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Abstract

In this paper, we provide theoretical results of estimation bounds and excess
risk upper bounds for support vector machine (SVM) with sparse multi-kernel
representation. These convergence rates for multi-kernel SVM are established by
analyzing a Lasso-type regularized learning scheme within composite multi-kernel
spaces. It is shown that the oracle rates of convergence of classifiers depend on
the complexity of multi-kernels, the sparsity, a Bernstein condition and the sample
size, which significantly improve on previous results even for the additive or linear
cases. In summary, this paper not only provides unified theoretical results for multi-
kernel SVMs, but also enriches the literature on high-dimensional nonparametric
classification.

1 Introduction

SVM was first introduced in [45] and has became one of the most popular machine learning algorithms
in the past two decades. The standard SVM classification consists of two main ingredients, namely
the hinge loss and the kernel embedding. The hinge loss is used to model the learning target and
can often generate sparse solutions [38], while the kernel embedding is used to model nonlinear
relationship between input features and response [39]. In [38], they provide a detailed overview of
SVMs and related learning theory. More work on theoretical perspective of SVM have also been
developed in recent years, such as [12, 53, 36, 33, 30, 24], among many others.

It is known that the performance of kernel machines largely depends on the data representation via
the choice of kernel function [34, 16, 19, 28, 26, 48, 49]. Towards this direction, many approaches
have been proposed for kernel selection under different frameworks. For example, Micchelli et
al.[34] attempt to find an optimal kernel from a prescribed convex set of basis kernels; Wu et
al.[46] optimize the scale parameter among various Gaussian kernels; and Ong et al.[35] study
hyperkernels on the space of kernels and alternative approaches, including kernels selection by
DC programming and semi-infinite programming. In particular, the seminal work of [22] proposes
the so-called multiple kernel learning (MKL) method, learning SVM and a linear combination of
kernels simultaneously, which has received a lot of attention in recent years [3, 50, 20, 19, 16,
23, 17, 27, 25, 29, 51]. To be precise, given a finite (possibly large) dictionary of symmetric
positive semidefinite kernels {Km : m = 1, 2, ...,M} , one can try to find an ‘ideal’ kernel K as a
convex combination of the kernels from a predefined family of potential candidates: K ∈ K :={∑M

m=1 θmKm :
∑M
m=1 θm = 1, θm ≥ 0

}
. This combination of multiple kernels corresponds to a
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multi-kernel hypothesis space for learning:

HM :=

{
M∑
m=1

fm(x) : fm ∈ HKm , x ∈ X

}
,

whereHKm is a reproducing kernel Hilbert space (RKHS) induced by the kernel Km, as defined in
Section 2. Given the learning rule, θm’s also need to be estimated automatically from the training
data.

Besides flexibility enhancement, other justifications of MKL have also been proposed; such as each
kernel function corresponds to different information source (e.g. text, image, gene), or classifiers
from different spaces (corresponding to different kernels) are averaged to achieve better classification
accuracy [8]. Under many of these situations, the number of candidate kernels M is often very large,
even larger than the sample size n in some extreme cases. Interestingly, when one-dimensional linear
(or additive) kernels are used and M is the dimensionality of covariates with M ≥ n, MKL reduces
to high-dimensional linear (or additive) models, which have been widely studied in the statistics and
machine learning literature [15, 6, 32].

Given the large number of kernels, it is common that not all the kernels are significantly relevant to
the response. To avoid impairing generalization performance [54] and enhance interpretability, many
redundant kernels should be removed accordingly. In view of generalization ability, interpretability
and computational feasibility, a more parsimonious and flexible algorithm for MKL is to generate a
sparse linear combination of kernels based on the training data, namely sparse MKL. From a statistical
point of view, sparse MKL can be interpreted as a model selection task, and can also be viewed as an
extension of sparse linear models or sparse additive models. In other words, sparse MKL provides an
appropriate route to tackle the kernel learning issues in machine learning and the high-dimensional
issues in statistics.

In literature, many regularized learning algorithms based on different regularization terms have been
investigated in multi-kernel regression [3, 20, 18, 37, 41]. Particularly, in [37, 41], they established
the optimal rates of convergence for the least square approaches in a related setting. In multi-kernel
classification, Christmann and Hable [12] gave consistency and robustness property of non-sparse
additive SVM when M is fixed; In [36, 42], they provided upper bounds on the estimation error and
the excess risk in high-dimensional linear case or with finite number of basis functions. In summary,
all the aforementioned work either focus on the regression problem with the quadratic losses, or only
consider the parametric case for high-dimensional SVM.

The main focus of this paper is on a more challenging case with sparse multi-kernel approximation
for SVM. That is, while the total number of kernels may be larger than the sample size, only a small
number of kernels are needed to represent/approximate the target function, so that such a learning
problem in the sense of approximation is sparse. Let X be a random variable of the input space X ,
and Y ∈ Y = {−1,+1} be the response. Define the theoretical oracle predictor of the classical SVM
withinHM as

f∗ = arg min
f∈HM

E(f), with E(f) := E[φ(Y f(X))]. (1)

Here φ(t) := (1−t)+ is the hinge loss and the expectation is taken with respect to the joint distribution
ρ defined on X × Y . In the sparse setting, one often assumes that f∗ has an additive and sparse
representation withinHM , namely, f∗ =

∑
m∈S f

∗
m with an unknown subset S ⊂ {1, 2, ...,M} and

f∗m ∈ Hm with ‖f∗m‖Km ≤ 1 for all m ∈ S. Of primary interest is the case with s := |S| � M .
Note that f∗ here is an optimal estimator withinHM , as opposed to the classical Bayes decision rule
defined over all the measurable functions. Actually, the minimizer of the expected risk corresponding
to the hinge loss is not continuous against the conditional probability [5].

The main contribution of this paper is to develop a set of theoretical results on multi-kernel SVM and
the rates of convergence for nonparametric classification within the multi-kernel setting, including
high-dimensional linear or additive classification as special cases. This paper provides refined error
bounds for the excess risk, defined as E(f̂) − E(f∗), of the proposed estimator f̂ , as well as its
estimation error ‖f̂ − f∗‖2. The proposed estimator in (5) is based on a regularization of the hinge
loss with two fold `1 penalty terms, where one is used to control nonparametric sparsity and the other
is to control functional smoothness. Particularly, Corollary 1 shows that with high probability, the
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excess risk of the proposed estimator is upper bounded by

s

Γ2(S, ρX)
O
(
n−

1
1+τ +

logM

n

) κ
2κ−1

under some regularity conditions, where τ corresponds to the spectral decay of each RKHS and is
used to characterize functional complexity of kernels, κ is called the Bernstein parameter that reflects
the low-density level of decision boundary, and Γ(S, ρX) is used to characterize correlation structure
among multiple RKHS’s. The same rate also holds true for ‖f̂ − f∗‖2κ2 following the Bernstein
condition and the established results on the excess risk.

Furthermore, we establish the oracle rate of the relative misclassification error of f̂ in Theorem
2, which consists of the same rate as the excess risk of the estimator plus some additional sparse
approximation error. By using this specific form of RKHS’s, we can incorporate many existing results
as special cases of MKL for SVMs, and more importantly, several existing results can be improved
by our derived ones. The detailed comparison between our general results with existing results is
conducted in Section 3.3.

Notations. Define the L2 norm of a function f by ‖f‖22 =
∫
X
|f(x)|2dρX(x) with marginal

distribution ρX . Given sample points {xi}ni=1, ‖fm‖2n := 1
n

∑n
i=1 fm(xi)

2 and ‖fm‖n is viewed as
the empirical L2-norm. a ' bmeans that there are two positive constants c, C such that ca ≤ b ≤ Ca.
Also, a = O(b) means that there is some positive constant C such that a ≤ Cb in probability, and
a = o(b) means that a/b→ 0 in probability. To ease the notations, we write [M ] := {1, ...,M}.

2 Preliminaries and Algorithms

Given a compact set X , we denote a positive semidefinite kernel on X ×X , i.e., a symmetric function
K : X × X → R satisfying

∑n
i,j=1 cicjK(xi, xj) ≥ 0 for any x1, ..., xn in X and c1, ..., cn ∈ R.

As showed in [2], a positive semidefinite kernel on X is associated with a unique Hilbert space
HK consisting of functions on X , andHK is called a RKHS associated with the kernel K. RKHS
is known for its reproducing property, i.e., for any f ∈ HK and x ∈ X , f(x) = 〈f,Kx〉K with
Kx = K(x, ·). Another key property of RKHS is the spectral theorem, which assures that K admits
the following eigen-decomposition:

K(x, x′) =
∑
`≥1

µ`ψ`(x)ψ`(x
′), for any x, x′ ∈ X , (2)

where µ1 ≥ µ2 ≥ ... ≥ 0 are its eigenvalues and {ψ` : ` ≥ 1} are the corresponding eigenfunctions,
leading to an orthogonal basis in L2(ρX). These two fundamental properties of RKHS will be the
foundation of our theoretical analysis.

To characterize functional complexities, we first introduce several basic facts of the empirical
processes defined in RKHS. On basis of (2), for any δ ∈ (0, 1], we define

ωn(δ) :=

(
1

n

n∑
`=1

(
µ` ∧ δ2

))1/2

,

where a ∧ b means min{a, b}. For some constant A > 0, we define a quantity associated with ωn(δ)
as

ε(K) := inf

{
ε ≥

√
A logM

n
: ωn(δ) ≤ εδ + ε2,∀ δ ∈ (0, 1]

}
.

The quantity ε(K) plays a key role in bounding the excess risk in RKHS [40, 20]. Given appropriate
decay of µ`, the upper bound of ε(K) can be derived explicitly in Section 3.1.

Given the training sample {Xi, Yi}ni=1 i.i.d. from X ×Y , the standard SVM with a single kernel [45]
solves the following optimization task

min
f∈HK

{
1

n

n∑
i=1

φ(Yif(Xi)) + λ‖f‖2K

}
, (3)
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where λ is a regularization parameter that balances the tradeoff between the empirical risk and the
function complexity. The theoretical properties of the standard SVM has been extensively studied in
literature; see the earlier work of [11, 39, 7].

In the context of MKL, the sparse multi-kernel SVM [34] equips the empirical hinge loss with the `1
penalty,

min
f=

∑M
m=1 fm, fm∈HKm

{
1

n

n∑
i=1

φ(Yif(Xi)) + λ

M∑
m=1

‖fm‖Km

}
. (4)

This type of sparse MKL method has been studied extensively in [34, 3, 20, 16], and among others.
Essentially, it can be regarded as an infinite-dimensional version of the Lasso-type penalization [43].

In this paper, we present a different approach from (4) to formulate the sparse multi-kernel SVM.
For simplicity, we assume that supx∈X |Km(x, x)| ≤ 1 for all m ∈ [M ]. We use a new L1-type
regularization term partially inspired by the additive mean models [32]. Denote the bounded ball
ofHM by BM :=

{
f =

∑M
j=1 fm : fm ∈ HKm , ‖fm‖Km ≤ 1

}
, the regularization term we adopt

for the multiple-kernel SVM combines the empirical L2-norms and RKHS-norms. Specifically, the
proposed sparse multi-kernel SVM is formulated as

f̂ =

M∑
m=1

f̂m := arg min
f∈BM

{
1

n

n∑
i=1

φ(Yif(Xi)) +

M∑
m=1

λm

√
‖fm‖2n + γm‖fm‖2Km

}
, (5)

where ‖fm‖n is used to enforce the sparsity in f̂ , whereas ‖fm‖Km is used to enforce the smoothness
of each f̂m. Here (λm, γm)Mm=1 are the regularization parameters, which will be specified in
our theoretical results. By finite representation of reproducing kernel, each additive estimator
fm(·) =

∑n
i=1 α

m
i Km(xi, ·) for all m = 1, ...,M . A direct computation leads to√

‖fm‖2n + γn‖fm‖2K =

√
(αm)T K̃mαm

where K̃m =
K2
m

n + γnKm. Here Km is the kernel matrix induced by Km at points {xi}ni=1. Note
that K̃m is a semi-definite matrix, which can be written as K̃m = A2 with some matrix A. Hence,
our original learning scheme in Eq.(5) is transformed into a group Lasso optimization [32], and there
exists several efferent numerical algorithms for solving it, such as proximal methods and coordinate
descent ones.

This penalty term significantly differs from other sparsity penalties for nonparametric models in
literature, such as

∑M
m=1 ‖fm‖Km [22] and

∑M
m=1(λ1‖fm‖n +λ2‖fm‖Km) [20, 37]. Although the

former penalty often generates sparse solutions, it is difficult to establish its theoretical results, due
to the fact that the ‖ · ‖K-norm cannot fully reflect the marginal distribution information. The latter
penalty has been proved to enjoy some theoretical properties in [37], which is equivalent to the mixed
L1-norm

(∑M
m=1 λm

√
‖fm‖2n + γm‖fm‖2Km

)
in (5). Theoretically, based on empirical processes

theory, our proposed approach can also achieve improved learning rates, like the penalized method
with the penalty

∑M
m=1(λ1‖fm‖n + λ2‖fm‖Km), which has been considered in [20, 31, 37] and

others.
Remark 1. In general, ‖f̂‖n = 0 does not imply f = 0. However, in the case of any kernel-based
minimization problem, ‖f̂‖n = 0 always implies f = 0. Based on the reproducing property of
Mercer kernel, f(x) = 〈f,Kx〉K for any f ∈ HK , where HK is a reproducing kernel Hilbert space.
In fact, if ‖f̂‖n = 0 holds, that is, f̂(xi) = 0 for all i = 1, . . . , n, by the reproducing property we
have 〈f̂ ,Kxi〉K = 0 for all i. Hence, f̂ is orthogonal to the subspace Sn := span{Kx1 , ...,Kxn}.
On the other hand, using the reproducing property again, any solution f̂ of kernel-based minimization
problems has a finite representation within Sn. So we conclude f̂ = 0.
Remark 2. The use of the mixed norm regularization is mainly motivated by the following fact: i)
our proposed estimation with the mixed norm can lead to very sharp learning rates; ii) the empirical
norm ‖ · ‖n used for sparsity is much milder than ‖ · ‖K .

There exists several related work on multi-kernel SVM. Under the setting of one-dimensional additive
kernels, Christmann and Hable [12] constructed kernels for additive SVM and provided consistent and
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statistically robust estimators under the fixed dimensional and non-sparse setting. Zhao and Liu [53]
proposed a group Lasso penalty by means of finite-bases approximation to a RKHS, and particularly
they developed an efficient accelerated proximal gradient descent algorithm and established oracle
properties of the SVM under sparse ultra-high dimensional setting (e.g. M = o(en)). However, the
additive SVM model may suffer from the lack of algorithmic flexibility and underfitting especially
when the true model involves interaction effects. Similar concerns have been raised towards linear
SVM as in [55, 21, 52].

Note that in the past decade, a lot of work on general MKL with logarithmic dependence on M
have emerged [18, 41, 20], yet their analysis requires the loss function to be strongly convex, which
rules out the commonly-used hinge loss for SVM. We also note that [13] provided an upper bound
Op(

√
logM/n) of the Rademacher complexity with the L1-norm constraint, which may lead to the

same decay rate of the excess risk of SVM. However, this rate is not tight in general, since it is known
that the fast rate of order 1/n can be attained for the linear case [11, 44].

This paper primarily focuses on the non-asymptotic analysis of the proposed sparse multi-kernel
SVM method in (5) with an exponential number of kernels. Under the best ideal settings, the relative
classification error of the proposed method is of near-oracle rate O(s log(M)/n), as if we knew the
true sparsity in advance. Moreover, the method is adaptive to the sparsity of the learning problem and
the margin parameter. In our proof, we have to face some technical challenges, such as dealing with
non-smoothness of the hinge loss, functional complexities and NP-dimensionality.

3 Main Results

This section quantifies the asymptotic behavior of the proposed sparse multi-kernel SVM (5) in
estimating the oracle predictor f∗ in (1). Its asymptotic convergence rates are established in terms of
both generalization error and estimation error.

Assumption A (Bernstein condition). There exist universal constants c0 > 0 and κ ≥ 1, such that

E(f)− E(f∗) ≥ c0‖f − f∗‖2κ2 , for all f ∈ BM .

Assumption A is a lower bound for the hinge excess risk in term of the L2(ρX) norm, as a strong
identification condition of the population quantity with the hinge loss. The Bernstein condition stems
from [4] and it has been verified for the hinge loss in [1]. Particularly, for linear SVM, it has been
verified in [36] that the Bernstein condition holds with κ = 1, leading to the fast learning rate. Related
to the Bernstein condition, a more standard margin condition in [42] has been commonly assumed in
literature, where E(f)−E(fc) ≥ c0‖f − fc‖2κ1 , and fc is the minimizer of the misclassification error
over all possible measurable functions. As a consequence, the Bernstein condition is more stringent
than the standard margin condition, and detailed discussion is referred to Proposition 8.3 of [1].

Since the complexity of a RKHS is determined by the decay rate of the eigenvalues µ`’s [39], we
now introduce the following spectral condition for the subsequent analysis.

Assumption B (Spectral condition). There exist a sequence of 0 < τm < 1 and a universal constant
c1 > 0, such that

µ
(m)
` ≤ c1`−1/τm , ∀ ` ≥ 1, m ∈ [M ]. (6)

Eq.(6) means the decay rate of the eigenvalues of kernel is polynomial. Note that τm < 1 is a very
weak condition, due to the relation that

∑
`=1 µ

(m)
` = E[Km(X,X)] ≤ 1. For example, if ρX is the

Lebesgue measure on [0, 1], it is known that µ(m)
` � `−2α for the Sobolev classHKm =Wα

2 with
α > 1

2 . Indeed, spectral condition has a close quantitative relationship with the entropy number of
the RKHS under mild conditions; see [40] for details.

Assumption C (Sup-norm condition). For the sequence of 0 < τm < 1 given in Assumption B, there
exists some universal constant c2 > 0, such that

‖g‖∞ ≤ c2‖g‖1−τm2 ‖g‖τmKm , ∀ g ∈ HKm , m ∈ [M ].

As pointed out in [40], under some mild conditions on HKm’s, Assumption C is equivalent to the
spectral decay, as stated in Assumption B.
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For some constant b > 0, we define a restricted subset ofHM by

FbS =

{
f ∈ BM :

M∑
m=1

λm

√
‖fm − f∗m‖22 + ε2(Km)‖fm − f∗m‖2Kj

≤ b
∑
m∈S

λm

√
‖fm − f∗m‖22 + ε2(Km)‖fm − f∗m‖2Kj

}
.

The set FbS is a cone in the spaceHM , where the components corresponding to j ∈ S dominate the
remaining ones.

The following quantity is also crucial in our theoretical analysis, which is used to describe how
‘dependent’ these different RKHS’s are. Particularly,

Γ(S; ρX) := sup

γ > 0 : γ

(∑
m∈S
‖fm − f∗m‖22

)
≤

∥∥∥∥∥
M∑
m=1

(fm − f∗m)

∥∥∥∥∥
2

2

, (f1, ..., fM ) ∈ FbS

 .

We can regard Γ(S; ρX) as a generalized correlation between the components corresponding to j ∈ S
and j ∈ Sc, respectively.

Assumption D (Correlation condition). There exists some universal constant c3, such that

Γ(S; ρX) > c3 > 0.

Loosely speaking, this represents the correlation among RKHS’s over the cone set where the compo-
nents within the relevant indices S well “dominate" the remaining ones. Lemma 1 in [41] shows that
Assumption D is related to two geometric quantities. In fact, Assumption D has been widely used for
various sparse problems, such as [10] and [6] for linear models, and [20] and [41] for sparse MKL
with the quadratic loss.

Remark. Assumptions A and D imply that c1/κ0 c3
∑
m∈S ‖fm − f∗m‖22 ≤

(
E(f)− E(f∗)

)1/κ
over

FbS , which is sufficient for deriving most of our results except for the estimation error. We also
observe that, for the high-dimensional linear SVM, the restricted eigenvalue condition in [36] implies
the above conclusion.

3.1 Oracle Rates

When the oracle predictor f∗ defined over HM is sparse, we now state the upper bounds on the
excess risk and the estimation error of the proposed multi-kernel SVM in (5). We allow the number
of kernels M and the number of active kernels s increases with the sample size n.
Theorem 1. Suppose that Assumptions A, C and D hold, and all the following constraints are
satisfied: 2Mε(Km) ≤ eM , λm ≥ 4C0C1ε(Km) and γm ≥ 4ε2(Km)/C2

0 for all m ∈ [M ]. Then
with probability at least 1− 4M−A, the estimated `1-norm SVM function f̂ satisfies

E(f̂)− E(f∗) ≤ max


(

4
√

2c0C0

Γ(S, ρX)

) 2κ
2κ−1

(∑
m∈S

λ2
m

) κ
2κ−1

, 32
∑
m∈S

λm
√
γm

 .

Additionally, there also holds

c0‖f̂ − f∗‖2κ2 ≤ max


(

4
√

2c0C0

Γ(S, ρX)

) 2κ
2κ−1

(∑
m∈S

λ2
m

) κ
2κ−1

, 32
∑
m∈S

λm
√
γm

 ,

with the same probability as above. Here A, C0 are positive constants specified in Lemma 1, and C1

specified in Proposition 1 may depend on A and c2.

The technical proof of Theorem 1 is given in Appendix A. It is easy to check that Theorems 1 also
holds if one replaces M in the by an arbitrary M̃ ≥M such that log M̃ ≥ 2 log log n. In this case,
the probability bounds in the theorems become 1 − 4M̃−A. It also has a number of corollaries,
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obtained by specifying particular choices of kernels. As Assumption B does not require a lower
bound of the spectral decay, so all the finite-dimensional RHKS’s, Sobolev classes and Gaussian
kernels are covered in our settings. We here only present a corollary for the RKHS’s with infinite
eigenvalues with decay rate as in Assumption B. In this case, the upper bound of ε(Km) is given by

ε(Km) '

{√
logM

n
∨ n−

1
2(1+τm)

}
.

In particular, this type of scaling covers Sobolev spaces, consisting of functions with b 1
2τm
c derivatives.

Up to some constants, we now present a direct corollary from Theorem 1 in a homogeneous setting.

Remark 3. (C0, C1) are two constants independent of n,M or s. Their definitions rely on the result
of and Proposition 5 in Proposition 5 in [20], where their constant did not give an explicit form. So,
we can not give a more explicit form on (C0, C1). Since γn = λ2

n in our theory, there is no additional
hyperparameter to be optimized. To explain the role of two hyperparameters, we rewrite the mixed
penaltation with two different parameters as:

λn

√
‖fm‖2n + γn‖fm‖2K =

√
βn‖fm‖2n + θn‖fm‖2K .

We see from the above equation that, βn is used to control sparsity, while θn is used to control
functional smoothness, due to the fact that θn is a smaller order of βn, precisly, θn = β2

n.

Corollary 1. Under the same conditions of Theorem 1 and Assumption B holds in that each kernel
with eigenvalues decays at rate µ(m)

` = O(`−1/τ ) for some common τ < 1. Then any solution f̂ to
(5) with λm ' ε(Km) and γm ' ε2(Km) for all m ∈ [M ] satisfies

max
{
‖f̂ − f∗‖2κ2 , E(f̂)− E(f∗)

}
=

s

Γ2(S, ρX)
O

(
n−

1
1+τ +

logM

n

) κ
2κ−1

,

with probability at least 1− 4M−A. Specially for κ = 1, we have

max
{
‖f̂ − f∗‖22, E(f̂)− E(f∗)

}
=

s

Γ2(S, ρX)
Op

(
n−

1
1+τ +

logM

n

)
.

Corollary 1 considers the homogeneous setting that all the RKHS’s have the same complexities,
denoted by the parameter τ in Assumption B. For the Gaussian kernel and the typical case with
κ = 1, the parameter τ is close to zero and thus the excess risk of our estimator attains the order
Op(s logM/n) up to the term Γ(S, ρX), which is the minimax rate of the least square parametric
regression; see [37] for details.

It is worth noting that, the choices of the regularization parameters (λm, γm) are adaptive to the
sparsity and the margin, whereas the sparsity parameter s and the Bernstein parameter κ are not needed
to learn the proposed estimator. Moreover, as stated in [20], τm can be replaced by its empirical
estimator based on K = (Km(xl, xk))nl,k=1, this further implies that we can define two data-driven
regularization parameters instead of (λm, γm). Here we omit the details to avoid repetition.

Remark 4. In view of the popularity of SVM in machine learning, this paper focuses on theoretical
investigation on the hinge loss with a mixed functional norm under multi-kernel setting. In fact, the
current technical analysis can be easily extended to any Lipschitz loss case, e.g., the Huber loss and
the quantile loss used for robust methods. Yet we think this is also beyond the focus of this paper.

3.2 Relative Classification Error

The goal of a binary classification procedure is to predict the label Y ∈ {−1, 1} given the value of
X . A binary classifier f : X → {−1, 1} is a function from X to Y which divides the input space X
into two classes. Let us split ρ(X,Y ) = ρX(X)× P(Y |X), where ρX is the marginal distribution
on X and P(·|x) is the conditional probability measure given X . The efficiency of a binary classifier
f is measured by the so-called misclassification error

R(f) := P[f(X) 6= Y ] =

∫
X
P[Y 6= f(x)|x]dρX(x).
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It is known that fc(x) = sgn(2η(x) − 1) is a minimizer of R(f) over all measurable functions,
where η(x) = P(Y = 1|X = x) is the conditional probability of Y = 1 given x. Thus, to assess the
classification performance of a classifier f , its relative classification error, defined asR(f)−R(fc),
is of some significance.

In empirical risk minimization, the optimization of misclassification error is difficult due to its
non-convexity (i.e. 0/1 loss), and a common strategy is to find a surrogate convex loss to replace
the non-convex 0/1 loss, such as the hinge loss, the logistic loss, or the quadratic loss. Therefore, to
quantify the classification error of a SVM classifier, it is natural to ask for the connection between
the hinge loss and the 0/1 loss. Recall from Theorem 9.21 in [14], for any measurable function
f : X → R, the following inequality holds

R(sgn(f))−R(fc) ≤ E(f)− E(fc). (7)

Note that our general results are on the smooth function f∗ rather than on fc, and then it is often
impossible to provide rates on the estimation of fc without stringent assumption on P(Y |X) andHs =
∪|S|=sHS withHS :=

{
f =

∑
m∈S fm, fm ∈ Hm, ‖fm‖Km ≤ 1

}
. Usually, fc is not necessarily

sparse and smooth as f∗, we need to consider the approximation error between all the possible
sparse multi-kernel spaces and fc, defined by A(Hs, fc) := inff∈Hs {E(f)− E(fc)} . The quantity
A(Hs, fc) measures the approximation error of Hs in approximating fc. The sparsity s balances
the approximation error A(Hs, fc) and the effective dimension of the function class Hs. Based
on this notation, for any f we can rewrite E(f) − E(fc) = E(f) − E(f∗) + E(f∗) − E(fc) =
E(f)− E(f∗) +A(Hs, fc). This together with Theorem 1 and (7) leads to the upper bounds of the
relative classification error.
Theorem 2. Assume the same conditions of Theorem 1 are all met. We choose λm ' ε(Km) and
γm ' ε2(Km) for all m ∈ [M ], then with probability at least 1− 4M−A, we have

R(sgn(f̂))−R(fc) = O

( 1

Γ(S, ρX)

) 2κ
2κ−1

(∑
m∈S

ε2(Km)

) κ
2κ−1

+
∑
m∈S

ε2(Km)

+A(Hs, fc).

In the homogeneous cases as Corollary 1, we also have

R(sgn(f̂))−R(fc) =
s

Γ2(S, ρX)
O

(
n−

1
1+τ +

logM

n

) κ
2κ−1

+A(Hs, fc).

As mentioned earlier, ordinary kernels including the Gaussian kernel and the Laplace kernel are
universal in L1

ρX in the sense that the approximation error A(Hs, fc) is negligible if fc ∈ L1
ρX , and

in this case the excess risk of the estimator dominates the approximation error. Note that f∗ is a
sparse minimizer of E(·) defined on the multi-kernel class HM . From a model selection point of
view, we are mainly interested in the selection of different RKHS’s, whereas the classical SVM in (3)
focuses more on selection of parameters within a single RKHS; see [7] for details.

Similar to the common margin assumption in classification [11, 44, 1], the smaller Bernstein parameter
κ implies the lower noise level of η(x) near 1/2. Particularly, our fast rate in Theorem 2 equals
O
(
n−

1
1+τ + logM

n

)
when κ = 1. If there is no assumption on the margin (κ → ∞), the rate

is arbitrarily close to O
(
n−

1
1+τ + logM

n

)1/2

when s is fixed, which matches the minimax lower
bounds without any low noise condition on the margin [47].

3.3 Related Work

As mentioned in the introduction, the popularity of sparse multi-kernel classification is mainly due
to its flexibility and increased interpretability, including single kernel-based SVM and sparse high-
dimensional SVM as special cases. Hence, it is natural to compare the learning rate established in
Theorem 1 and Corollary 1 over the multi-kernel class with some existing results in literature.

I. Single kernel learning

In [11], the regularization error and the projection operator are introduced to derive convergence rates
of the misclassification error. In particular, Theorem 10 there states that for a separation exponent θ,

8



the minimizer f̂ of the standard regularized learning scheme (3) satisfies

R(sgn(f̂))−R(f∗) = Op

(
n−

1
1+2τ/θ+2τ

)
, (8)

based on the relation between covering number and spectral decay. Our bound in Theorem 2 is
always better than (8) even in their best case with θ → +∞.

II. Multiple kernel learning

In [46], they analyzed the general SVM scheme by varying scale parameter σ of the Gaussian kernel,
which can be regarded as a family of specific kernels. To be precise, the multi-kernel SVM in [46] is
formulated by adding minimization on σ to the original learning scheme (3). In particular, Theorem
6 there states that when no approximation error is involved, the minimizer f̂ has the following error
bound,

R(sgn(f̂))−R(f∗) = Op
(
n−

κ
2κ−1+τ

)
, (9)

Note that when κ→ 1 corresponding to the lowest noise case, the error bound in (9) is of the best
order Op(n−

1
1+τ ), which is the same as that in our Theorem 2.

Besides, without specification of learning algorithms, Cortes et al. [13] provided refined generalization
bounds for learning kernels based on a convex combination ofM basis kernels with L1-regularization.
When the hinge loss is used, Corollary 1 there can give the misclassification error with the order
(logM/n)

1/2
, which is substantially slower than the error bound in our Theorem 2, derived by

advanced empirical process techniques.

III. High-dimensional learning

High dimensional data has attracted great interest in recent years, where the number of parameters
(or dimensionality) can be much greater than the sample size. As mentioned earlier in Introduction,
several work have considered high-dimensional linear or additive SVM classification.

(a) Linear SVM. Zhang et al. [52] proposed a sequence of non-convex penalized SVM’s in
moderately high dimension, and gave variable selection consistency and oracle property for a
statistical perspective. Also, Peng et al. [36] investigated the statistical performance of the L1-norm
SVM in high dimension, and established refined error bound of its estimation error, with a near-oracle
rate O(

√
s logM/n), where M is the number of candidate features and s is the sparsity parameter.

Note that the linear case corresponds to τ → 0 in the spectral assumption, and thus this rate in [36] is
almost consistent with our derived result in Corollary 1.

(b) Additive SVM. Zhao and Liu [53] developed a sparse high dimensional nonparametric classifi-
cation method with additive kernels, where each kernel Kj is one-dimensional function defined on
each coordinate. Also, in their Theorem 5.1, they provided the oracle properties of the estimation
error for the sparse additive SVM,

E(f̂)− E(f∗) = Op

(
η̃ + s

√
q logM

n

)
, (10)

where η̃ is referred to as the approximation error and q is the number of finite base approximation
to the additive components. Even in the best case with q = 1, the convergence rate in (10) is not
comparable to our oracle rate established in Theorem 1, not to mention that q is often required to
diverge at a polynomial order of n for functional flexibility.

Remark 5. Considering that there exist too many related literatures on multiple kernel and high
dimensional learning, we only list the most related work restricted to the sparse multi kernel learning
framework. The relation between our analysis and existing analyses are given in the follow table.

Method Penalty Optimization Convergence rate
[13]

∑M
m=1 ‖fm‖Km Group Lasso log(M)/

√
n

[37]
∑M
m=1 ‖fm‖n + γn

∑M
m=1 ‖fm‖Km SOCP sn−

1
1+τ + s logM

n

[53]
∑M
m=1 ‖fm‖2 Proximal GD s

√
logM
n4/5

This Paper
∑M
m=1

√
‖fm‖2n + γn‖fm‖2Km Group Lasso

(
sn−

1
1+τ + s logM

n

) κ
2κ−1

9



250 500 750 1000 1250 1500 1750
n

0.00

0.02

0.04

0.06

0.08

em
pi

ric
al

 e
xc

es
s r

isk

s = 0.01, = 0.02
empirical excess risk
optimal line
fit line

(a) s = 0.01, τ = 0.02
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(e) s = 0.05, τ = 0.2
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Figure 1: The empirical excess error of our method on the test set with different size of training data
n, the sparse rate s and the parameter τ . In (a, b, d, e), the blue line is the empirical excess error on
the test set, the dotted orange line is the optimal rate of theoretical findings, the dotted green line is
the fit curve of the empirical excess error.

4 Numerical Experiments

In this section, we report the results of our numerical experiments on simulated data aimed at
validating our theoretical results. First we consider constructing multiple kernels by random features
of the spline kernel. A spline kernel of order q :

K2q (x,x′) = 1 +

∞∑
k=1

cos (2πk (x− x′)) /
(
k2q
)
.

If the marginal distribution ofX is uniform on [0, 1], thenK2q (x,x′) =
∫ 1

0
ψ(x,ω)ψ(x,ω)%(ω)dω,

where ψ(x,ω) = Kq(x,ω) and %(ω) is also uniform on [0, 1]. We sample uniformly M times from
[0, 1], so we get M kernels : ψ (x,ω1) , . . . , ψ (x,ωM ). Then we construct the target function f∗ by
randomly choose Ms kernels and corresponding weights, where 0 < s < 1 is the sparse rate. For a
classification problem, we map the target value to {+1,−1} labels.

We generate different size of samples, then split them into train set and test set. The number of kernels
M is set to 1000, the regularization parameters are set to be λ = n−

1
2(1+τ) , γ = n−

1
1+τ as from the

theoretical analysis of Corollary 1. We repeat the training 20 times and estimate the averaged hinge
loss on test data. The averaged hinge loss on the test data with different size of train data is given
in Figure 1. From Figure 1(a, b) or (d, e), we can see that the line of best fit for empirical excess
risks match the learning rate s · n−

1
1+τ (from Corollary 1), which verifies our theoretical findings.

Figure 1(c) or (f) illustrates that at the same sparse rate s, the less the parameter τ , the better the
performance. One the other hand, Figure 1(a, d) (b, e) or (c, f) shows that good performance can be
obtained at a sparser setting. The above results is consistent with the theoretical analysis of Theorem
1 and Theorem 2.

5 Conclusion

We establish the first generalization error bounds for sparse multi-kernel SVMs, where the margin
complexity term and the number of the potential kernels are considered carefully. The results we
present significantly improve on previous results even for the additive or linear cases.
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Appendix

The organization of the proofs is as follows. Frist, we show that the `1-type penalty has as special
feature, allowing one to avoid estimating explicitly the estimation error. Second, a new element in the
proof is proved in empirical process theory, in which we use the strong convexity of the expected
functional objective under the Bernstein condition to enter directly into local conditions. Third, we
use the intrinsic correlation between different RKHSs to derive a key inequality, which is related to
the left side one of our basic inequality. Based on the above three steps, we can establish a basic
polynomial-type inequality, which immediately yields our general learning rates for SVM.

Proofs

Given a function space G, recall that the empirical Rademacher average on G is defined by

R̂(G) = sup
g∈G

∣∣∣ 1
n

n∑
i=1

σig(zi)
∣∣∣, ∀ g ∈ G,

where {σi} are i.i.d. Rademacher variables. The population-level Rademacher complexity of G is
given by R(G) = Eσ,z[R̂(G)]. The contractive property of R(G) is very useful in our theoretical
analysis. That is, if ϕ : R→ R is Lipschitz with constant Lϕ and satisfies ϕ(0) = 0, then

R(ϕ ◦ G) ≤ 2LϕR(G).

In addition, we state the close relationship between ‖ · ‖n and ‖ · ‖2 for functions in Hm’s. The
following Lemma 1 follows immediately from Theorem 4 and Proposition 5 in [20].
Lemma 1. Suppose that A ≥ 1 and logM ≥ 2 log log n. Then there exists a universal constant
C0 > 0 such that with probability at least 1−M−A, for all fm ∈ Hm,

‖fm‖2 ≤ C0

(
‖fm‖n + ε(Km)‖fm‖Km

)
and ‖fm‖n ≤ C0

(
‖fm‖2 + ε(Km)‖f‖Km

)
.

Lemma 2. (Concentration Theorem [9]) Let Z1, ..., Zn be independent random variables with values
in some space Z and let H be a class of real-valued functions on Z , satisfying for some positive
constants ηn and τn,

‖h‖ ≤ ηn, and
1

n

n∑
i=1

var(h(Zi)) ≤ τ2
n, ∀h ∈ H.

Define Z := suph∈H

∣∣∣ 1
n

∑n
i=1

(
h(Zi)− Eh(Zi)

)∣∣∣. Then for t > 0

P
(
Z ≥ E(Z) + t

√
2(τ2

n + 2ηnE(Z)) +
2ηnt

2

3

)
≤ exp[−nt2].

For any given ∆−, ∆+ > 0, we define the subset ofHM

F∆ := {f ∈ HM :

M∑
m=1

ε(Km)‖fm − f∗m‖2 ≤ ∆−,

M∑
m=1

ε2(Km)‖fm − f∗m‖Km ≤ ∆+}.

The following Proposition 1 on concentration inequalities holds for general lipschitz-type losses,
including the hinge loss. Let En(f) = 1

n

∑n
i=1 φ(Yif(Xi)) be the empirical risk of f with respect to

the population-level quantity E(f).
Proposition 1. Let F∆ be a measurable function subset defined as above. Suppose that condition C
holds for each univariateHm. For some A ≥ 1, with probability at least 1− 2M−A, the following
bound holds uniformly on ∆− ≤ eM and ∆+ ≤ eM ,∣∣En(f)− En(f∗)−

(
E(f)− E(f∗)

)∣∣ ≤ C1(∆− + ∆+ + e−M ), ∀ f ∈ F∆.

The proof of Proposition 1 is similar to that in [31] for high dimensional quantile regression, and it is
given in Appendix B for completeness.

Proof of Theorem 1.
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Given a subset S ⊆ [M ], we write IS(f ;λ, γ) =
∑
m∈S λm

√
‖fm‖2n + γm‖fm‖2Km . Clearly

IS(f ;λ, γ) is a mixed norm of f for any λm > 0 and γm > 0. By the definition of f̂ in (5) and the
sparsity assumption on f∗, we have

En(f̂) + IM (f̂ ;λ, γ) ≤ En(f∗) + IS(f∗;λ, γ). (11)

Recall that IM (f ;λ, γ) = IS(f ;λ, γ) + ISc(f ;λ, γ) for any f , and ISc(f ;λ, γ) = ISc(f −f∗;λ, γ)
by the sparsity assumption on f∗. Then it follows from (11) and the triangle inequality that

En(f̂) + ISc(f̂ − f∗;λ, γ) ≤ En(f∗) + IS(f̂ − f∗;λ, γ).

Adding IS(f̂ − f∗;λ, γ) to both sides of the last inequality, we obtain

En(f̂) + IM (f̂ − f∗;λ, γ) ≤ En(f∗) + 2IS(f̂ − f∗;λ, γ).

Simple algebra yields that

E(f̂) + IM (f̂ − f∗;λ, γ) ≤ E(f∗) +
∣∣En(f̂)− En(f∗)−

(
E(f̂)− E(f∗)

)∣∣
+2IS(f̂ − f∗;λ, γ). (12)

We now bound the quantities IM (f̂ − f∗;λ, γ) and IS(f̂n− f∗;λ, γ) by their population-level terms,
respectively. Note that with probability at least 1−M−A, we have

IM (f̂ − f∗;λ, γ) ≥ 1√
2

M∑
m=1

λm
(
‖f̂m − f∗j ‖2/C0 + (

√
γm − ε(Km))‖f̂m − f∗m‖Km

)
≥ 1√

2C0

M∑
m=1

λm
(
‖f̂m − f∗m‖2 + C0/2

√
γm‖f̂m − f∗m‖Km

)
≥ 1√

2C0

M∑
m=1

λm

√
‖f̂m − f∗m‖22 + C2

0/4γm‖f̂m − f∗m‖2Km , (13)

where the first inequality follows from Lemma 1 and the subadditivity of
√
·, and the second inequity

is based on assumption
√
γm ≥ 2ε(Km)/C0 for any m ∈ [M ], and the third inequality follows

from the subadditivity of
√
· as well. By the similar arguments as above, with probability at least

1−M−A, we also have that

IS(f̂ − f∗;λ, γ) ≤
√

2C0

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km . (14)

Therefore, substituting (13) and (14) into (12) yields that with probability at least 1− 2M−A,

E(f̂) +
1√
2C0

M∑
m=1

λm

√
‖f̂m − f∗m‖22 + C2

0/4γm‖f̂m − f∗m‖2Km ≤ E(f∗) + 2
√

2C0 ×

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km +
∣∣En(f̂)− En(f∗)−

(
E(f̂)− E(f∗)

)∣∣. (15)

It remains to bound the empirical process
∣∣En(f̂)−En(f∗)−

(
E(f̂)−E(f∗)

)∣∣, for which Proposition
1 is employed.

Since ‖fm‖∞ ≤ ‖fm‖Km ≤ 1 for any f = (f1, ..., fM ) ∈ BM , and 2Mε(Km) ≤ eM for any
m ∈ [M ], the following bounds are satisfied

M∑
m=1

ε(Km)‖f̂m − f∗m‖2 ≤ eM ,
M∑
m=1

ε2(Km)‖f̂m − f∗m‖Km ≤ eM ,
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and thus Proposition 1 can be applied directly. Precisely, we obtain from Proposition 1 and (15) that,
with probability at least 1− 4M−A,

E(f̂) +
1√
2C0

M∑
m=1

λm

√
‖f̂m − f∗m‖22 + C2

0/4γm‖f̂m − f∗m‖2Km

≤ E(f∗) + 2
√

2C0

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km

+
√

2C1

M∑
m=1

ε(Km)
√
‖f̂m − f∗m‖22 + ε2(Km)‖f̂m − f∗m‖2Km + C1e

−M . (16)

With the choice of λm ≥ 4C0C1ε(Km) and γm ≥ 4ε2(Km)/C2
0 for any m ∈ [M ], the above

inequality immediately implies that

E(f̂)− E(f∗) +
1

2
√

2C0

M∑
m=1

λm

√
‖f̂m − f∗m‖22 + C2

0/4γm‖f̂m − f∗m‖2Km

≤ 2
√

2C0

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km + C1e
−M . (17)

We first consider the case when

(i) : 2
√

2C0

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km ≥ C1e
−M .

It follows from (17) that

E(f̂)− E(f∗) +
1

2
√

2C0

M∑
m=1

λm

√
‖f̂m − f∗m‖22 + C2

0/4γm‖f̂m − f∗m‖2Kj

≤ 4
√

2C0

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km . (18)

Since E(f̂)− E(f∗) ≥ 0 by definition, (18) implies that
M∑
m=1

λm

√
‖f̂m − f∗m‖22 + C2

0/4γm‖f̂m − f∗m‖2Km

≤ 16C2
0

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km ,
(19)

with probability at least 1− 4M−A, provided that λm ≥ 4C0C1ε(Km) and γm ≥ 4ε2(Km)/C2
0 for

any m ∈ [M ]. That is, f̂n belongs to F16C2
0

S with high probability under the case (i). Meanwhile,
from (18) we also conclude that, with probability at least 1− 4M−A,

E(f̂n)− E(f∗) ≤ 4
√

2C0

∑
m∈S

λm‖f̂m − f∗m‖2 + 16
∑
m∈S

λm
√
γm

≤ 4
√

2C0

( ∑
m∈S

λ2
m

)1/2( ∑
m∈S
‖f̂m − f∗m‖22

)1/2
+ 16

∑
m∈S

λm
√
γm, , (20)

for any f̂ ∈ F16C2
0

S , where the second inequality follows from the Cauchy-Schwartz inequality. Under
the identifiable assumption (Condition A) and the correlation assumption (Condition D), it follows
from (20) that

E(f̂)− E(f∗) ≤ 4
√

2C0/Γ(S, ρX)
( ∑
m∈S

λ2
m

)1/2∥∥ M∑
m=1

(f̂m − f∗m)
∥∥

2
+ 16

∑
m∈S

λm
√
γm

≤ 4
√

2c0C0/Γ(S, ρX)
( ∑
m∈S

λ2
m

)1/2(E(f̂n)− E(f∗)
)1/(2κ)

+ 16
∑
m∈S

λm
√
γm, (21)
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where the first inequality follows from Condition D, and the second inequity follows immediately
from Condition A. Direct calculation of (21) yields that

E(f̂)− E(f∗) ≤ max
{(4
√

2c0C0

Γ(S, ρX)

) 2κ
2κ−1

( ∑
m∈S

λ2
m

) κ
2κ−1

, 32
∑
m∈S

λm
√
γm

}
. (22)

Thus we complete the proof of Theorem 1 under case (i).

It remains to consider the case when (i) does not hold. That is,

2
√

2C0

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km < C1e
−M .

It immediately follows from (17) that

E(f̂)− E(f∗) +
1

2
√

2C0

M∑
m=1

λm

√
‖f̂m − f∗m‖22 + C2

0/4γm‖f̂m − f∗m‖2Km ≤ 2C1e
−M . (23)

It is clear that our desired result still holds, since logM ≥ 2 log log n by assumption. Therefore, by
combining (22) with (23), we complete the proof of Theorem 1.

Appendix B: Proof of Proposition 1.

To apply Theorem 2, denote H = {h(z)|h(z) = φ(yf(x)) − φ(yf∗(x)), f ∈ F∆}, where φ(u)
is the hinge loss defined as above. We can write [E(f)− E(f∗)]− [En(f)− En(f∗)] = E[h(z)]−
1
n

∑n
i=1 h(zi), h ∈ H . Then, by Bousquet’s concentration inequality, with probability at least

1− e−t,

Z ≤ E(Z) +

√
2t(τ2

n + 2ηnEZ)

n
+

2ηnt

3n
. (24)

The remaining proof is to give tight upper bounds of ηn, τn and E(Z) respectively. First, the
sub-additivity of

√
· implies that√

2t(τ2
n + 2ηnEZ)

n
≤
√

2t

n
τ2
n + 2

√
ηn
n
E(Z) ≤

√
2t

n
τ2
n + EZ +

ηn
n
,

where we used the basic inequality
√
uv ≤ (u+ v)/2 for any u, v ≥ 0. Meanwhile, since |Y | ≤ 1,

the contraction property of φ implies E(h2(Z)) ≤ ‖f − f∗‖22 for any f ∈ F∆. That is, τ2
n ≤

supf∈F∆
‖f − f∗‖22. This together with (24) leads to

Z ≤ 2E(Z) +

√
2t

n
sup
f∈F∆

‖f − f∗‖2 +
(1 + t)ηn

n
. (25)

Moreover, by the contraction property of φ and Condition C, we have

‖h‖∞ ≤ ‖f − f∗‖∞ ≤
M∑
m=1

‖fm − f∗m‖∞ ≤ c2
M∑
m=1

(
‖fm − f∗m‖2 + ‖fm − f∗m‖Km

)
,∀f ∈ F∆,

where we used the Young inequality uτv1−τ ≤ u + v for any u, v ≥ 0 and 0 < τ ≤ 1. Note that

ε(Km) ≥
√

A logM
n for all m, this follows that

M∑
m=1

‖fm − f∗m‖2 ≤
√

n

A logM
∆−, (26)

for any f ∈ F∆. A similar argument leads to
∑M
m=1 ‖fm − f∗m‖Km ≤

n
A logM∆+. So we combine

these derived inequalities to obtain

ηn ≤

√
c22n

A logM
∆− +

c2n

A logM
∆+. (27)
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Thus, plugging the upper bounds of ηn (27) and supf∈F∆
‖f − f∗‖2 (26) into (25), with probability

at least 1− e−t, we have

Z ≤ 2E(Z) +

√
2c22t

A logM
∆− +

c2n

A logM

(1 + t)

n
∆+. (28)

To bound E(Z), we use a symmetrization technique, and thus E(Z) ≤ 2E[R̂(H)] ≤ 2E[R̂(F∆ −
f∗)], where the second inequality follows from the contraction property of Redemacher process.
Moreover, applying Talagrand’s concentration inequality [9] again for R̂(F∆ − f∗), we get that

E[R̂(F∆ − f∗)] ≤ 2R̂(F∆ − f∗) +

√
2c22t

A logM
∆− +

c2n

A logM

(1 + t)

n
∆+,

with probability at least 1− e−t. According to the existing result on weight empirical process in [20]
(see Equation (8) below), on some event E of probability at least 1−M−A, for all m ∈ [M ] we have

1

n

∣∣∣ n∑
i=1

σi(fm − f∗m)(xi)
∣∣∣ ≤ C̃[ε(Km)‖fm − f∗m‖2 + ε2(Km)‖fm − f∗m‖Km

]
. (29)

Hence, with probability at least 1− 2e−t −M−A, we have

Z ≤ 8R̂(F∆ − f∗) + 9

√
2c22t

A logM
∆− +

9c2n

A logM

(1 + t)

n
∆+

≤ 8

M∑
j=1

R̂(Hj − f∗j ) + 9

√
2c22t

A logM
∆− +

9c2n

A logM

(1 + t)

n
∆+

≤ 8C̃
(
∆− + ∆+

)
+ 9

√
2c22t

A logM
∆− +

9c2n

A logM

(1 + t)

n
∆+,

which holds on the event E ∩ F (∆−,∆+, t), where P(F (∆−,∆+, t)) ≥ 1− 2e−t. With the choice
of t = A logM/c22 + 4 logM , we obtain a bound that uniformly over

e−M ≤ ∆− ≤ eM and e−M ≤ ∆+ ≤ eM . (30)

For this purpose, we consider M2-different discrete pairs ∆m
− = ∆m

+ := 2−m, m ∈ [M ]. Then on
the event

⋂
k,m F (∆m

− ,∆
k
+, t), we have Z ≤ c(∆m

− + ∆k
+) for all m, k ∈ [M ]. Moreover,

P
( ⋂
k,m

F (∆m
− ,∆

k
+, t)

)
≥ 1− 2M2e−c2 logM−4 logM ≥ 1− 2M−2−c2 ,

which tends to 1 as M goes to infinity. Besides, using monotonicity of the functions ∆m
− and ∆k

+
involved in the inequalities, the result can be extended to the whole range of ∆− and ∆+ satisfying
(30).

If ∆− ≤ e−M or ∆+ ≤ e−M , it is trivial to derive the desired result with the same probability. This
completes the proof of Proposition 1. �
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