experiments against the state-of-the-art
methods on five benchmarks: image classification on Im-
ageNet (Tab. 1), semantic segmentation on Cityscapes
(Tab. 2), semantic segmentation on ADE20K (Tab. 3), hu-
man pose estimation on COCO keypoint (Tab. 4), and 3d
object detection on KITTI (Tab. 5). From these tables we
can see that: (1) Our method achieves state-of-the-art per-
formance on all three dense prediction tasks and competi-
tive results on the classification task. Compared with other
tasks, classification usually benefits less from multi-scale
and global contexts because it aggregates position-invariant
features through global pooling. (2) Many existing meth-
ods, such as [84, 44, 41] utilize additional modules or pre-
training on the ImageNet dataset to get better performance
for a specific task. In contrast, our method is able to show
superior results across multiple challenging datasets with-
out any bells and whistles. (3) We evaluate the mean and
standard deviation of 5 runs on Cityscapes [16] with Ran-
dom Search [42] as a baseline. It shows that our method
yields stable results with a standard deviation of about only
0.3. (4) For NAS methods toward high segmentation ac-
curacy [46, 25] rather than accuracy-efficiency trade-offs,

Table 2. Comparative results on the CityScapes validation set
(mIoU,%). * indicates the model is pre-trained on the ImageNet
dataset. FLOPs is measured using an input size of 512 × 1024. †
denotes the model is reduced by us for acc-efficiency trade-offs.

Model Params FLOPs mIoU(%)

SegNet [2] 29.47M 649G 57.00
Enet [57] 0.37M 8.69G 58.30
BiSeNet [82] 5.8M 6.58G 69.00
MobileNetV2 [62] 2.11M 5.33G 70.71
MobileNetV3-Large [33] 1.51M 2.48G 72.36
HRNet-W18-Small [73] 3.94M 19.30G 75.44

C3 [56] 0.20M 6.45G 61.96
SkipNet-MobileNet [65]* − 13.80G 62.40
EDANet [50] 0.68M 7.98G 65.11
SwiftNet [55] 11.80M 26G 70.20
DFANet [41]* 7.8M 1.7G 70.30
ShuffleNetV2+DPC [71] 3.00M 6.92G 71.30
Auto-DeepLab [46]-Tiny† 3.16M 27.29G 71.21
GAS [44]* 1.50M − 71.80
SqueezeNAS-Large [63] 0.73M 8.35G 72.40
SpineNet-49 [25]-Tiny† 5.49M 37.99G 74.18
Random Search [42] 6.11±2.25M 7.09±1.88G 70.20±3.01

HR-NAS-A 2.20±0.14M 1.91±0.11G 74.26±0.37
HR-NAS-B 3.85±0.19M 4.66±0.17G 75.90±0.30

Table 3. Comparative results on the ADE20K validation set
(mIoU,%). FLOPs is measured using an input size of 512× 512.

Model Params FLOPs mIoU(%)

MobileNetV2[62] 2.20M 2.76G 32.04
MobileNetV3-Large[33] 1.60M 1.32G 32.31
HRNet-W18-Small [73] 3.97M 10.23G 33.41

HR-NAS-A 2.49M 1.42G 33.22
HR-NAS-B 3.86M 2.19G 34.92

we reduce their network width to 1/2 (and depth to 1/2
for [46]), thus obtain the tiny variants. Our method out-
performs the second-best competitor by a large margin on
Cityscapes (74.18 vs. 76.01), ADE20K (33.41 vs. 34.92),
and COCO keypoint (74.9 vs. 75.5) using a much lighter
model, showing its superiority and accuracy-efficiency bal-
ance ability on dense prediction tasks.

4.3. Ablation Study
Search Space. In this part, we study the design compo-
nents of our search space. In Tab. 6 we show how the in-
troduction of different components affects the performance
and FLOPs, using the Cityscapes segmentation benchmark
as an example. The baseline search space, “Single-branch”
in Tab. 6, is a single-branch network with only 3 × 3 con-
volutions, where the up-sampling operations are applied at
the end for dense prediction tasks. Adding the multi-branch
architecture increases the mIoU from 66.23% to 68.65%
with fewer parameters and FLOPs, showing the effective-
ness of our multi-branch design. The MixConv with a mix
of 3×3, 5×5, 7×7 convolutions in the searching block fur-
ther improves the mIoU by 3.34%. Finally, the lightweight
Transformer provides another gain of 2.56% (71.99% v.s.
74.55%) with only extra 70M FLOPs.

Table 4. Comparisons on COCO keypoint validation set. * indi-
cates the model is pre-trained on the ImageNet dataset. Params
and FLOPs are calculated for the pose estimation network, and
those for human detection and keypoint grouping are not included.

Method Input size Params FLOPs AP APM APL AR

ShuffleNetV1 [89]* 256× 192 1.0M 0.16G 58.5 55.2 64.6 65.1
ShuffleNetV2 [52]* 256× 192 1.3M 0.17G 59.8 56.5 66.2 66.4
MobileNetV2 [62]* 256× 192 2.3M 0.33G 64.6 61.0 71.1 70.7
NAS-CSS [54] 256× 192 2.9M 1.48G 65.9 63.1 70.0 69.3
DA-NAS [19] 256× 192 10.9M 2.18G 68.4 65.5 74.4 75.7
CPN [11] 256× 192 27.0M 6.20G 69.4 − − −
SimpleBaseline-50 [78]* 256× 192 34.0M 8.90G 70.4 67.1 77.2 76.3
HRNet-W32 [73] 256× 192 28.5M 7.10G 73.4 70.2 80.1 78.9
AutoPose [29] 256× 192 − 10.65G 73.6 69.8 79.7 78.1

HR-NAS-A 256× 192 1.7M 0.25G 67.7 65.4 71.1 70.8
HR-NAS-B 256× 192 6.1M 1.35G 73.7 70.2 80.6 79.3

ShuffleNetV1 [89]* 384× 288 1.0M 0.35G 62.2 57.8 69.5 68.4
ShuffleNetV2 [52]* 384× 288 1.3M 0.37G 63.6 59.5 70.7 69.7
MobileNetV2 [62]* 384× 288 2.3M 0.74G 67.3 62.8 74.7 72.8
SimpleBaseline-50 [78]* 384× 288 34.0M 20.02G 72.2 68.1 79.7 77.6
PoseNFS-3 [81] 384× 288 15.8M 14.8G 73.0 − − −
HRNet-W32 [73] 384× 288 28.5M 16.0G 74.9 71.5 80.8 79.3

HR-NAS-A 384× 288 1.1M 0.35G 65.7 62.5 72.1 71.4
HR-NAS-B 384× 288 6.6M 3.72G 75.5 72.6 81.7 79.4

Table 5. Vehicle 3D detection results(AP,%) on the KITTI split1
validation set. All methods are implemented based on the Point-
pillar [40] framework. FLOPs is calculated for 2D RPN network
using an input size of 496× 432.

Method Params FLOPs Moderate Easy Hard

ShuffleNetV2 [52] 1.69M 2.26G 66.73 80.74 61.84
MobileNetV2 [62] 2.49M 6.47G 67.65 82.52 64.22
Pointpillar [40] 4.80M 61.75G 77.12 86.61 72.71

HR-NAS-A 2.13M 3.22G 69.74 83.09 64.89
HR-NAS-B 4.74M 15.65G 78.49 87.62 75.53

Table 6. Ablation study of our search space on the CityScapes se-
mantic segmentation validation set.

Method Params FLOPs mIoU(%) mACC(%) aACC(%)

Single-branch 1.59M 1.81G 66.23 75.57 94.43
Multi-branch 0.82M 1.64G 68.65 78.26 94.80
+MixConv 1.12M 1.86G 71.99 80.33 95.40
+Transformer 2.23M 1.93G 74.55 82.98 95.54

Lightweight Transformer. In Tab. 7, we study the choice
of positional embeddings. It can be seen that using the pro-
posed 2D positional map in the encoder of the Transformer
achieves better performance than using the sinusoidal posi-
tion encoding [72] and the learned position embedding [21].
This may be because our lightweight Transformer has fewer
queries and smaller token dimensions than the other two,
and therefore it is unnecessary to use high dimension rep-
resentation for position information. We also evaluate the
alternative which uses the 2D positional map at both the en-
coder and the decoder; the performance is slightly worse
than the encoder-only option.

The proposed Transformer can be used as a plug-and-
play component. To show this, we add our Transformer
to the Inverted Residual Blocks of two efficient mod-
els ShuffleNetV2 [52] and MobileNetV2 [62], and evalu-

CLS

1 2 3 5 6 9 14 15 21 29 30 40 50 51

7 8 12 16 17 24 31 32 43 52 53

18 2019 27 33 3534 46

4

13 54 5655

28 3937 3836 49 6058 5957

(a) Image classification on ImageNet

COCO

1 2 3 5 6 9 14 15 21 29 30 40 50 51

7 8 12 16 17 24 31 32 43 52 53

18 2019 27 33 3534 46

4

13 54 5655

28 3937 3836 49 6058 5957

(c) Human pose estimation on COCO keypoint

SEG

1 2 3 5 6 9 14 15 21 29 30 40 50 51

7 8 12 16 17 24 31 32 43 52 53

18 2019 27 33 3534 46

4

13 54 5655

28 3937 3836 49 6058 5957

(b) Semantic segmentation on Cityscapes

3DDET

1 2 3 5 6 9 14 15 21 29 30 40 50 51

7 8 12 16 17 24 31 32 43 52 53

18 2019 27 33 3534 46

4

13 54 5655

28 3937 3836 49 6058 5957

(d) 3D object detection on KITTI
Figure 4. Visualization of the searched smaller architectures (i.e. HR-NAS-A) on four different tasks. The area of cyan, red, yellow, green,
and gray sectors indicate the number of 3× 3, 5× 5, 7× 7 convolutional channels, the number of transformer queries, and the number of
removed channels/queries, respectively. Note that if all queries and convolutional channels of a searching block are removed, the searching
block will degenerate into a residual path. For simplicity, we only visualize searching blocks in the parallel module. We can see that our
method is able to find different architectures for different tasks, showing that it can automatically adapt to various tasks.

Table 7. Comparisons (%) of different positional embedding of
Transformer with n = 8 and s = 8 on Cityscapes validation set.
‘Enc’ and ‘Dec’ denote the positional embedding are employed in
the encoder and decoder of the Transformer, respectively. FLOPs
is measured using an input size of 512× 1024.

Input size Params FLOPs mIoU mACC aACC

Baseline 1.120M 1.863G 71.99 80.33 95.40
Sinusoidal position encoding 2.346M 2.131G 71.91 80.38 95.08
Learned position embedding 2.930M 2.236G 72.71 80.88 95.33
2D positional map (Enc only) 2.273M 1.872G 74.22 82.36 95.52
2D positional map (Enc + Dec) 2.278M 1.873G 73.70 81.89 95.47

ate their performance on both ImageNet classification and
Cityscapes segmentation tasks. PSP module [90] is added
as segmentation head to all models. As shown in Tab. 8,
our Transformer improves the two baseline models on both
classification and segmentation tasks.

4.4. Visualization of Searched Networks

We visualized the four smaller models we found on each
of the four benchmarks (i.e. HR-NAS-A) in Fig. 4. We can
observe that our method can find different architectures for
different tasks, showing that it can automatically adapt to
various tasks: (1) In the image classification task and the
3D detection task, at the high-resolution branches (i.e. first
and second branches), the models we found remove most
of the search units; some searching blocks are even com-
pletely removed, as indicated by circles with complete gray
in Fig. 4). The reason is that in these two tasks, global se-
mantic information is more important than local informa-
tion. (2) The model for the segmentation task still retains
computation from the first two branches, as it is important
to keep high resolution imagery for semantic segmentation
tasks. (3) The human pose estimation model mainly uti-
lizes the second and the third branches, which means it may

Table 8. Single-crop top-1 error rates (%) on the ImageNet, and
the mIoU (%) on the cityscapes dataset. All models are trained
from scratch. FLOPs is measured using classification models.

Method Params FLOPs top-1 mIoU

ShuffleNetV2 [52] 2.279M 0.150G 69.5 66.02
ShuffleNetV2 [52] + transformer 2.758M 0.157G 70.1 67.31

MobileNetV2 [62] 3.505M 0.319G 72.0 68.98
MobileNetV2 [62] + transformer 3.770M 0.321G 72.8 70.17

rely more on middle-resolution semantics instead of high-
resolution semantics. (4) Transformers are more used in
the segmentation and the human keypoint estimation tasks,
indicating these dense prediction tasks benefit more from
global contexts.

5. Conclusion

In this paper, we introduce a lightweight and plug-and-
play Transformer that can be easily combined with con-
volutional networks to enrich global contexts for dense
image prediction tasks. We then effectively encode both
the proposed Transformers and convolutions into a well-
designed high-resolution search space to model both global
and multiscale contextual information. A channel/query-
level fine-grained progressive shrinking strategy is applied
to the search space for searching and customizing efficient
models for various tasks. Our searched models achieve
state-of-the-art trade-offs between performance and FLOPs
for three dense prediction tasks and an image classification
task, given only small computational budgets.
Acknowledgements Ping Luo was supported by the Gen-
eral Research Fund of HK No.27208720. Zhiwu Lu was
supported by National Natural Science Foundation of China
(61976220 and 61832017), and Beijing Outstanding Young
Scientist Program (BJJWZYJH012019100020098).

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 4

[2] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.
Segnet: A deep convolutional encoder-decoder architecture
for image segmentation. IEEE TPAMI, 39(12):2481–2495,
2017. 7

[3] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay
Vasudevan, and Quoc Le. Understanding and simplifying
one-shot architecture search. In ICML, pages 550–559, 2018.
3

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020. 2

[5] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. In ICLR, 2020. 1, 3, 6

[6] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. In
ICLR, 2019. 1, 3, 6

[7] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 2,
3, 4

[8] Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George
Papandreou, Barret Zoph, Florian Schroff, Hartwig Adam,
and Jon Shlens. Searching for efficient multi-scale architec-
tures for dense image prediction. In NeurIPS, pages 8699–
8710, 2018. 1, 3

[9] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE TPAMI, 40(4):834–848,
2017. 2

[10] Mark Chen, Alec Radford, Rewon Child, Jeff Wu, Hee-
woo Jun, Prafulla Dhariwal, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In ICML, 2020. 2

[11] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang
Zhang, Gang Yu, and Jian Sun. Cascaded pyramid network
for multi-person pose estimation. In CVPR, pages 7103–
7112, 2018. 7

[12] Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng,
Chunhong Pan, and Jian Sun. Detnas: Neural architecture
search on object detection. arXiv preprint arXiv:1903.10979,
1(2):4–1, 2019. 3

[13] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever.
Generating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019. 2

[14] Xiangxiang Chu, Bo Zhang, Jixiang Li, Qingyuan Li, and
Ruijun Xu. Scarletnas: Bridging the gap between scalabil-
ity and fairness in neural architecture search. arXiv preprint
arXiv:1908.06022, 2019. 6

[15] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fair-
nas: Rethinking evaluation fairness of weight sharing neural

architecture search. arXiv preprint arXiv:1907.01845, 2019.
6

[16] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
pages 3213–3223, 2016. 6

[17] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
policies from data. arXiv preprint arXiv:1805.09501, 2018.
6

[18] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmentation
with a reduced search space. In CVPRW, pages 702–703,
2020. 6

[19] Xiyang Dai, Dongdong Chen, Mengchen Liu, Yinpeng
Chen, and Lu Yuan. Da-nas: Data adapted pruning
for efficient neural architecture search. arXiv preprint
arXiv:2003.12563, 2020. 1, 3, 6, 7

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255. Ieee, 2009. 6

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 2, 7

[22] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 6

[23] Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang,
Zhiwu Lu, Jingdong Wang, and Ping Luo. Learning versatile
neural architectures by propagating network codes. arXiv
preprint arXiv:2103.13253, 2021. 1, 2

[24] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2

[25] Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi,
Mingxing Tan, Yin Cui, Quoc V Le, and Xiaodan Song.
Spinenet: Learning scale-permuted backbone for recognition
and localization. In CVPR, pages 11592–11601, 2020. 3, 6,
7

[26] Jiemin Fang, Yuzhu Sun, Qian Zhang, Yuan Li, Wenyu Liu,
and Xinggang Wang. Densely connected search space for
more flexible neural architecture search. In CVPR, pages
10628–10637, 2020. 1

[27] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, pages 3354–3361, 2012. 6

[28] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn:
Learning scalable feature pyramid architecture for object de-
tection. In CVPR, pages 7036–7045, 2019. 3

[29] Xinyu Gong, Wuyang Chen, Yifan Jiang, Ye Yuan, Xian-
ming Liu, Qian Zhang, Yuan Li, and Zhangyang Wang. Au-
topose: Searching multi-scale branch aggregation for pose
estimation. arXiv preprint arXiv:2008.07018, 2020. 3, 7

[30] Ronghao Guo, Chen Lin, Chuming Li, Keyu Tian, Ming Sun,
Lu Sheng, and Junjie Yan. Powering one-shot topological
nas with stabilized share-parameter proxy. In ECCV, 2020.
6

[31] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot
neural architecture search with uniform sampling. In ECCV,
2020. 3, 6

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 4

[33] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In ICCV, pages 1314–1324, 2019. 3, 6, 7

[34] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In CVPR, pages 7132–7141, 2018. 2

[35] Yibo Hu, Xiang Wu, and Ran He. Tf-nas: Rethinking three
search freedoms of latency-constrained differentiable neural
architecture search. In ECCV, 2020. 6

[36] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kil-
ian Q Weinberger. Condensenet: An efficient densenet us-
ing learned group convolutions. In CVPR, pages 2752–2761,
2018. 6

[37] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. Tinybert: Distill-
ing bert for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019. 2

[38] Xiaojie Jin, Jiang Wang, Joshua Slocum, Ming-Hsuan
Yang, Shengyang Dai, Shuicheng Yan, and Jiashi Feng.
Rc-darts: Resource constrained differentiable architecture
search. arXiv preprint arXiv:1912.12814, 2019. 3

[39] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. Pointrend: Image segmentation as rendering. In
CVPR, pages 9799–9808, 2020. 2

[40] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In CVPR, pages
12697–12705, 2019. 7

[41] Hanchao Li, Pengfei Xiong, Haoqiang Fan, and Jian Sun.
Dfanet: Deep feature aggregation for real-time semantic seg-
mentation. In CVPR, pages 9522–9531, 2019. 2, 6, 7

[42] Liam Li and Ameet Talwalkar. Random search and repro-
ducibility for neural architecture search. In Uncertainty in
Artificial Intelligence, pages 367–377. PMLR, 2020. 6, 7

[43] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He,
Weiran Huang, Kechen Zhuang, and Zhenguo Li. Darts+:
Improved differentiable architecture search with early stop-
ping. arXiv preprint arXiv:1909.06035, 2019. 1

[44] Peiwen Lin, Peng Sun, Guangliang Cheng, Sirui Xie, Xi Li,
and Jianping Shi. Graph-guided architecture search for real-
time semantic segmentation. In CVPR, pages 4203–4212,
2020. 1, 3, 6, 7

[45] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755. Springer, 2014. 6

[46] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-
deeplab: Hierarchical neural architecture search for semantic
image segmentation. In CVPR, pages 82–92, 2019. 1, 2, 3,
6, 7

[47] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
differentiable architecture search. In ICLR, 2019. 1, 3, 5

[48] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang
Deng, and Qi Ju. Fastbert: a self-distilling bert with adaptive
inference time. arXiv preprint arXiv:2004.02178, 2020. 2

[49] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In ICCV,
pages 2736–2744, 2017. 5

[50] Shao-Yuan Lo, Hsueh-Ming Hang, Sheng-Wei Chan, and
Jing-Jhih Lin. Efficient dense modules of asymmetric convo-
lution for real-time semantic segmentation. In Proceedings
of the ACM Multimedia Asia, pages 1–6, 2019. 7

[51] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,
Kalyanmoy Deb, Erik Goodman, and Wolfgang Banzhaf.
Nsga-net: A multi-objective genetic algorithm for neural ar-
chitecture search. arXiv preprint arXiv:1810.03522, 2018.
3

[52] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In ECCV, pages 116–131, 2018. 6, 7, 8

[53] Jieru Mei, Yingwei Li, Xiaochen Lian, Xiaojie Jin, Linjie
Yang, Alan Yuille, and Jianchao Yang. Atomnas: Fine-
grained end-to-end neural architecture search. In ICLR,
2020. 1, 3, 5, 6

[54] Vladimir Nekrasov, Hao Chen, Chunhua Shen, and Ian Reid.
Fast neural architecture search of compact semantic segmen-
tation models via auxiliary cells. In CVPR, pages 9126–
9135, 2019. 1, 3, 7

[55] Marin Orsic, Ivan Kreso, Petra Bevandic, and Sinisa Segvic.
In defense of pre-trained imagenet architectures for real-time
semantic segmentation of road-driving images. In CVPR,
pages 12607–12616, 2019. 7

[56] Hyojin Park, Youngjoon Yoo, Geonseok Seo, Dongyoon
Han, Sangdoo Yun, and Nojun Kwak. C3: Concentrated-
comprehensive convolution and its application to semantic
segmentation. arXiv preprint arXiv:1812.04920, 2018. 7

[57] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eu-
genio Culurciello. Enet: A deep neural network architec-
ture for real-time semantic segmentation. arXiv preprint
arXiv:1606.02147, 2016. 7

[58] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training, 2018. 2

[59] Prajit Ramachandran, Barret Zoph, and Quoc V Le.
Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017. 6

[60] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc Le, and Alex Kurakin.
Large-scale evolution of image classifiers. arXiv preprint
arXiv:1703.01041, 2017. 3

[61] Xingkai Ren, Ronghua Shi, and Fangfang Li. Distill bert to
traditional models in chinese machine reading comprehen-
sion. In AAAI, pages 13901–13902, 2020. 2

[62] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, pages 4510–4520,
2018. 3, 6, 7, 8

[63] Albert Shaw, Daniel Hunter, Forrest Landola, and Sammy
Sidhu. Squeezenas: Fast neural architecture search for faster
semantic segmentation. In ICCVW, 2019. 1, 3, 7

[64] Albert Shaw, Wei Wei, Weiyang Liu, Le Song, and Bo Dai.
Meta architecture search. In NeurIPS, pages 11227–11237,
2019. 1

[65] Mennatullah Siam, Mostafa Gamal, Moemen Abdel-Razek,
Senthil Yogamani, and Martin Jagersand. Rtseg: Real-time
semantic segmentation comparative study. In ICIP, pages
1603–1607. IEEE, 2018. 7

[66] David R So, Chen Liang, and Quoc V Le. The evolved trans-
former. arXiv preprint arXiv:1901.11117, 2019. 2

[67] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios
Lymberopoulos, Bodhi Priyantha, Jie Liu, and Diana Mar-
culescu. Single-path nas: Designing hardware-efficient con-
vnets in less than 4 hours. In ECML-PKDD, pages 481–497.
Springer, 2019. 3

[68] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In CVPR, pages 2820–2828, 2019. 3, 6

[69] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In ICML,
pages 6105–6114, 2019. 6

[70] Mingxing Tan and Quoc V Le. Mixconv: Mixed depthwise
convolutional kernels. arXiv preprint arXiv:1907.09595,
2019. 3, 5, 6

[71] Sercan Türkmen and Janne Heikkilä. An efficient solution
for semantic segmentation: Shufflenet v2 with atrous sepa-
rable convolutions. In Scandinavian Conference on Image
Analysis, pages 41–53. Springer, 2019. 7

[72] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, pages
5998–6008, 2017. 2, 3, 4, 7

[73] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution represen-
tation learning for visual recognition. IEEE TPAMI, 2020. 1,
2, 4, 7

[74] Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020. 2

[75] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In CVPR, pages 7794–
7803, 2018. 2

[76] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
CVPR, pages 10734–10742, 2019. 1, 6

[77] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan,
Peizhao Zhang, Masayoshi Tomizuka, Kurt Keutzer, and Pe-
ter Vajda. Visual transformers: Token-based image repre-
sentation and processing for computer vision. arXiv preprint
arXiv:2006.03677, 2020. 2

[78] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines
for human pose estimation and tracking. In ECCV, pages
466–481, 2018. 7

[79] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
Snas: stochastic neural architecture search. arXiv preprint
arXiv:1812.09926, 2018. 1

[80] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel
connections for memory-efficient differentiable architecture
search. arXiv preprint arXiv:1907.05737, 2019. 3

[81] Sen Yang, Wankou Yang, and Zhen Cui. Pose neural fabrics
search. arXiv preprint arXiv:1909.07068, 2019. 7

[82] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,
Gang Yu, and Nong Sang. Bisenet: Bilateral segmenta-
tion network for real-time semantic segmentation. In ECCV,
pages 325–341, 2018. 7

[83] Jiahui Yu and Thomas Huang. Autoslim: Towards one-
shot architecture search for channel numbers. arXiv preprint
arXiv:1903.11728, 2019. 6

[84] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xi-
aodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling
up neural architecture search with big single-stage models.
In ECCV, 2020. 3, 6

[85] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. Slimmable neural networks. arXiv preprint
arXiv:1812.08928, 2018. 5

[86] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. 6

[87] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang,
Xiaogang Wang, Ambrish Tyagi, and Amit Agrawal. Con-
text encoding for semantic segmentation. In CVPR, pages
7151–7160, 2018. 1

[88] Xiong Zhang, Hongmin Xu, Hong Mo, Jianchao Tan, Cheng
Yang, and Wenqi Ren. Dcnas: Densely connected neural
architecture search for semantic image segmentation. arXiv
preprint arXiv:2003.11883, 2020. 2, 3

[89] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In CVPR, pages 6848–6856, 2018.
6, 7

[90] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
CVPR, pages 2881–2890, 2017. 8

[91] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In CVPR, pages 633–641, 2017. 6

[92] Yanqi Zhou, Peng Wang, Sercan Arik, Haonan Yu, Syed Za-
wad, Feng Yan, and Greg Diamos. Epnas: Efficient progres-
sive neural architecture search. BMVC, 2019. 1

[93] Barret Zoph and Quoc V. Le. Neural architecture search with
reinforcement learning. In ICLR, 2017. 2

