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Abstract

Kernel k-means is one of the most popular approaches to clustering and its the-
oretical properties have been investigated for decades. However, the existing
state-of-the-art risk bounds are of order O(k/

√
n), which do not match with the

stated lower bound Ω(
√
k/n) in terms of k, where k is the number of clusters and

n is the size of the training set. In this paper, we study the statistical properties of
kernel k-means and Nyström-based kernel k-means, and obtain optimal clustering
risk bounds, which improve the existing risk bounds. Particularly, based on a
refined upper bound of the clustering Rademacher complexity, we first derive an
optimal risk bound of rate O(

√
k/n) for empirical risk minimizer (ERM), and

further extend it to general cases beyond ERM. Then, we analyze the statistical
effect of computational approximations of Nyström kernel k-means, and prove that
it achieves the same statistical accuracy as the original kernel k-means considering
only Ω(

√
nk) Nyström landmark points. We further relax the restriction of land-

mark points from Ω(
√
nk) to Ω(

√
n) under a mild condition. Finally, we validate

the theoretical findings via numerical experiments.

1 Introduction

Clustering, a fundamental data mining task, is used in numerous applications including web search,
medical imaging, gene expression analysis, social network analysis and recommendation systems
[54, 53, 23, 40]. k-means is arguably one of the most popular approaches to clustering, producing
clusters with piece-wise linear boundaries. Its kernel version, which employs a nonlinear distance
function, has the ability to find clusters of varying densities and distributions, greatly improving the
flexibility of the approach [18, 51, 36, 35, 37, 58, 29].

To understand (kernel) k-means and guide the development of new clustering algorithms, researchers
have investigated its theoretical properties for decades. The consistency of the empirical minimizer
was demonstrated by [43, 45, 1]. Rates of convergence and non-asymptotic performance bounds
were considered by [44, 13, 33, 7, 32, 14, 20]. Most of the proposed risk bounds are dependent upon
the dimension of the hypothesis space. For example, Bartlett et al. [7] provided, under certain mild
assumptions, a clustering risk bound of orderO(

√
kd/n), where d is the dimension of the hypothesis

space and n is the size of the training set. However, the hypothesis space of kernel k-means is
typically an infinite-dimensional Hilbert space, such as the reproducing kernel Hilbert space (RKHS)
associated with Gaussian kernels [48]. Thus, the existing theoretical analysis of k-means are not
usually suitable for explaining its kernel version. Recently, [20, 16, 10, 39, 3, 27, 24, 9] extended
the previous results, and provided dimension-independent bounds for kernel k-means. As shown in
[16], if the feature map associated with the kernel function satisfies ‖Φ‖ ≤ 1, then the clustering risk
bounds are of order O(k/

√
n). These clustering risk bounds for kernel k-means are usually linearly
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dependent on the number of clusters k. However, the number of clusters k may be very large in some
domains, such as social networks and recommendation systems. Thus, from a theoretical perspective,
these existing bounds of O(k/

√
n) do not match with the stated lower bound Ω(

√
k/n) in k [7].

Although kernel k-means is one of the most popular clustering methods, it requires the computation
of a n × n kernel matrix. As for other kernel methods, this becomes unfeasible for large-scale
problems, and thus deriving approximate computations, such as partial decompositions [6, 28],
random projection [16, 15], Nyström approximations [19, 11, 9, 41, 51, 56, 55], and random feature
approximations [46, 12, 5, 47, 34, 31], has become the subject of numerous recent works. However,
few of these optimization-based methods focused on the underlying excess risk problem. To the
best of our knowledge, the only two results providing excess risk guarantees for approximate kernel
k-means are [16] and [9]. In [16], Devroye and Lugosi considered the excess clustering risk when the
approximate Hilbert space is obtained using Gaussian projections. In [9], Calandriello and Rosasco
showed that, when sampling Ω(

√
n) Nyström landmarks, the excess risk bound can reach O(k/

√
n).

The excess risk bounds of [9] and [16] are both linearly dependent on k and thus do not match with
the theoretical lower bound [7].

In the recent work [21], the authors showed that the Rademacher complexity of the k-valued func-
tion class of Lipschitz continuity with respect to the L∞ norm can be bounded by the maximum
Rademacher complexity of the restriction of the function class along each coordinate, times a factor of
O(
√
k). Although it may be not very difficult to use the result of [21] to kernel k-means, the optimal

bound of O(
√
k/n) for kernel k-means has never been given before. Moreover, we creatively extend

the results of kernel k-means to the approximate one. Our major contributions include two parts:

1) A (nearly) optimal excess clustering risk bound of rate Õ(
√
k/n)1 is proposed for empirical

risk minimization (ERM) (see Theorem 1). To the best of our knowledge, this is the first
(nearly) optimal excess risk bound for kernel k-means in terms of both k and n. Beyond
ERM, we further extend the result of Theorem 1 to general cases (see Theorem 2 and
Theorem 3).

2) A (nearly) optimal excess risk bound for Nyström kernel k-means is also obtained when
sampling Ω(

√
nk) points (see Theorem 4). We further relax the restriction of landmark

points from Ω(
√
nk) to Ω(

√
n) (see Theorem 5) and extend it to general cases (see Theorem

6 and Theorem 7). This result shows that we can use the Nyström method to improve the
effectiveness of kernel k-means, while guaranteeing the optimal generalization performance.

The rest of the paper is organized as follows. In Section 2, we introduce some notations and provide
an overview of kernel k-means. In Section 3, we provide nearly optimal excess risk bounds. In
Section 4, we quantify the statistical effect of computational approximations of the Nyström-based
kernel k-means. In Section 5, we validate our theoretical findings by performing experiments on
simulated data. We end in Section 6 with conclusion. All the detailed proofs are deferred to the
Appendix.

2 Background

In this section, we will introduce some notations and provide a brief introduction of kernel k-means.
Please refer to [18, 9] for more details.

2.1 Notations

Assume P is a (unknown) distribution on X , and S = {xi}ni=1 ∈ X is a set of n samples drawn
i.i.d. from P. The empirical distribution Pn is denoted as Pn(x) = 1

n if x ∈ S, otherwise 0. Let
κ : X ×X → R be a mercer kernel [49], andH be its associated RKHS [50], which is the completion
of the linear span of the set of functions:

H = span{κ(x, ·),x ∈ X}.
We denote the Cartesian product of H by Hk = ⊗ki=1H. We use the feature map ψ : X → H to
map X into the Hilbert spaceH, and assume thatH is separable, such that for any x ∈ X , we have

1Õ hides logarithmic terms.
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Φx = ψ(x). Intuitively, in the rest of the paper, the reader can assume that Φx ∈ Rd with d� n or
even infinite. From here on, we will denote the inner product ofH by 〈·, ·〉, and the associated norm
by ‖ · ‖, and assume that ‖Φx‖ ≤ 1 for any x ∈ X . We let

D = {Φi = ψ(xi)}ni=1 ,

and denote [K]i,j = κ(xi,xj) = 〈Φi,Φj〉 as the kernel matrix.

The notations µ = O(ν) and µ = Ω(ν) mean that there exist constants c, c1, c2 such that µ ≤ cν

and c1ν ≤ µ ≤ c2ν, respectively. We use Õ and Ω̃ to hide logarithmic terms.

2.2 Kernel k-Means

In this paper, we aim at partitioning the given dataset into k disjoint clusters, each characterized by
its centroid cj . The Voronoi cell associated with a centroid cj is defined as [9]

Cj :=

{
i : j = arg min

s=1,...,k
‖Φi − cs‖2

}
.

Let C = [c1, . . . , ck] be a collection of k centroids fromHk. In this paper, we focus on the so-called
kernel k-means clustering, by minimizing the empirical squared norm criterion

W(C,Pn) :=
1

n

n∑
i=1

min
j=1,...,k

‖Φi − cj‖2 (1)

over all possible choices of cluster centers C ∈ Hk. From [18, 9], we know thatW(C,Pn) can be
written as

W(C,Pn) : =
1

n
min
C∈Hk

k∑
j=1

∑
i∈Cj

∥∥∥∥∥∥Φi −
1

|Cj |
∑
t∈Cj

Φt

∥∥∥∥∥∥
2

=
1

n
min
C∈Hk

k∑
j=1

∑
i∈Cj

κ(xi,xi)−
2

|Cj |
∑
t∈Cj

κ(xi,xt) +
1

|Cj |2
∑
t,t′∈Cj

κ(xt,xt′)

 .

The empirical risk minimizer (ERM) is defined as

Cn := arg min
C∈Hk

W(C,Pn). (2)

The performance of a clustering scheme given by the collection C = [c1, . . . , ck] ∈ Hk of cluster
centers is usually measured by the expected squared norm criterion or expected clustering risk

W(C,P) :=

∫
min

j=1,...,k
‖Φx − cj‖2dP(x).

Given a C ∈ Hk, let fC = (fc1
, . . . , fck

) be a k-valued function of the collection C with fcj
(x) =

‖Φx − cj‖2. Let ϕ : Rk → R be a minimum function. From the definition of ϕ(fC(x)) =
min(fc1

(x), . . . , fck
(x)), one can see that the empirical and expected squared norm criteria can be

respectively written as

W(C,Pn) :=
1

n

n∑
i=1

ϕ(fC(xi)) andW(C,P) :=

∫
ϕ(fC(x))dP(x).

In this paper, we consider bounding the excess clustering risk E(Cn) of the empirical risk mini-
mizer [16]:

E(Cn) := ED[W(Cn,P)]−W∗(P),

whereW∗(P) = infC∈HkW(C,P) is the optimal clustering risk. In the following, we will ignore
the subscript D if the input dataset D is clear.
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2.3 The Existing Excess Clustering Risk Bounds

According to [7], we know that there exists a collection of centroids Clb ∈ Hk, a constant c, and a
distribution P with ‖Φx‖ ≤ 1 for any x ∈ X , such that

E[W(Clb,P)]−W∗(P) ≥ c
√
k1−4/d

n
.

Note that d is the dimension of Φx, which is usually very large or even infinite. Thus, the lower
bound of kernel k-means is Ω

(√
k/n

)
. However, most of the existing risk bounds proposed for

kernel k-means are O(k/
√
n) [16, 10, 39, 20, 9], for example:

Lemma 1 ([16], Theorem 2.1). If ‖Φx‖ ≤ 1 for any x ∈ X , then there exists a constant c such that

E[W(Cn,P)]−W∗(P) ≤ c k√
n
,

where Cn is the ERM ofW(C,Pn) defined in (2).

Note that the number of clusters k may be very large for fine-grained analyses in social networks or
recommendation systems. This leaves us with the question: is it possible to prove a bound of rate√
k/n, which is (nearly) optimal in terms of both k and n? In this paper, we attempt to answer this.

3 Main Results

In this section, we will provide nearly optimal excess risk bounds for kernel k-means. There are
very few works focus on the underlying excess risk problem for kernel k-means. To the best of our
knowledge, there are only two results [16, 9] providing excess risk bounds for kernel k-means or
approximate kernel k-means. However, these bounds of [16, 9] are all linearly dependent on k. Based
on a recently improvement of the upper bound of Rademacher complexity of L-Lipschitz with respect
to the L∞ norm [21], we derive a (nearly) optimal excess risk bound of linearly dependent on

√
k.

Theorem 1. If ∀x ∈ X , ‖Φx‖ ≤ 1, then for any δ ∈ (0, 1), there exists a constant c, and with
probability at least 1− δ, we have,

E[W(Cn,P)]−W∗(P) ≤ c

√k

n
log2

(√
n
)

+

√
log 1

δ

n

 .

From Theorem 1, we know that

E[W(Cn,P)]−W∗(P) ≤ Õ

(√
k

n

)
,

which matches the theoretical lower bound Ω
(√

k/n
)

when d is large [7]. Thus, our proposed bound
is (nearly) optimal.

Remark (Fast Rates). Some results suggest that the learning rate of kernel k-means can reach
O(k/n) under certain assumptions on the distribution. Chou [13] pointed out that, if continuous
densities of distribution satisfy certain regularity properties, the expected excess risk is of rateO(k/n).
An improved result was obtained by [3], who proved that the learning rate can reach O(k/n) for any
distribution supported on a finite set. Levrard [27] further showed that, if the distribution satisfies a
margin condition, the learning rate can also reach O(k/n). Based on the notion of local Rademacher
complexity, the expected excess risk has a rate faster than O(k/

√
n) given in [24, 30]. However, as

pointed out, these conditions are difficult to verify in general. Moreover, these expected excess risk
bounds are linearly dependent on k. In the future, we will consider studying whether it is possible to
prove a bound of O(

√
k/n) under certain strict assumptions.

3.1 Further Results: Beyond ERM

So far we have provided guarantees for Cn, that is, the optimal ERM inHk. Note that obtaining the
optimal ERM Cn is a NP-hard problem in general [2]. In the following, we will consider the risk
bound for a general C̃n, which only requires that its empirical squared norm criterion is not far from
that of Cn.
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Theorem 2. If ∀x ∈ X , ‖Φx‖ ≤ 1 and

E
[
W(C̃n,Pn)−W(Cn,Pn)

]
≤ ζ,

then for any δ ∈ (0, 1), there exists a constant c and, with probability at least 1− δ, we have

E[W(C̃n,P)]−W∗(P) ≤ c
√
k

n
log2

(√
n
)

+ c

√
log 1

δ

n
+ ζ.

From the above theorem, one can see that if the discrepancy between the empirical squared norm
criterion of C̃n and Cn is small, that is ζ ≤ O(

√
k/n), the risk bound of C̃n is (nearly) optimal.

3.2 Further Results: k-means++

Lloyd’s algorithm [38] is the most popular k-means algorithm and when coupled with a careful
k-means++ seeding [4], a good approximate solution C̃n can be obtained. Recently, based on a
simple combination of k-means++ sampling and a local search strategy, an improved k-means++
algorithm was proposed [25]. It was shown that the empirical squared norm criterion of C̃n can be
up to a constant factor from the optimal empirical solution. For the completeness, we briefly describe
the improved k-means++, please refer to [25] for more details.

1: If |C| < k, add a sampled point x ∈ S with probability

cost({ψ(x)}, C)∑
x∈S cost({ψ(x)}, C)

, where cost(P, C) =
∑
xi∈P

min
c∈C
‖Φi − c‖,

and add ψ(x) to C.

2: If |C| ≥ k, sample x ∈ S with probability cost({ψ(x)},C)∑
x∈S cost({ψ(x)},C) , check whether there exists a

point c ∈ C such that

cost(S, C\{c} ∪ {ψ(x)}) < cost(S, C).

If this is the case, we replace c by the point in C that reduces the cost function by the largest
amount.

Note that we use the algorithm from [25] for kernel k-means by replacing the Euclidean distance
‖xi − xj‖2 with ‖Φi − Φj‖2H = κ(xi,xi)− 2κ(xi,xj) + κ(xj ,xj).

Lemma 2 ([25]). If CAn is returned by the improved k-means++ algorithm with a local search
strategy [25], then

EA[W(CAn ,Pn)] ≤ β · W(Cn,Pn),

where β is a constant and A is the randomness derived from the k-means++ initialization.

In the following, we derive a risk bound for CAn .
Theorem 3. If ∀x ∈ X , ‖Φx‖ ≤ 1, and CAn is returned by the improved k-means++ algorithm with
a local search strategy [25], then for any δ ∈ (0, 1), with a probability at least 1− δ, we have

ED
[
EA[W(CAn ,P)]

]
≤ Õ

(√
k

n
+W∗(P)

)
.

The above result implies that if the optimal clustering riskW∗(P) is small, the risk ofW(CAn ,P) can
reach Õ(

√
k/n).

4 Risk Analysis of Nyström Kernel k-Means

Kernel k-means is one of the most popular clustering methods. However, it requires the computation
of a n× n kernel matrix. This renders it non-scalable to large datasets that contain more than a few
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tens of thousands of points. In particular, simply constructing and storing the kernel matrix K takes
O(n2) time and space.

The Nyström method [19] is a popular method for approximating the kernel matrix. The properties
of Nyström approximations for kernel k-means have recently been studied in [11, 15, 41, 9, 51, 57].
However, most of these works focus on the computation area. To the best of our knowledge, the only
study providing excess risk guarantees for the Nyström kernel k-means is [9]. However, its excess
risk bound is linearly dependent on k. In the following, we will improve it from k to

√
k.

4.1 Nyström Kernel k-Means

To derive the excess risk bound of Nyström kernel k-means, we first briefly introduce some notations.
Given a dataset D = {Φi}ni=1, we use

I = {Φi}mi=1 ⊆ D

as a collection of landmark points to replace D. LetHm be a linear span of I = {Φi}mi=1,

Hm = span

{
m∑
i=1

αiΦi, αi ∈ R,Φi ∈ I

}
,

and Hkm = ⊗ki=1Hm be its Cartesian product. The Nyström kernel k-means, i.e., the approximate
kernel k-means overHkm, can be written as [9]:

Cn,m = arg min
C∈Hk

m

1

n

n∑
i=1

min
j=1,...,k

‖Φi − cj‖2 . (3)

The centroids Cn,m are still point inHm ⊂ H. Let Km,m ∈ Rm×m be the empirical kernel matrix
between all points in I, and its eigen-decomposition is Km,m = UΛU. From [9], we can search
over C̃n,m ∈ Rm×k instead of searching over C ∈ Hkm, that is,

C̃n,m = arg min C̃ ∈ Rm×k
1

n

n∑
i=1

min
j=1,...,n

‖Φ̃i − c̃j‖2, (4)

where Φ̃i := Λ−1/2UTΦT
mΦi, c̃ := Λ−1/2UTΦT

mcj , Φm = [Φπ(1), . . . ,Φπ(m)], π(i) ∈ [1,m].
We can use any k-means algorithms to solve Eq.4, and then use the reverse of the relationship
c̃ := Λ−1/2UTΦT

mcj to bring back the solution toHm, i.e., Cn,m = ΦmUΛ−1/2C̃n,m. This can
be done in O(nm) space and O(nmkt+ nm2) time using t steps of Lloyd’s algorithm for k clusters
[38]. Please refer to [9] for more details.

4.2 Excess Risk Bound of Nyström Kernel k-Means

Denote with Ξ = Tr(KT(K + I)−1) the so-called effective dimension of K [47, 9]. Note that

Tr
(
KT(K + I)−1

)
≤ Tr

(
KT(K)+

)
,

so we can obtain that Ξ ≤ Rank(K). Thus, the effective dimension Ξ can be seen as a soft version
of the rank.

Theorem 4. If ∀x ∈ X , ‖Φx‖ ≤ 1, and the size of a uniform sampling is

m ≥ Ω

(√
n log(1/δ) min(k,Ξ)√

k

)
,

then, with probability at least 1− δ, we have

E[W(Cn,m,P)]−W∗(P) ≤ O

(√
k

n
log
(n
δ

))
.
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Note that √
nmin(k,Ξ)√

k
≤
√
nk.

Thus, from a statistical point, Theorem 4 shows that when sampling Ω̃(
√
nk) points, the Nyström

kernel k-means achieves the same excess risk as the exact one does. This result demonstrates
that we can improve the computational aspect of kernel k-means using Nyström embedding, while
maintaining optimal generalization guarantees.

Remark. Calandriello and Rosasco [9] have reported that if m ≥ Ω̃(
√
n), an excess risk bound

of rate Õ(k/
√
n) for Nyström kernel k-means can be obtained, which seems to be better than our

Ω̃(
√
nk). However, it should be noted that the risk bound in [9] is linearly dependent on k, while

ours is linearly dependent on
√
k. From the proof of Lemma 10, if we want to obtain a risk of linear

dependence on k, we only need

m ≥ Ω

(√
n log(1/δ) min(k,Ξ)

k

)
= Ω̃(

√
n),

which is the same as [9]. In the following, we will show that we can relax the restriction of landmark
points under a mild condition.

4.3 Further Results: Reducing the Sampling Points

From Theorem 4, we know that we need Ω̃(
√
nk) sampling points to guarantee the nearly optimal

rate for approximating kernel k-means. In the following, we show how to reduce the sampling points
from Ω̃(

√
nk) to Ω̃(

√
n) under a basic assumption on the eigenvalues of the kernel matrix.

Theorem 5. Let λi be the i-th eigenvalue of the kernel matrix K, i = 1, . . . , n, and λi+1 ≤ λi. If
∀x ∈ X , ‖Φx‖ ≤ 1, the eigenvalues satisfy the assumption

∃α > 1, c > 0 : λi ≤ ci−α,
and the size of an uniform sampling is

m ≥ Ω
(√
n log(1/δ)

)
.

then, with probability at least 1− δ, we have

E[W(Cn,m,P)]−W∗(P) ≤ O

(√
k

n
log
(n
δ

))
.

The assumption of algebraically decreasing eigenvalues of the kernel matrix is a common assumption,
and met by the popular finite rank kernels and shift invariant kernel [52], for example. The above
results show that we can guarantee the optimal generalization performance when only sampling
Ω̃(
√
n) points, which is much better than Ω̃(

√
nk) when k is large.

4.4 Further Results: Beyond ERM

In the following, we show that our result can be extended to general cases beyond ERM.
Theorem 6. Under the same assumptions as Theorem 5, if

E
[
W(C̃n,m,Pn)−W(Cn,m,Pn)

]
≤ ζ,

and the size of an uniform sampling is

m ≥ Ω
(√
n log(1/δ)

)
,

then, with probability at least 1− δ, we have

E[W(C̃n,m,P)]−W∗(P) ≤ Õ

(√
k

n
+ ζ

)
.

The above result demonstrates that the risk bound of C̃n,m is optimal when E
[
W(C̃n,m,Pn) −

W(Cn,m,Pn)
]

is small.

7



0 1000 2000 3000 4000 5000 6000 7000 8000
n

0.00

0.02

0.04

0.06

0.08

0.10

em
pi

ric
al

 e
xc

es
s r

isk

k=20
empirical excess risk
optimal line: k

n

fit line: k0.48

n0.53

0 1000 2000 3000 4000 5000 6000 7000 8000
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

em
pi

ric
al

 e
xc

es
s r

isk

k=40
empirical excess risk
optimal line: k

n

fit line: k0.52

n0.49

0 1000 2000 3000 4000 5000 6000 7000 8000
n

0.05

0.10

0.15

0.20

0.25

em
pi

ric
al

 e
xc

es
s r

isk

k=80
empirical excess risk
optimal line: k

n

fit line: k0.49

n0.51

0 1000 2000 3000 4000 5000 6000 7000 8000
n

0.05

0.10

0.15

0.20

0.25

0.30

0.35

em
pi

ric
al

 e
xc

es
s r

isk

k=160
empirical excess risk
optimal line: k

n

fit line: k0.50

n0.51

Figure 1: The empirical excess error of kernel k-means on the test set with different sizes of training
data n and the number of clustering k. The blue line means the empirical excess error on the test
set with different sizes of training data. The dotted orange line means the optimal rate of theoretical
findings. The dotted green line means the fit curve of the empirical excess error.

4.5 Further Results: k-means ++

If adopting the improved k-kernel means++ sampling with a local search strategy [25] for Nyström
kernel k-means, we can obtain the following results:
Theorem 7. Under the same assumptions as Theorem 5, CAn,m is returned by the improved k-
means++ algorithm with a local search strategy [25], if the size of an uniform sampling is

m ≥ Ω
(√
n log(1/δ)

)
,

then with probability at least 1− δ, we have

ED
[
EA[W(CAn,m,P)]

]
≤ Õ

(√
k

n
+W∗(P)

)
,

where A is the randomness derived from the k-means++ initialization.

The above result implies that if the optimal clustering riskW∗(P) is small, i.e. W∗(P) ≤ Õ(
√
k/n),

the risk ofW(CAn,m,P) can reach Õ(
√
k/n).

5 Experiments

In this section, we will validate our theoretical findings by performing experiments on both simulated
data and real data for kernel k-means and approximate k-means.

5.1 Numerical Experiments

In this subsection, we will validate our theoretical findings by performing experiments on simulated
data for kernel k-means and approximate k-means.
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Figure 2: The empirical excess error of the approximate kernel k-means on the test set with different
uniform samplings m. The red star is the lower bound of the sampling landmarks, which, when
increased, does not decrease the error.

Let c∗i ∈ R10, i = 1, . . . , k, be the clustering centers, where the values of the 10 dimensions are 1 or
−1 with equal probability. We generate the ith clustering samples Ci from the normal distribution
with mean c∗i and variance 2, |C1| = . . . = |Ck|. In the experiments, we consider the popular Gaussian
kernel

κ(x,x′) = exp

(
−‖x− x′‖2

10

)
.

Based on the above construction method, it is easy to verify that the optimal clustering risk is

W∗(P) =

∫
min

j=1,...,k
‖Φx − Φc∗j

‖2dP(x) =

∫
min

j=1,...,k
2(1− κ(x, c∗j ))dP(x).

Kernel k-Means

In the first experiment, we validate our theoretical findings of kernel k-means. We generate
∑k
i=1 |Ci|

samples of k clustering centers for training and 10,000 samples for testing. The empirical excess risk
of kernel k-means on the test set can be written as∑

xi∈Dt
minj=1,...,k ‖Φxi

− Φcj
‖2 −minj=1,...,k ‖Φxi

− Φc∗j
‖2

|Dt|
,

where Cn = [c1, . . . , ck] is the solution returned by the kernel k-means using Lloyd’s algorithm
[38], and Dt is the test set.

The empirical excess errors of kernel k-means on the test set with different sizes of training data and
numbers of k are given in Figure 1. We can see that the line of best fit for empirical excess risks is
k0.48

n0.53 for k = 20, k
0.52

n0.49 for k = 40, k
0.49

n0.51 for k = 80, and k0.50

n0.51 for k = 160, achieving the predicted
rate k0.5

n0.5 (from Theorem 1), which verifies our theoretical findings.

Approximate Kernel k-Means

In the second experiment, we validate our theoretical findings of approximate kernel k-means on
simulated data.

9



Table 1: Experiments on the real data sets with kernel k-means and Nystöm kernel k-means.
Dataset Datasize Kernel k-means Nyström Kernel k-Means (m = 100)

dna 2000 0.53 0.52
segment 2310 0.55 0.55

mushrooms 8124 0.66 0.65
mnist 60000 – 0.43

skin-nonskin 245057 – 0.63
covtype 581012 – 0.32

The data generation rule is the same as that in the kernel k-means. We generate 10,000 samples
(|Ci| = 10000/k) for training and 10,000 samples for testing. The empirical excess errors of the
approximate kernel k-means on the test set with different uniform samplings m are given in Figure
2, which can be summarized as follows: 1) There exists a lower bound of the sampling landmarks l
which does not decrease the error when increase its value. This verifies the theoretical statement in
Theorem 4. 2) The lower bound of l increases with the number of the clusters k. This result confirms
Theorem 4 once again.

5.2 Real-World Scenarios

To reflect real-world scenarios, we add more experiments on the real data sets. We use 6 publicly
avaiable datasets, dna, segment, mushrooms, mnist, skin-nonskin and covtype, from the LIBSVM
Data 2. The empirical evaluations with Gaussian kernel

exp

(
−‖x− x

′‖2

σ2

)
, σ =

√∑
ij ‖xi − xj‖2

n
,

are given in the following table 1. From the above results on real data sets, we can find that Nyström
kernel k-means give the similar results as the original one, which also match the theoretical findings.

6 Conclusion

In this paper, we derive nearly optimal risk bounds for both kernel k-means and Nyström kernel
k-means of learning rate of O(

√
k/n), which fills the gap ignoring the optimal risk bounds for

(approximate) kernel k-means. Furthermore, we extend these results to general cases beyond ERM
and k-means++. Our result may provide a new perspective to study the optimal statistical properties
of unsupervised learning. In this paper we only derived the risk bounds of learning rate O(

√
k/n)

for the basic case. In the future, we will consider studying whether it is possible to prove a bound of
O(
√
k/n) under certain strict assumptions.
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Appendix: Upper Bound for the Clustering Rademacher Complexity

Let FC be a family of k-valued functions with

FC :=
{
fC = (fc1 , . . . , fck

) : C ∈ Hk
}
. (5)

Let ϕ : Rk → R be a minimum function:

∀α ∈ Rk, ϕ(α) = min
i=1,...,k

αi (6)

and GC be a “minimum" family of the functions FC,

GC : =
{
gC = ϕ ◦ fC

∣∣∣ fC ∈ FC, gC(x) = ϕ(fC(x))
}
. (7)

Definition 1 (Clustering Rademacher Complexity). Let GC be a family of functions defined in (7),
S = (x1, . . . ,xn) be a fixed sample of size n with elements in X , and D = {Φi = ψ(xi)}ni=1. Then,
the clustering empirical Rademacher complexity of GC with respect to D is defined by

Rn(GC) = Eσ

[
sup

gC∈GC

∣∣∣∣∣
n∑
i=1

σigC(xi)

∣∣∣∣∣
]
,

where σ1, . . . , σn are independent random variables with equal probability of taking values +1 or
−1. Its expectation isR(GC) = E [Rn(GC)] .

Based on the recently improvement of the upper bound of Rademacher complexity of L-Lipschitz
with respect to the L∞ norm [21], we provide a refined bound of clustering Rademacher complexity:
Lemma 3. If ∀x ∈ X , ‖Φx‖ ≤ 1, then, for any S = {x1, . . . ,xn} ∈ Xn, there exists a constant
c > 0 such that

Rn(GC) ≤ c
√
kmax

i
R̃n(FCi

) log2(
√
n),

where GC is a family of clustering functions defined in (7), FC is a family of k-valued functions
associate with the clustering center C = [c1, . . . , ck] defined in (5), FCi

is a family of the output
coordinate i of FC, and R̃n(FCi) = supS∈Xn Rn(FCi

).

The above result shows that the upper bound of the clustering Rademacher complexity is linearly
dependent on

√
k, which substantially improves the existing bounds linearly dependent on k.

Remark. The upper bound of the clustering Rademacher complexity involves a constant c and a
logarithmic term log(n). Thus, if one requires its absolute value to be smaller than the existing
bounds defined, there may exist some cases which acquire a large k. However, from a statistical
perspective, our bound with linear dependence on

√
k substantially improves the existing ones with

linear dependence on k.

In the following, we will show that Lemma 3 cannot be improved from a statistical view when
ignoring the logarithmic terms.
Lemma 4. There exists a set C ∈ Hk and data sequence D = {Φ1, . . . ,Φn} such that

Rn(GC) ≥
√
k

3
√

2
·max

i
R̃n(FCi).

Lemma 4 shows that the lower bound ofRn(GC) is Ω
(√
kmaxi R̃n(FCi

)
)
, which implies that the

upper bound of order Õ
(√
kmaxi R̃n(FCi

)
)

in Lemma 3 is (nearly) optimal when ignoring the
logarithmic terms

Remark. A lower bound linearly dependent on k for a k-valued function class F ⊆ {f : X → Rk}
has been given in [21],

Rn(φ ◦ F) ≥ k

2
√

2
·max

i
R̃n(φ ◦ Fi),

which does not match the upper bound of
√
k. However our bound in Lemma 4 does match.
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Appendix: Proof of Lemma 3

To prove Lemma 3, we first give the following two lemmas:
Lemma 5 (L∞ Contraction Inequality, Theorem 1 in [21]). Let F ⊆ {f : X → Rk}, and let
φ : Rk → R be L-Lipschitz with respect to the L∞ norm, that is ‖φ(v)−φ(v′)‖∞ ≤ L · ‖v−v′‖∞,
∀v,v′ ∈ Rk. For any a > 0, there exists a constantC > 0 such that if max{|φ(f(x))|, ‖f(x)‖∞} ≤
ρ, then

Rn(φ ◦ F) ≤ C · L
√
kmax

i
R̃n(Fi) log

3
2+a

(
ρn

maxi R̃n(Fi)

)
,

whereRn(φ ◦ F) = Eσ

[
supf∈F |

∑n
i=1 σiφ(f(xi))|

]
, R̃n(Fi) = supS∈Xn Rn(Fi).

Lemma 6 (Lemma 24(a) in [26] with p = 2). Let η1, . . . , ηn ∈ H, whereH is a Hilbert space with
‖ · ‖ being the associated norm. Let σ1, . . . , σn be a sequence of independent Rademacher variables.
Then, we have

Eσ

∥∥∥∥∥
n∑
i=1

σiηi

∥∥∥∥∥
2

≤
n∑
i=1

‖ηi‖2 (8)

and

E

∥∥∥∥∥
n∑
i=1

σiηi

∥∥∥∥∥ ≥
√

2

2

√√√√ n∑
i=1

‖ηi‖2. (9)

Proof of Lemma 3. We first show that the minimum function

ϕ(ν) = min(ν1, . . . , νk)

defined in (6) is 1-Lipschitz continuous with respect to the L∞-norm, that is

∀ν,ν′ ∈ Rk, |ϕ(ν)− ϕ(ν′)| ≤ ‖ν − ν′‖∞. (10)

Without loss of generality, we assume that ϕ(ν) ≥ ϕ(ν′). Let

j = arg min
i=1,...,k

ν′i,

then from the definition of ϕ, we know that ϕ(ν′) = ν′j . Thus, we can obtain that

|ϕ(ν)− ϕ(ν′)| = ϕ(ν)− ν′j
≤ νj − ν′j (by the fact that ϕ(ν) ≤ νj)
≤ ‖ν − ν′‖∞.

We then show that max{|ϕ(fC(x))|, ‖fC(x)‖∞} is bounded by a constant. From the definition of
fC (see Eq.(5)), we know that

fC(x) = (fc1(x) . . . , fck
(x)) and fcj (x) = ‖Φx − cj‖2.

Note that ‖Φx‖ ≤ 1 and cj ∈ H, so we have

‖cj‖ ≤ 1 and fcj
(x) ≤ 2‖Φx‖+ 2‖cj‖ ≤ 4,∀x ∈ X . (11)

Thus, one can see that

‖fC(x)‖∞ = max
j
|fcj (x)| ≤ 4 and |ϕ(fC(x))| = | min

j=1,...,k
fcj (x)| ≤ 4.

From the above analysis, we know that ϕ(ν) is 1-continuous with respect to the L∞-norm, and
max{|ϕ(fC(x))|, ‖fC(x)‖∞} ≤ 4. Thus, using Lemma 5 with L = 1, ρ = 4 and a = 1/2, we have

Rn(GC) ≤ C
√
kmax

i
R̃n(FCi

) log2

(
4n

maxi R̃n(FCi
)

)
. (12)
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Let
ci := sup

x∈X
sup

fc∈FCi

|fc(x)| and c = max{ci, i = 1, . . . , k}. (13)

From (11), we know that c is a constant and c ≤ 4. By definition of R̃n(FCi
), we can obtain that

∀j, R̃n(FCj
) = sup

S∈Xn

Eσ

[
sup

fc∈FCj

∣∣∣∣∣
n∑
i=1

σifc(xi)

∣∣∣∣∣
]

≥ sup
x∈X

Eσ

[
sup

fc∈FCj

∣∣∣∣∣
n∑
i=1

σifc(x)

∣∣∣∣∣
]

≥ sup
x∈X ,fc∈FCj

Eσ

∣∣∣∣∣
n∑
i=1

σifc(x)

∣∣∣∣∣ (by Jensen’s inequality)

≥
√

2n

2
sup

x∈X ,fc∈FCj

√
|fc(x)| (by Eq.(9) of Lemma 6)

=

√
2ncj

2
(by Eq.(13)).

(14)

Thus, one can see that maxi R̃n(FCi
) ≥

√
2cn
2 , where c = max{ci, i = 1, . . . , k}. So, we have

n
maxi R̃n(FCi

)
≤
√

2n
c . Plugging this into (12) proves the result.

Appendix: Proof of Theorem 1

To prove Theorem 1, we first give the following two lemmas:
Lemma 7. If ∀x ∈ X , ‖Φx‖ ≤ 1, then for all S ∈ Xn and C ∈ Hk, we have

max
i
R̃n(FCi

) ≤ 3
√
n.

Proof. ∀S ∈ Xn, C ∈ Hk and i ∈ {1, . . . , k}, we have

Rn(FCi
) =Eσ sup

fc∈FCi

∣∣∣∣∣∣
n∑
j=1

σjfc(xj)

∣∣∣∣∣∣
=Eσ sup

c∈H

∣∣∣∣∣∣
n∑
j=1

σj‖Φj − c‖2
∣∣∣∣∣∣

=Eσ sup
c∈H

∣∣∣∣∣∣
n∑
j=1

σj
[
−2〈Φj , c〉+ ‖c‖2 + ‖Φj‖2

]∣∣∣∣∣∣
=Eσ sup

c∈H

∣∣∣∣∣∣
n∑
j=1

σj
[
−2〈Φj , c〉+ ‖c‖2

]∣∣∣∣∣∣
≤2Eσ sup

c∈H

∣∣∣∣∣∣
n∑
j=1

σj〈Φj , c〉

∣∣∣∣∣∣+ Eσ sup
c∈H

∣∣∣∣∣∣
n∑
j=1

σj‖c‖2
∣∣∣∣∣∣ .

(15)

One can see that

Eσ sup
c∈H

∣∣∣∣∣∣
n∑
j=1

σj‖c‖2
∣∣∣∣∣∣ ≤ Eσ

∣∣∣∣∣∣
n∑
j=1

σj

∣∣∣∣∣∣ (since ‖c‖ ≤ 1)

≤

√√√√√Eσ

∣∣∣∣∣∣
n∑
j=1

σj

∣∣∣∣∣∣
2

≤
√
n (by Eq.(8) of Lemma 6),

(16)
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and

Eσ sup
c∈H

∣∣∣∣∣∣
n∑
j=1

σj〈Φj , c〉

∣∣∣∣∣∣ =Eσ sup
c∈H

∣∣∣∣∣∣
〈

n∑
j=1

σjΦj , c

〉∣∣∣∣∣∣
≤Eσ

∥∥∥∥∥∥
n∑
j=1

σjΦj

∥∥∥∥∥∥ (by ‖c‖ ≤ 1)

≤

√√√√√Eσ

∥∥∥∥∥∥
n∑
j=1

σjΦj

∥∥∥∥∥∥
2

≤

√√√√ n∑
i=1

‖Φi‖2 (by Eq.(8) of Lemma 6)

≤
√
n (since ‖Φi‖ ≤ 1).

(17)

Substituting (16) and (17) into (15), we can prove the result.

To prove Theorem 1, we first propose the following lemma:

Lemma 8. For any δ ∈ (0, 1), with probability 1− δ, there exists a constant c > 0, such that

R(GC) ≤ c
√
kn log2

(√
n
)

+

√
2n log

(
1

δ

)
.

Proof. From [42] or [8], with probability 1− δ, we have

R(GC) ≤ Rn(GC) +

√
2n log

(
1

δ

)
. (18)

Thus, we have

R(GC)

≤Rn(GC) +

√
2n log

(
1

δ

)

≤c
√
kmax

i
R̃n(FCi

) log2
(√
n
)

+

√
2n log

(
1

δ

)
(by Lemma 3)

≤3c
√
kn log2

(√
n
)

+

√
2n log

(
1

δ

)
. (by Lemma 7)

Proof of Theorem 1. The starting point of our analysis is the following elementary inequality (see
Ch.8 in [17] or page 2 in [16]):

E[W(Cn,P)]−W∗(P)

=E [W(Cn,P)−W(Cn,Pn)] + E [W(Cn,Pn)]−W∗(P)

≤E [W(Cn,P)−W(Cn,Pn)] + E [W(C∗,Pn)]−W∗(P)

(W(Cn,Pn) ≤ W(C∗,Pn) as Cn is optimal w.r.t. W(·,Pn))

≤E sup
C∈Hk

(
W(C,P)−W(C,Pn)

)
+ sup

C∈Hk

E [W(C,Pn)−W(C,P)]

≤2E sup
C∈Hk

∣∣W(C,Pn)−W(C,P)
∣∣.

(19)

17



Let x′1, . . . ,x
′
n be a copy of x1, . . . ,xn, independent of the σi’s. Then, by a standard symmetrization

argument [8] (can also be seen in the proof of Lemma 4.3 of [16]), we can write

E sup
C∈Hk

∣∣W(C,Pn)−W(C,P)
∣∣ ≤E sup

gC∈GC

∣∣∣∣∣ 1n
n∑
i=1

σi [gC(x)− gC(x′)]

∣∣∣∣∣
≤2E sup

gC∈GC

∣∣∣∣∣ 1n
n∑
i=1

σigC(x)

∣∣∣∣∣ =
2

n
R(GC).

(20)

Thus, we can obtain that

E [W(Cn,P)]−W∗(P) ≤ 4

n
R(GC) (by Eq.(19) and Eq.(20))

≤4c

√
k

n
log2

(√
n
)

+ 4

√
2 log 1

δ

n
(by Lemma 8).

This proves the result.

Appendix: Proof of Theorem 2

Proof. Note that

E[W(C̃n,P)]−W∗(P)

=E
[
W(C̃n,P)−W(C̃n,Pn)

]
︸ ︷︷ ︸

A1

+E
[
W(C̃n,Pn)−W(Cn,Pn)

]
︸ ︷︷ ︸

A2

+ E
[
W(Cn,Pn)−W(Cn,P)

]
︸ ︷︷ ︸

A3

+E
[
W(Cn,P)

]
−W∗(P)︸ ︷︷ ︸

A4

.

Also note that A2 is bounded by ζ , and A4 can be obtained from Theorem 1. From Eq.(20), we know
that A1 and A3 can be bounded by the Rademacher complexity:

A1 ≤ E sup
C∈Hk

|W(C,Pn)−W(C,P)| ≤ 2

n
R(GC),

A3 ≤ E sup
C∈Hk

|W(C,Pn)−W(C,P)| ≤ 2

n
R(GC).

Thus, we can obtain that

E[W(C̃n,P)]−W∗(P) ≤ 4

n
R(GC) + c

√
k

n
log2

(√
n
)

+ c

√
log 1

δ

n
+ ζ. (21)

Substituting Lemma 8 into Eq.(21), we can proves the result.

Appendix: Proof of Theorem 3

Proof. Note that

E
[
EA[W(CAn ,P)]

]
= E

[
EA[W(CAn ,P)]− EA[W(CAn ,Pn)]

]
+ E

[
EA[W(CAn ,Pn)]

]
.

From Lemma 2, we can obtain that

E
[
EA[W(CAn ,Pn)]

]
≤ β · E[W(Cn,Pn)]

= β · E
[
W(Cn,Pn)−W(Cn,P)

]
+ β · E

[
W(Cn,P)

]
.

18



Thus, we can obtain that

E
[
EA[W(CAn ,P)]

]
≤E

[
EA[W(CAn ,P)]− EA[W(CAn ,Pn)]

]
︸ ︷︷ ︸

A1

+ β · E
[
W(Cn,Pn)−W(Cn,P)

]
︸ ︷︷ ︸

A2

+β · E
[
W(Cn,P)

]
︸ ︷︷ ︸

A3

.
(22)

Note that

A1, A2 ≤E sup
C∈Hk

∣∣W(C,Pn)−W(C,P)
∣∣

≤ 2

n
R(GC) (by Eq.(20))

≤Õ

(√
k

n

)
. (by Lemma 8)

(23)

By Theorem 1, we can obtain that

E[W(Cn,P)] ≤ W∗(P) + c

√
k

n
log2

(√
n
)

+ c

√
log 1

δ

n
.

Substituting the above inequality and Eq.(23) into Eq.(22), we have

E
[
EA[W(CAn ,Pn)]

]
≤ Õ

(√
k

n
+W∗(P)

)
.

Appendix: Proof of Theorem 4

To prove Theorem 4, we first propose the following lemma:
Lemma 9. With probability at least 1− δ, we have

E [W(Cn,m,Pn)−W(Cn,m,P)] ≤ Õ

(√
k

n

)
.

Proof. Note that

E [W(Cn,m,Pn)−W(Cn,m,P)] ≤E sup
C∈Hk

|W(C,Pn)−W(C,P)|

≤ 2

n
R(GC) (by Eq.(20))

=Õ

(√
k

n

)
(by Lemma 8).

This proves the result.

Lemma 10. If constructing I by uniformly sampling

m ≥ C
√
n log(1/δ) min(k,Ξ)/

√
k,

then for all S ∈ Xn, with probability at least 1− δ, we have

W(Cn,m,Pn)−W(Cn,Pn) ≤ C
√
k

n
,

where Ξ = Tr(Kn(Kn + In)−1) is the effective dimension of Kn, and C is a constant.
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Proof. This can be directly proved by combining Lemma 1 and Lemma 2 of [9] by setting ε =
1/2.

Proof of Theorem 4. Note that
E[W(Cn,m,P)]−W∗(P)

=E[W(Cn,m,P)−W(Cn,m,Pn)]︸ ︷︷ ︸
A1

+E[W(Cn,m,Pn)−W(Cn,Pn)]︸ ︷︷ ︸
A2

+ E[W(Cn,Pn)−W(Cn,P)]︸ ︷︷ ︸
A3

+E[W(Cn,P)]−W∗(P)︸ ︷︷ ︸
A4

.

Note that
A3 ≤E sup

C∈Hk

∣∣W(C,Pn)−W(C,P)
∣∣

≤ 2

n
R(GC) (by Eq.(20))

≤Õ

(√
k

n

)
. (by Lemma 8)

(24)

One can see thatA4 can be bounded by Õ(
√
k/n) using Theorem 1. A1 andA2 can both be bounded

as Õ(
√
k/n) using Lemma 9 and Lemma 10, respectively.

Appendix: Proof of Theorem 5

Proof. From the definition of effective dimension, we have

Ξ =Tr(KT(K + I)−1) =

n∑
i=1

λi
λi + 1

=

b
√
kc∑

i=1

λi
λi + 1

+

n∑
i=b
√
kc+1

λi
λi + 1

≤
b
√
kc∑

i=1

1 +

n∑
i=b
√
kc+1

λi

≤
√
k +

n∑
i=b
√
kc+1

λi ≤
√
k +

n∑
i=b
√
kc+1

ci−α

≤
√
k + c

∫ ∞
√
k

x−αdx =
√
k +

c

α− 1

√
k
1−α

≤
(

1 +
c

α− 1

)√
k.

Thus, we can obtain that
min(k,Ξ)√

k
≤ Ξ√

k
≤ 1 +

c

α− 1
.

Substituting the above inequality into Theorem 4, we can prove this result.

Appendix: Proof of Theorem 6

Proof. Note that
E[W(C̃m,n,P)]−W∗(P)

=E
[
W(C̃m,n,P)−W(C̃m,n,Pn)

]
︸ ︷︷ ︸

A1

+E
[
W(C̃m,n,Pn)−W(Cm,n,Pn)

]
︸ ︷︷ ︸

A2

+ E
[
W(Cm,n,Pn)−W(Cm,n,P)

]
︸ ︷︷ ︸

A3

+E
[
W(Cm,n,P)

]
−W∗(P)︸ ︷︷ ︸

A4

.
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Also note that A2 is bounded by ζ, A4 can be obtained from Theorem 5, and A1 and A3 can be
bounded by the Rademacher complexity:

A1, A3 ≤ E sup
C∈Hk

|W(C,Pn)−W(C,P)| ≤ 2

n
R(GC).

Thus, we can obtain that

E[W(C̃n,P)]−W∗(P) = Õ

(
R(GC)

n
+

√
k

n
+ ζ

)
. (25)

Substituting Lemma 8 into Eq. (25), we can proves the result.

Appendix: Proof of Theorem 7

Proof. Note that

E
[
EA[W(CAn,m,P)]

]
= E

[
EA[W(CAn,m,P)]− EA[W(CAn,m,Pn)]

]
+ E

[
EA[W(CAn,m,Pn)]

]
.

By Lemma 2, we can obtain that

E
[
EA[W(CAn,m,Pn)]

]
≤ β · E [W(Cn,m,Pn)]

=β · E [W(Cn,m,Pn)−W(Cn,m,P)] + β · E [W(Cn,m,P)] .

Thus, we can obtain that

E
[
EA[W(CAn,m,P)]

]
≤E

[
EA[W(CAn,m,P)]− EA[W(CAn,m,Pn,m)]

]
︸ ︷︷ ︸

A1

+ β · E
[
W(Cn,m,Pn,m)−W(Cn,m,P)

]
︸ ︷︷ ︸

A2

+β · E
[
W(Cn,m,P)

]
︸ ︷︷ ︸

A3

.

Note that

A1, A2 ≤ E sup
C∈Hk

∣∣W(C,Pn)−W(C,P)
∣∣

≤ 2

n
R(GC) (by Eq. (20))

=Õ

(√
k

n

)
(by Lemma 8).

By Corollary 5, A3 can be bounded:

A3 = E[W(Cn,m,P)] ≤ W∗(P) + c

√
k

n
log2

(√
n
)
.

This proves the result.

Appendix: Proof of Lemma 4

We first prove that the maximum Rademacher complexity can be bounded by 3
√
n. Then, following

the same idea as [21] and using the Khintchine inequality [22], we show that there exists a hypothesis

function FC such thatRn(GC) ≥
√

kn
2 .

Lemma 11 (Khintchine inequality with p = 1 in [22]). Let σ1, . . . , σn be Rademacher variables
with equal probability of taking values +1 or −1. Then, we have Eσ |

∑n
i=1 σi| ≥

√
n
2 .
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Proof of Lemma 4. Let ε1, . . . , εk be independent random variables with equal probability of taking
values +1 or −1. Let C = (ε1ν1, . . . , εkνk), where νi is the ith standard basis function inH, that is
〈νi,νj〉 = 1 if i = j, otherwise 0. We choose the hypothesis space

FC =
{
fC = (fε1ν1

, . . . , fεkνk
)
∣∣∣fεiνi

(x) = ‖Φx − εiνi‖2, ε ∈ {±1}k
}
. (26)

Assume that n is divisible by k. We set Φ1, . . . ,Φn/k = ν1,Φ(n+1)/k, . . . ,Φ2n/k = ν2, . . . , and so
on, and let it be the index such that Φt = νit . Let σ′ ∈ {±1}n be Rademacher variables. From the
definition of clustering Rademacher complexity, we can obtain that

Rn(GC) = Rn(ϕ ◦ FC)

=Eσ′∈{±1}n sup
ε∈{±1}k

∣∣∣∣∣
n∑
t=1

σ′t min
1≤i≤k

‖Φt − εiνi‖2
∣∣∣∣∣

=Eσ′∈{±1}n sup
ε∈{±1}k

∣∣∣∣∣
n∑
t=1

σ′t min
1≤i≤k

(2− 2〈Φt, εiνi〉)

∣∣∣∣∣
(since Φt = νit and νi is the ith standard basis function inH)

=2Eσ′∈{±1}n sup
ε∈{±1}k

∣∣∣∣∣
n∑
t=1

σ′t max
1≤i≤k

〈Φt, εiνi〉

∣∣∣∣∣
=2Eσ′∈{±1}n sup

ε∈{±1}k

∣∣∣∣∣
n∑
t=1

σ′t max{εit , 0}

∣∣∣∣∣
≥2Eσ′∈{±1}n sup

ε∈{±1}k

n∑
t=1

σ′t max{εit , 0}

=2k · Eσ′∈{±1}n/k sup
ε∈{±1}

n/k∑
t=1

σ′t max{ε, 0}

=2k · 1

2
Eσ′∈{±1}n/k

∣∣∣∣∣∣
n/k∑
t=1

σ′t

∣∣∣∣∣∣ ≥ k
√

n

2k
(by Lemma 11)

=

√
nk

2
.

(27)

From Lemma 7, we know that

max
i
R̃n(FCi) ≤ 3

√
n.

Thus, by the above upper bounds the lower bound (Eq.(27)), we can prove that there exists a
hypothesis space FC defined in (26), such that

Rn(GC) ≥
√
k

3
√

2
·max

i
R̃n(FCi

).

This proves the result.
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