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Topic modeling provides a powerful way to analyze the content of a collection of documents. It has become a
popular tool in many research areas, such as text mining, information retrieval, natural language process-
ing, and other related fields. In real-world applications, however, the usefulness of topic modeling is limited
due to scalability issues. Scaling to larger document collections via parallelization is an active area of re-
search, but most solutions require drastic steps, such as vastly reducing input vocabulary. In this article we
introduce Regularized Latent Semantic Indexing (RLSI)—including a batch version and an online version,
referred to as batch RLSI and online RLSI, respectively—to scale up topic modeling. Batch RLSI and online
RLSI are as effective as existing topic modeling techniques and can scale to larger datasets without reducing
input vocabulary. Moreover, online RLSI can be applied to stream data and can capture the dynamic evolu-
tion of topics. Both versions of RLSI formalize topic modeling as a problem of minimizing a quadratic loss
function regularized by �1 and/or �2 norm. This formulation allows the learning process to be decomposed
into multiple suboptimization problems which can be optimized in parallel, for example, via MapReduce. We
particularly propose adopting �1 norm on topics and �2 norm on document representations to create a model
with compact and readable topics and which is useful for retrieval. In learning, batch RLSI processes all the
documents in the collection as a whole, while online RLSI processes the documents in the collection one by
one. We also prove the convergence of the learning of online RLSI. Relevance ranking experiments on three
TREC datasets show that batch RLSI and online RLSI perform better than LSI, PLSI, LDA, and NMF, and
the improvements are sometimes statistically significant. Experiments on a Web dataset containing about
1.6 million documents and 7 million terms, demonstrate a similar boost in performance.
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5:2 Q. Wang et al.

1. INTRODUCTION

Topic modeling refers to a suite of algorithms whose aim is to discover the hidden
semantic structure in large archives of documents. Recent years have seen signifi-
cant progress on topic modeling technologies in text mining, information retrieval,
natural language processing, and other related fields. Given a collection of text doc-
uments, each represented as a term vector, a topic model represents the relationship
between terms and documents through latent topics. A topic is defined as a proba-
bility distribution over terms or a cluster of weighted terms. A document is viewed
as a bag of terms generated from a mixture of latent topics.1 Various topic modeling
methods, such as Latent Semantic Indexing (LSI) [Deerwester et al. 1990], Probabilis-
tic Latent Semantic Indexing (PLSI) [Hofmann 1999], and Latent Dirichlet Alloca-
tion (LDA) [Blei et al. 2003] have been proposed and successfully applied to different
problems.

When applied to real-world tasks, especially to Web applications, the usefulness of
topic modeling is often limited due to scalability issues. For probabilistic topic modeling
methods like LDA and PLSI, the scalability challenge mainly comes from the necessity
of simultaneously updating the term-topic matrix to meet the probability distribution
assumptions. When the number of terms is large, which is inevitable in real-world
applications, this problem becomes particularly severe. For LSI, the challenge is due
to the orthogonality assumption in the formulation, and as a result, the problem needs
to be solved by singular value decomposition (SVD) and thus is hard to be parallelized.
A typical approach is to approximate the learning process of an existing topic model,
but this often tends to affect the quality of the learned topics.

In this work, instead of modifying existing methods, we introduce two new topic
modeling methods that are intrinsically scalable: batch Regularized Latent Semantic
Indexing (batch RLSI or bRLSI) for batch learning of topic models and online Regu-
larized Latent Semantic Indexing (online RLSI or oRLSI) for online learning of topic
models. In both versions of RLSI, topic modeling is formalized as minimization of a
quadratic loss function regularized by �1 and/or �2 norm. Specifically, the text collection
is represented as a term-document matrix, where each entry represents the occurrence
(or tf-idf score) of a term in a document. The term-document matrix is then approxi-
mated by the product of two matrices: a term-topic matrix which represents the latent
topics with terms and a topic-document matrix which represents the documents with
topics. Finally, the quadratic loss function is defined as the squared Frobenius norm of
the difference between the term-document matrix and the output of the topic model.
Both �1 norm and �2 norm may be used for regularization. We particularly propose us-
ing �1 norm on topics and �2 norm on document representations, which can result in a
model with compact and readable topics and which is useful for retrieval. Note that we
call our new approach RLSI because it makes use of the same quadratic loss function
as LSI. RLSI differs from LSI in that it uses regularization rather than orthogonality
to constrain the solutions.

In batch RLSI, the whole document collection is represented in the term-document
matrix, and a topic model is learned from the matrix data. The algorithm iteratively
updates the term-topic matrix with the topic-document matrix fixed and updates the
topic-document matrix with the term-topic matrix fixed. The formulation of batch RLSI
makes it possible to decompose the learning problem into multiple suboptimization
problems and conduct learning in parallel. Specifically, for both the term-topic ma-
trix and the topic-document matrix, the updates in each iteration are decomposed

1We could train a topic model with phrases. In this article, we take words as terms and adopt the bag of
words assumption.
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into many suboptimization problems. These suboptimization problems can be solved
in parallel, which is the main reason that batch RLSI can scale up. We also propose
an implementation of batch RLSI on MapReduce [Dean et al. 2004]. The MapReduce
system maps the suboptimization problems over multiple processors and then reduces
the results from the processors. During this process, the documents and terms are
automatically distributed and processed.

In online RLSI, the documents are input in a data stream and processed in a serial
fashion. Online RLSI is a stochastic approximation of batch RLSI. It incrementally
builds the topic model when new documents keep coming and thus is capable of cap-
turing the evolution of the topics. Given a new document (or a set of new documents),
online RLSI predicts the topic vector(s) of the new document(s) given the previously
learned term-topic matrix and then updates the term-topic matrix based on the new
document(s) and the predicted topic vector(s). The formulation of online RLSI makes it
possible to decompose the learning problem into multiple suboptimization problems as
well. Furthermore, online learning can make the algorithm scale up to larger datasets
with limited storage. In that sense, online RLSI has an even better scalability than
batch RLSI.

Regularization is a well-known technique in machine learning. In our setting, if we
employ �2 norm on topics and �1 norm on document representations, batch RLSI be-
comes (batch) Sparse Coding (SC) [Lee et al. 2007; Olshausen and Fieldt 1997] and on-
line RLSI becomes online SC [Mairal et al. 2010], which are methods used in computer
vision and other related fields. However, regularization for topic modeling has not been
widely studied in terms of the performance of different norms or their scalability ad-
vantages. As far as we know, this is the first comprehensive study of regularization for
topic modeling of text data.

We also show the relationships between RLSI and existing topic modeling tech-
niques. From the viewpoint of optimization, RLSI and existing methods, such as LSI,
SC, and Nonnegative Matrix Factorization (NMF) [Lee and Seung 1999; 2001] are
algorithms that optimize different loss functions which can all be represented as spec-
ifications of a general loss function. RLSI does not have an explicit probabilistic formu-
lation, like PLSI and LDA. However, we show that RLSI can be implicitly represented
as a probabilistic model, like LSI, SC, and NMF.

Experimental results on a large Web dataset show that (1) RLSI can scale up well
and help improve relevance ranking accuracy. Specifically, we show that batch RLSI
and online RLSI can efficiently run on 1.6 million documents and 7 million terms on
16 distributed machines. In contrast, existing methods on parallelizing LDA were only
able to work on far fewer documents and/or far fewer terms. Experiments on three
TREC datasets show that (2) the readability of RLSI topics is equal to or better than
the readability of those learned by LDA, PLSI, LSI, and NMF. (3) RLSI topics can be
used in retrieval with better performance than LDA, PLSI, LSI, and NMF (sometimes
statistically significant). (4) The best choice of regularization is �1 norm on topics and
�2 norm on document representations in terms of topic readability and retrieval perfor-
mance. (5) Online RLSI can effectively capture the evolution of the topics and is useful
for topic tracking.

Our main contributions in this article lie in that 1) we have first replaced the orthog-
onality constraint in LSI with �1 and/or �2 regularization, showing that the regularized
LSI (RLSI) scales up better than existing topic modeling techniques, such as LSI, PLSI,
and LDA; and (2) we have first examined the performance of different norms, showing
that �1 norm on topics and �2 norm on document representations performs best. This
article is an extension of our previous conference article [Wang et al. 2011]. Additional
contributions of the article include the following points. (1) The online RLSI algorithm
is proposed and its theoretical properties are studied; (2) the capability of online RLSI
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on dynamic topic modeling is empirically verified; and (3) a theoretical comparison of
batch RLSI and online RLSI is given.

The rest of the article is organized as follows. After a summary of related work in
Section 2, we discuss the scalability problem of topic modeling on large-scale text data
in Section 3. In Sections 4 and 5, we propose batch RLSI and online RLSI, two new
approaches to scalable topic modeling, respectively. Their properties are discussed in
Section 6. Section 7 introduces how to apply RLSI to relevance ranking, and Section 8
presents the experimental results. Finally, we draw our conclusions in Section 9.

2. RELATED WORK

2.1. Topic Modeling

The goal of topic modeling is to automatically discover the hidden semantic structure of
a document collection. Studies on topic modeling fall into two categories: probabilistic
approaches and non-probabilistic approaches.

In the probabilistic approaches, a topic is defined as a probability distribution over
a vocabulary, and documents are defined as data generated from mixtures of topics.
To generate a document, one chooses a distribution over topics. Then, for each term in
that document, one chooses a topic according to the topic distribution and draws a term
from the topic according to its term distribution. PLSI [Hofmann 1999] and LDA [Blei
et al. 2003] are two widely used probabilistic approaches to topic modeling. One of the
advantages of the probabilistic approaches is that the models can easily be extended.
Many extensions of LDA have been developed. For a survey on the probabilistic topic
models, please refer to Blei [2011] and Blei and Lafferty [2009].

In the non-probabilistic approaches, each document is represented as a vector of
terms, and the term-document matrix is approximated as the product of a term-topic
matrix and a topic-document matrix under some constraints. One interpretation of
these approaches is to project the term vectors of documents (the term-document
matrix) into a K-dimensional topic space in which each axis corresponds to a topic. LSI
[Deerwester et al. 1990] is a representative model. It decomposes the term-document
matrix under the assumption that topic vectors are orthogonal, and SVD is employed
to solve the problem. NMF [Lee and Seung 1999; 2001] is an approach similar to LSI.
In NMF, the term-document matrix is factorized under the constraint that all entries
in the matrices are equal to or greater than zero. Sparse Coding (SC) [Lee et al. 2007;
Olshausen and Fieldt 1997], which is used in computer vision and other related fields,
is a technique similar to RLSI but with �2 norm on the topics and �1 norm on the
document representations. A justification of SC can be made from neuron science
[Olshausen and Fieldt 1997].

It has been demonstrated that topic modeling is useful for knowledge discovery, rel-
evance ranking in search, and document classification [Lu et al. 2011; Mimno and
McCallum 2007; Wei and Croft 2006; Yi and Allan 2009]. In fact, topic modeling is be-
coming one of the important technologies in text mining, information retrieval, natural
language processing, and other related fields.

One important issue of applying topic modeling to real-world problems is to scale up
the algorithms to large document collections. Most efforts to improve topic modeling
scalability have modified existing learning methods, such as LDA. Newman et al.
proposed Approximate Distributed LDA (AD-LDA) [2008] in which each processor
performs a local Gibbs sampling followed by a global update. Two recent papers
implemented AD-LDA as PLDA [Wang et al. 2009] and modified AD-LDA as PLDA+
[Liu et al. 2011], using MPI [Thakur and Rabenseifner 2005] and MapReduce [Dean
et al. 2004]. Asuncion et al. [2011] proposed purely asynchronous distributed LDA
algorithms based on Gibbs sampling or Bayesian inference, called Async-CGB or
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Async-CVB, respectively. In Async-CGB and Async-CVB, each processor performs
a local computation followed by a communication with other processors. In all the
methods, the local processors need to maintain and update a dense term-topic matrix,
usually in memory, which becomes a bottleneck for improving the scalability. Online
versions of stochastic LDA were proposed [AlSumait et al. 2008; Hoffman et al. 2010;
Mimno et al. 2010] For other related work, please refer to Mimno and McCallum
[2007], Smola and Narayanamurthy [2010], and Yan et al. [2009].

In this article, we propose a new topic modeling method which can scale up to large
text corpora. The key ingredient of our method is to make the formulation of learning
decomposable, thus making the process of learning parallelizable.

2.2. Regularization and Sparsity

Regularization is a common technique in machine learning to prevent over-fitting. Typ-
ical examples of regularization include the uses of �1 and �2 norms.

Regularization via �2 norm uses the sum of squares of parameters and thus can
make the model smooth and effectively deal with over-fitting. Regularization via �1
norm, on the other hand, uses the sum of absolute values of parameters and thus has
the effect of causing many parameters to be zero and selecting a sparse model [Fu
1998; Osborne et al. 2000; Tibshirani 1996].

Sparse methods using �1 regularization which aim to learn sparse representations
(simple models) from the data have received a lot of attention in machine learning,
particularly in image processing (e.g., [Rubinstein et al. 2008]). Sparse Coding (SC)
algorithms [Lee et al. 2007; Olshausen and Fieldt 1997], for example, are proposed to
discover basis functions that capture high-level features in the data and find succinct
representations of the data at the same time. Similar sparse mechanism has been
observed in biological neurons of human brains, thus SC is a plausible model of visual
cortex as well. When SC is applied to natural images, the learned bases resemble the
receptive fields of neurons in the visual cortex [Olshausen and Fieldt 1997].

In this article we propose using sparse methods (�1 regularization) in topic modeling,
particularly to make the learned topics sparse. One notable advantage of making top-
ics sparse is its ability to automatically select the most relevant terms for each topic.
Moreover, sparsity leads to less memory usage for storing the topics. Such advantages
make it an appealing choice for topic modeling. Wang and Blei [2009] suggested dis-
covering sparse topics with a modified version of LDA, where a Bernoulli variable is
introduced for each term-topic pair to determine whether or not the term appears in
the topic. Shashanka et al. [2007] adopted the PLSI framework and used an entropic
prior in a maximum a posterior formulation to enforce sparsity. Two recent papers
chose non-probabilistic formulations. One is based on LSI [Chen et al. 2010] and the
other is based on a two-layer sparse coding model [Zhu and Xing 2011] which can
directly control the sparsity of learned topics by using the sparsity-inducing �1 regu-
larizer. However, none of these sparse topic models scales up well to large document
collections. Wang and Blei [2009] and Shashanka et al. [2007] are based on the proba-
bilistic topic models of LDA and PLSI, respectively, whose scalabilities are limited due
to the necessity of maintaining the probability distribution constraints. Chen et al.
[2010] is based on LSI, whose scalability is limited due to the orthogonality assump-
tion. Zhu and Xing [2011] learn a topic representation for each document as well as
each term in the document, and thus the computational cost is high.

3. SCALABILITY OF TOPIC MODELS

One of the main challenges in topic modeling is to scale up to millions of documents
or even more. As collection size increases, so does vocabulary size, rather than a maxi-
mum vocabulary being reached. For example, in the 1.6 million Web documents in our
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experiment, there are more than 7 million unique terms even after pruning the low
frequency ones (e.g., with term frequency in the whole collection less than 2).

LSI needs to be solved by SVD due to the orthogonality assumption. The time com-
plexity of computing SVD is normally O

(
min

{
MN2, NM2

})
, where M denotes the

number of rows of the input matrix and N denotes the number of columns. Thus, it
appears to be very difficult to make LSI scalable and efficient.

For PLSI and LDA, it is necessary to maintain the probability distribution con-
straints of the term-topic matrix. When the matrix is large, there is a cost for main-
taining the probabilistic framework. One possible solution is to reduce the number of
terms, but the negative consequence is that it can sacrifice learning accuracy.

How to make existing topic modeling methods scalable is still a challenging problem.
In this article, we adopt a novel approach called RLSI which can work equally well or
even better than existing topic modeling methods but is scalable by design. We propose
two versions of RLSI: one is batch learning and the other online learning.

4. BATCH REGULARIZED LATENT SEMANTIC INDEXING

4.1. Problem Formulation

Suppose we are given a set of documents D with size N containing terms from a vo-
cabulary V with size M. A document is simply represented as an M-dimensional vector
d, where the mth entry denotes the weight of the mth term, for example, a Boolean
value indicating occurrence, term frequency, tf-idf, or joint probability of the term and
document. The N documents in D are then represented as an M × N term-document
matrix D =

[
d1, · · · , dN

]
in which each row corresponds to a term and each column

corresponds to a document.
A topic is defined over terms in the vocabulary and is also represented as an M-

dimensional vector u, where the mth entry denotes the weight of the mth term in
the topic. Intuitively, the terms with larger weights are more indicative to the topic.
Suppose that there are K topics in the collection. The K topics can be summarized into
an M × K term-topic matrix U =

[
u1, · · · , uK

]
in which each column corresponds to a

topic.
Topic modeling means discovering the latent topics in the document collection as

well as modeling the documents by representing them as mixtures of the topics.
More precisely, given topics u1, · · · , uK , document dn is succinctly represented as
dn ≈

∑K
k=1 vknuk = Uvn, where vkn denotes the weight of the kth topic uk in document

dn. The larger value of vkn, the more important role topic uk plays in the document.
Let V =

[
v1, · · · , vN

]
be the topic-document matrix, where column vn stands for the

representation of document dn in the latent topic space. Table I gives a summary of
notations.

Different topic modeling techniques choose different schemas to model matrices U
and V and impose different constraints on them. For example, in the generative topic
models, such as PLSI and LDA, topics u1, · · · , uK are probability distributions so that∑M

m=1 umk = 1 for k = 1, · · · , K; document representations v1, · · · , vN are also proba-
bility distributions so that

∑K
k=1 vkn = 1 for n = 1, · · · , N. In LSI, topics u1, · · · , uK are

assumed to be orthogonal. Please note that in LSI, the input matrix D is approximated
as UΣΣΣV, where ΣΣΣ is a K × K diagonal matrix, as shown in Figure 1.

Regularized Latent Semantic Indexing (RLSI) learns latent topics as well as
representations of documents from the given text collection in the following way.
Document dn is approximated as Uvn, where U is the term-topic matrix and vn is the
representation of dn in the latent topic space. The goodness of the approximation is
measured by the squared �2 norm of the difference between dn and Uvn : ‖dn – Uvn‖2

2.

ACM Transactions on Information Systems, Vol. 31, No. 1, Article 5, Publication date: January 2013.



Regularized Latent Semantic Indexing 5:7

Table I. Table of Notations

Notation Meaning

M Number of terms in vocabulary
N Number of documents in collection
K Number of topics
D ∈ R

M×N Term-document matrix
[
d1, · · · , dN

]
dn The nth document
dmn Weight of the mth term in document dn

U ∈ R
M×K Term-topic matrix [u1, · · · , uK ]

uk The kth topic
umk Weight of the mth term in topic uk

V ∈ R
K×N Topic-document matrix [v1, · · · , vN ]

vn Representation of dn in the topic space
vkn Weight of the kth topic in vn

Fig. 1. LSI approximates the input tf-idf matrix D with UΣΣΣV.

Fig. 2. Batch RLSI approximates the input tf-idf matrix D with UV.

Furthermore, regularization is imposed on topics and document representations.
Specifically, we suggest �1 regularization on term-topic matrix U (i.e., topics u1, · · · ,
uK ) and �2 on topic-document matrix V (i.e., document representations v1, · · · , vN) to
favor a model with compact and readable topics and useful for retrieval.

Thus, given a text collection D = {d1, . . . , dN}, batch RLSI amounts to solving the
following optimization problem.

min
U,{vn}

N∑
n=1

‖dn – Uvn‖2
2 + λ1

K∑
k=1

‖uk‖1 + λ2

N∑
n=1

‖vn‖2
2 , (1)

where λ1 ≥ 0 is the parameter controlling the regularization on uk: the larger value
of λ1, the more sparse uk; and λ2 ≥ 0 is the parameter controlling the regulariza-
tion on vn: the larger value of λ2, the larger amount of shrinkage on vn. From the
viewpoint of matrix factorization, batch RLSI approximates the input term-document
matrix D with the product of the term-topic matrix U and the topic-document matrix
V, as shown in Figure 2.

In general, the regularization on topics and document representations (i.e., the
second term and the third term) can be either �1 norm or �2 norm. When they are
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�2 and �1, respectively, the method is equivalent to that of Sparse Coding [Lee et al.
2007; Olshausen and Fieldt 1997]. When both of them are �1, the model is similar to
the double sparse model proposed in Rubinstein et al. [2008].2

4.2. Regularization Strategy

We propose using the preceding formulation (i.e., regularization via �1 norm on topics
and �2 norm on document representations), because according to our experiments, this
regularization strategy leads to a model with more compact and readable topics that
is more effective for retrieval.

First, �1 norm on topics has the effect of making them compact. We do this under the
assumption that the essence of a topic can be captured via a small number of terms,
which is reasonable in practice. In many applications, small and concise topics are
more useful. For example, small topics can be interpreted as sets of synonyms roughly
corresponding to the WordNet synsets used in natural language processing. In learning
and utilization of topic models, topic sparsity means that we can efficiently store and
process topics. We can also leverage existing techniques on sparse matrix computation
[Buluc and Gilbert 2008; Liu et al. 2010], which are efficient and scalable.

Second, �2 norm on document representations addresses the “term mismatch” prob-
lem better than �1 regularization when applied to relevance ranking. This is because
when �1 regularization is imposed on V, the document and query representations in
the topic space will become sparse, and as a result, the topic matching scores will not
be reliable enough. In contrast, �2 regularization on V will make the document and
query representations in the topic space “smooth,” thus matching in the topic space
can be conducted more effectively.

We test all four ways of combining �1 and �2 norms on topics and document repre-
sentations on multiple datasets and find that the best performance, in terms of topic
readability and ranking accuracy, is achieved with �1 norm on topics and �2 norm on
document representations.

4.3. Optimization

The optimization in Eq. (1) is not jointly convex with respect to the two variables U
and V. However, it is convex with respect to one of them when the other one is fixed.
Following the practice in Sparse Coding [Lee et al. 2007], we optimize the function
in Eq. (1) by alternately minimizing it with respect to term-topic matrix U and topic-
document matrix V. This procedure is summarized in Algorithm 1, which converges to
a local minimum after a certain number (e.g., 100) of iterations according to our exper-
iments. Note that for simplicity, we describe the algorithm when �1 norm is imposed
on topics and �2 norm on document representations; one can easily extend it to other
regularization strategies.

4.3.1. Update of Matrix U. Holding V =
[
v1, · · · , vN

]
fixed, the update of U amounts to

the following optimization problem.

min
U

‖D – UV‖2
F + λ1

M∑
m=1

K∑
k=1

|umk| ,

where ‖ · ‖F is the Frobenius norm and umk is the (mk)th entry of U. Let d̄m =(
dm1, · · · , dmN

)T and ūm =
(
um1, · · · , umK

)T be the column vectors whose entries are

2Note that both Sparse Coding and the double sparse model formulate the optimization problems with
constraints instead of regularization. The two formulations are equivalent.
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Algorithm 1: Batch Regularized Latent Semantic Indexing

Require: D ∈ R
M×N

1: V0 ∈ R
K×N ← random matrix

2: for t = 1 : T do
3: Ut ← UpdateU(D, Vt–1)
4: Vt ← UpdateV(D, Ut)
5: end for
6: return UT, VT

those of the mth row of D and U, respectively. Thus, the previous optimization problem
can be rewritten as the following.

min
{ūm}

M∑
m=1

∥∥∥d̄m – VTūm

∥∥∥2

2
+ λ1

M∑
m=1

‖ūm‖1 ,

which can be decomposed into M optimization problems that can be solved indepen-
dently, with each corresponding to one row of U.

min
ūm

∥∥∥d̄m – VTūm

∥∥∥2

2
+ λ1 ‖ūm‖1 , (2)

for m = 1, · · · , M.
Eq. (2) is an �1-regularized least squares problem whose objective function is not

differentiable and it is not possible to directly apply gradient-based methods. A number
of techniques can be used here, such as the interior point method [Chen et al. 1998],
coordinate descent with soft-thresholding [Friedman et al. 2007; Fu 1998], Lars-Lasso
algorithm [Efron et al. 2004; Osborne et al. 2000], and feature-sign search [Lee et al.
2007]. Here we choose coordinate descent with soft-thresholding, which is an iterative
algorithm that applies soft-thresholding with one entry of the parameter vector (i.e.,
ūm) repeatedly until convergence.3 At each iteration, we take umk as the variable and
minimize the objective function in Eq. (2) with respect to umk while keeping all the uml
fixed for which l �= k, k = 1, · · · , K.

Let v̄k =
(
vk1, · · · , vkN

)T be the column vector whose entries are those of the kth row
of V, VT

\k the matrix of VT with the kth column removed, and ūm\k the vector of ūm
with the kth entry removed. We can rewrite the objective in Eq. (2) as a function with
respect to umk.

L
(
umk

)
=
∥∥∥d̄m – VT

\kūm\k – umkv̄k

∥∥∥2

2
+ λ1

∥∥∥ūm\k

∥∥∥
1

+ λ1 |umk|

= ‖v̄k‖2
2 u2

mk – 2
(

d̄m – VT
\kūm\k

)T
v̄kumk + λ1 |umk| + const

=skku2
mk – 2

⎛
⎝rmk –

∑
l �=k

skluml

⎞
⎠umk + λ1 |umk| + const,

where sij and rij are the (ij)th entries of K × K matrix S = VVT and M × K matrix R =
DVT, respectively, and const is a constant with respect to umk. According to Lemma

3The convergence of coordinate descent with soft-thresholding is shown in Friedman et al. [2007].
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Algorithm 2: UpdateU

Require: D ∈ R
M×N , V ∈ R

K×N

1: S ← VVT

2: R ← DVT

3: for m = 1 : M do
4: ūm ← 0
5: repeat
6: for k = 1 : K do
7: wmk ← rmk –

∑
l �=k skluml

8: umk ←
(
|wmk|– 1

2λ1

)
+
sign(wmk)

skk
9: end for

10: until convergence
11: end for
12: return U

A.1 in the Appendix (i.e., Eq. (10)), the optimal umk is the following.

umk =

(∣∣∣rmk –
∑

l �=k skluml

∣∣∣ – 1
2λ1

)
+

sign
(

rmk –
∑

l �=k skluml

)
skk

,

where (·)+ denotes the hinge function. The algorithm for updating U is summarized in
Algorithm 2.

4.3.2. Update of Matrix V. The update of V with U fixed is a least squares problem with
�2 regularization. It can also be decomposed into N optimization problems, with each
corresponding to one vn and can be solved in parallel.

min
vn

‖dn – Uvn‖2
2 + λ2 ‖vn‖2

2 , (3)

for n = 1, · · · , N. It is a standard �2-regularized least squares problem (also known as
Ridge Regression in statistics) and the solution is the following.

v*
n =
(

UTU + λ2I
)–1

UTdn.

Algorithm 3 shows the procedure.4

4.4. Implementation on MapReduce

The formulation of batch RLSI makes it possible to decompose the learning problem
into multiple suboptimization problems and conduct learning in parallel or distributed
manner. Specifically, for both the term-topic matrix and the topic-document matrix, the
update in each iteration is decomposed into many suboptimization problems that can
be solved in parallel, for example, via MapReduce [Dean et al. 2004], which makes
batch RLSI scalable.

MapReduce is a computing model that supports distributed computing on large
datasets. MapReduce expresses a computing task as a series of Map and Reduce op-
erations and performs the task by executing the operations in a distributed comput-
ing environment. In this section, we describe the implementation of batch RLSI on

4If K is large such that the matrix inversion
(
UTU + λ2I

)–1 is hard, we can employ gradient descent in the
update of vn.
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Fig. 3. Update of U and V on MapReduce.

Algorithm 3: UpdateV

Require: D ∈ R
M×N , U ∈ R

M×K

1: ΣΣΣ ←
(

UTU + λ2I
)–1

2: ΦΦΦ ← UTD
3: for n = 1 : N do
4: vn ← ΣΣΣφn, where φn is the nth column of ΦΦΦ
5: end for
6: return V

MapReduce, referred to as distributed RLSI, as shown in Figure 3.5 At each iteration,
the algorithm updates U and V using the following MapReduce operations.

Map-1. Broadcast S = VVT and map R = DVT on m (m = 1, · · · , M) such that all
of the entries in the mth row of R are shuffled to the same machine in the form
of 〈m, r̄m, S〉, where r̄m is the column vector whose entries are those of the mth row
of R.
Reduce-1. Take 〈m, r̄m, S〉 and emit 〈m, ūm〉, where ūm is the optimal solution for
the mth optimization problem (Eq. (2)). We have U =

[
ū1, · · · , ūM

]T.

Map-2. Broadcast ΣΣΣ =
(

UTU + λ2I
)–1

and map ΦΦΦ = UTD on n (n = 1, · · · , N) such
that the entries in the nth column of ΦΦΦ are shuffled to the same machine in the
form of 〈n,φn,ΣΣΣ〉, where φn is the nth column of ΦΦΦ.
Reduce-2. Take 〈n,φn,ΣΣΣ〉 and emit 〈n, vn = ΣΣΣφn〉. We have V =

[
v1, · · · , vN

]
.

Note that the data partitioning schemas for R in Map-1 and for ΦΦΦ in Map-2 are
different. R is split such that entries in the same row (corresponding to one term) are
shuffled to the same machine, while ΦΦΦ is split such that entries in the same column
(corresponding to one document) are shuffled to the same machine.

5Here we only discuss the parallelization for RLSI in the batch mode; in principle, the technique can also be
applied to the online mode.
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There are a number of large-scale matrix multiplication operations, in operation,
Map-1

(
DVT and VVT

)
and Map-2

(
UTD and UTU

)
. These matrix multiplication

operations can also be conducted on MapReduce infrastructure efficiently. For exam-
ple, DVT can be calculated as

∑N
n=1 dnvT

n and thus fully parallelized. For details please
refer to Buluc and Gilbert [2008] and Liu et al. [2010].

5. ONLINE REGULARIZED LATENT SEMANTIC INDEXING

In many applications, the documents are provided in a data stream, and the content
(topics) of documents also dynamically change over time. For example, journals, emails,
news articles, and search query logs are all such data. In this setting, we want to se-
quentially construct the topic model from documents and learn the dynamics of topics
over time. Dynamic topic modeling techniques have been proposed based on the same
motivation and have been applied successfully to real-world applications [Allan et al.
1998; Blei and Lafferty 2006; Wang and McCallum 2006].

In this section, we consider online RLSI, which incrementally builds a topic model
on the basis of the stream data and captures the evolution of the topics. As shown in
the experiments, online RLSI is effective for topic tracking. Online RLSI has a similar
formulation as batch RLSI. Hereafter, we consider the formulation using �1 norm reg-
ularization on topics and �2 norm regularization on document representations. This
regularization strategy leads to a model with high topic readability and effectiveness
for retrieval, as discussed in Section 4.2.

5.1. Formulation

Suppose that we are given a set of documents D with size N, in batch RLSI, the regu-
larized loss function Eq. (1) is optimized. Equivalently, Eq. (1) can be written as.

min
U,{vn}

1
N

N∑
n=1

[
‖dn – Uvn‖2

2 + λ2 ‖vn‖2
2

]
+ θ

K∑
k=1

‖uk‖1 , (4)

by dividing the objective function by N, where the first term stands for the“empirical
loss” for the N documents, the second term controls the model complexity, and θ = λ1/N
is a trade-off parameter.

In online RLSI, the documents are assumed to be independent and identically dis-
tributed data drawn one by one from the distribution of documents. The algorithm
takes one document dt at a time, projects the document in the topic space, and up-
dates the term-topic matrix.

The projection vt of document dt in the topic space is obtained by solving the
following.

min
v

‖dt – Ut–1v‖2
2 + λ2 ‖v‖2

2 , (5)

where Ut–1 is the term-topic matrix obtained at the previous iteration.
The new term-topic matrix Ut is obtained by solving the following.

min
U

f̂t (U) �
1
t

t∑
i=1

[
‖di – Uvi‖2

2 + λ2 ‖vi‖2
2

]
+ θ

K∑
k=1

‖uk‖1 , (6)

where vi (for i ≤ t) are cumulated in the previous iterations.
The rationale behind online RLSI is as follows. First, it is a stochastic approximation

of batch RLSI. At time t, the optimization problem of Eq. (5) is an approximation of Eq.
(3), and the loss f̂t defined in Eq. (6) is also an approximation of Eq. (4). Second, both vt
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and Ut are obtained with the information in the previous iterations, namely, term-topic
matrix Ut–1 and document representations vi for i ≤ t. Last, the term-topic matrices
{Ut} form a time series and thus can capture the evolution of topics.

5.2. Optimization

The optimization in online RLSI can be performed in a similar way as in batch RLSI.

5.2.1. Document Projection. The document projection (Eq. (5)) can be solved as a stan-
dard �2-regularized least squares problem and the solution is the following.

vt =
(

UT
t–1Ut–1 + λ2I

)–1
UT

t–1dt.

5.2.2. Update of Term-Topic Matrix. Eq. (6) is equivalent to the following.

min
U

‖Dt – UVt‖2
F + θt

M∑
m=1

K∑
k=1

|umk| ,

where Dt =
[
d1, · · · , dt

]
and Vt = [v1, · · · , vt] are the term-document matrix and topic-

document matrix until time t, respectively. Using the techniques described in Section
4.3, we decompose the optimization problem into M subproblems with each correspond-
ing to one row of U.

min
ūm

∥∥∥d̄(t)
m – VT

t ūm

∥∥∥2

2
+ θt ‖ūm‖1 , (7)

for m = 1, · · · , M. Here ūm =
(
um1, · · · , umK

)T and d̄(t)
m =

(
dm1, · · · , dmt

)T are the
column vectors whose entries are those of the mth row of U and Dt respectively.

The minimum of Eq. (7) can be obtained with the technique presented in Algorithm 2
by setting S = St, R = Rt, and λ1 = θt. In online RLSI, St = VtVT

t =
∑t

i=1 vivT
i and

Rt = DtVT
t =

∑t
i=1 divT

i can be calculated efficiently in an additive manner.

St =
{

St–1 + vtvT
t , t ≥ 1,

0, t = 0,

and

Rt =
{

Rt–1 + dtvT
t , t ≥ 1,

0, t = 0.

Algorithm 4 shows the details of the online RLSI algorithm.

5.3. Convergence Analysis

We prove that the term-topic matrix series {Ut} generated by online RLSI satis-
fies ‖Ut+1 – Ut‖F = O

(
1
t

)
, which means that the convergence of the positive sum∑∞

t=1 ‖Ut+1 – Ut‖2
F is guaranteed, although there is no guarantee on the convergence

of Ut itself. This is a property often observed in gradient descent methods [Bertsekas
1999]. Our proof is inspired by the theoretical analysis in Mairal et al. [2010] on the
Lipschitz regularity of solutions to optimization problems [Bonnans and Shapiro 1998].

We first give the assumptions necessary for the analysis, which are reasonable and
natural.

Assumption 5.1. The document collection D is composed of independent and iden-
tically distributed samples of a distribution of documents p

(
d
)

with compact support
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Algorithm 4: Online Regularized Latent Semantic Indexing

Require: p
(
d
)

1: U0 ∈ R
M×K ← (random matrix or previously learned term-topic matrix)

2: S0 ∈ R
K×K ← 0

3: R0 ∈ R
M×K ← 0

4: for t = 1 : T do
5: Draw dt from p

(
d
)

6: vt ←
(

UT
t–1Ut–1 + λ2I

)–1
UT

t–1dt

7: St ← St–1 + vtvT
t

8: Rt ← Rt–1 + dtvT
t

9: Ut ← Updated by Algorithm 2 with S = St, R = Rt, and λ1 = θt
10: end for
11: return UT

K =
{

d ∈ R
M : ‖d‖2 ≤ δ1

}
. The compact support assumption is common in text, image,

audio, and video processing.

Assumption 5.2. The solution to the problem of minimizing f̂t lies in a bounded
convex subset U =

{
U ∈ R

M×K : ‖U‖F ≤ δ2

}
for every t. Since f̂t is convex with respect

to U, the set of all possible minima is convex. The bound assumption is also quite
natural, especially when the minima are obtained by some specific algorithms, such
as LARS [Efron et al. 2004], and coordinate descent with soft-thresholding [Fu 1998],
which we employ in this article.

Assumption 5.3. Starting at any initial point, the optimization problem of Eq. (7)
reaches a local minimum after at most T rounds of iterative minimization. Here, iter-
ative minimization means minimizing the objective function with respect to one entry
of ūm while the others are fixed. Note that the achieved local minimum is also global,
since Eq. (7) is a convex optimization problem.

Assumption 5.4. The smallest diagonal entry of the positive semi-definite matrix
1
t St defined in Algorithm 4 is larger than or equal to some constant κ1 > 0. Note that
1
t St = 1

t
∑t

i=1 vivT
i , whose diagonal entries are 1

t
∑t

i=1 v2
1i, · · · , 1

t
∑t

i=1 v2
Ki, where vki is

the kth entry of vi for k = 1, · · · , K. This hypothesis is experimentally verified to be
true after a small number of iterations given that the initial term-topic matrix U0 is
learned in the previous round or is set randomly.

Given Assumptions 5.1–5.4, we can obtain the result as follows, whose proof can be
found in the Appendix.

PROPOSITION 5.5. Let Ut be the solution to Eq. (6). Under Assumptions 5.1–5.4,
the following inequality holds almost surely for all t.

‖Ut+1 – Ut‖F ≤ T
(t + 1)κ1

(
δ2
1δ2

λ2
+

2δ2
1√
λ2

)
. (8)
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5.4. Algorithm Improvements

We have presented the basic version of online RLSI as well as a convergence property
of it. This section discusses several simple improvements that significantly enhance
the performance of basic online RLSI. Note that the convergence analysis in Section
5.3 can be easily extended to the improved versions.

5.4.1. Rescaling. In Algorithm 4 (lines 7 and 8), at each iteration, the “new” informa-
tion

(
i.e., vtvT

t and dtvT
t

)
added to the matrices St and Rt has the same weight as

the “old” information (i.e., St–1 and Rt–1). One modification is to rescale the old infor-
mation so that the new information has higher weight [Mairal et al. 2010; Neal and
Hinton 1998]. We can follow the idea in Mairal et al. [2010] and replace lines 7 and 8
in Algorithm 4 by the following.

St ←
(

t – 1
t

)ρ

St–1 + vtvT
t ,

Rt ←
(

t – 1
t

)ρ

Rt–1 + dtvT
t ,

where ρ is a parameter. When ρ = 0, we obtain the basic version of online RLSI.

5.4.2. Mini-Batch. Mini-batch is a typical heuristic adopted in stochastic learning,
which processes multiple data instances at each iteration to reduce noise and improve
convergence speed [Bottou and Bousquet 2008; Hoffman et al. 2010; Liang and Klein
2009; Mairal et al. 2010]. We can enhance the performance of online RLSI through the
mini-batch extension, that is, processing η ≥ 1 documents at each iteration instead
of a single document. Let dt,1, · · · , dt,η denote the documents drawn at iteration t and
vt,1, · · · , vt,η denote their representations in the topic space, which can be obtained
by the techniques described in Section 5.2. Lines 7 and 8 in Algorithm 4 can then be
replaced by the following.

St ← St–1 +
η∑

i=1

vt,iv
T
t,i,

Rt ← Rt–1 +
η∑

i=1

dt,iv
T
t,i.

When η = 1, we obtain the basic version of online RLSI.

5.4.3. Embedded Iterations. As shown in Algorithm 4 (line 9), the term-topic matrix is
updated by Algorithm 2 once per iteration. At each iteration t, no matter what the
start point (i.e., Ut–1) is, Algorithm 2 forces the term-topic matrix (i.e., Ut) to be zero
before updating it (line 4 in Algorithm 2), which leads to a large deviation in Ut from
the start point Ut–1. To deal with this problem, we iterate lines 6–9 in Algorithm 4
for ξ ≥ 1 times. In practice, such embedded iterations are useful for generating stable
term-topic matrix series {Ut}. When ξ = 1, we obtain the basic version of online RLSI.

6. DISCUSSIONS

We discuss the properties of batch RLSI, online RLSI, and distributed RLSI with �1
norm on topics and �2 norm on document representations as example.
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Table II. Optimization Framework for Different Topic Modeling Methods

Method B
(
D||UV

)
R (U, V) Constraint on U Constraint on V

LSI ‖D – UV‖2
F — UTU = I VVT = ΛΛΛ2 (ΛΛΛ is diagonal)

PLSI
∑

mn

(
dmn log dmn

(UV)mn

)
— UT1 = 1, umk ≥ 0 1TV1 = 1, vkn ≥ 0

NMF ‖D – UV‖2
F — umk ≥ 0 vkn ≥ 0

SC ‖D – UV‖2
F

∑
n ‖vn‖1 ‖uk‖2

2 ≤ 1 —
Batch RLSI ‖D – UV‖2

F
∑

k ‖uk‖1,
∑

n ‖vn‖2
2 — —

6.1. Relationship with Other Methods

Batch RLSI is closely related to existing topic modeling methods, such as LSI, PLSI,
NMF, and SC. Singh and Gordon [2008], discuss the relationship between LSI and
PLSI from the viewpoint of loss function and regularization. We borrow their frame-
work and show the relations between batch RLSI and the existing approaches. In the
framework, topic modeling is considered as a problem of optimizing the following gen-
eral loss function.

min
(U,V)∈C

B
(
D||UV

)
+ λR (U, V) ,

where B(·‖·) is a generalized Bregman divergence with nonnegative values and is equal
to zero if and only if the two inputs are equivalent; R(·, ·) ≥ 0 is the regularization on
the two inputs; C is the solution space; and λ is a coefficient making, trade-off between
the divergence and regularization.

Different choices of B, R, and C lead to different topic modeling techniques. Table II
shows the relationship between batch RLSI and LSI, PLSI, NMF, and SC. (Suppose
that we first conduct normalization

∑
m,n dmn = 1 in PLSI [Ding et al. 2008].) Within

this framework, the major question becomes how to conduct regularization as well as
optimization to make the learned topics accurate and readable.

6.2. Probabilistic and Non-Probabilistic Models

Many non-probabilistic topic modeling techniques, such as LSI, NMF, SC, and batch
RLSI can be interpreted within a probabilistic framework, as shown in Figure 4.

In the probabilistic framework, columns of the term-topic matrix uk are assumed
to be independent from each other, and columns of the topic-document matrix vn are
regarded as latent variables. Next, each document dn is assumed to be generated ac-
cording to a Gaussian distribution conditioned on U and vn, that is, p

(
dn|U, vn

)
∝

exp
(

– ‖dn – Uvn‖2
2

)
. Furthermore, all the pairs

(
dn, vn

)
are conditionally independent

given U.
Different techniques use different priors or constraints on uk’s and vn’s. Table III

lists the priors or constraints used in LSI, NMF, SC, and batch RLSI, respectively. It
can be shown that LSI, NMF, SC, and batch RLSI can be obtained with Maximum A
Posteriori (MAP) Estimation [Mairal et al. 2009]. That is to say, the techniques can be
understood in the same framework. Ding [2005] proposes a probabilistic framework
based on document-document and word-word similarities to give an interpretation to
LSI, which is very different from the framework here.

6.3. Batch RLSI vs. Online RLSI

Online RLSI is designed for online learning setting. The advantage is that it does
not need to use so much storage (memory), while the disadvantage is that it usually
requires higher total computation cost. Table IV compares the space and time complex-
ities of batch RLSI and online RLSI, where AvgDL is the average document length in
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Table III. Priors/Constraints in Different Non-Probabilistic Methods

Method Prior/Constraint on uk Prior/Constraint on vn

LSI orthonormality orthogonality
NMF umk ≥ 0 vkn ≥ 0
SC ‖uk‖2

2 ≤ 1 p (vn) ∝ exp
(
–λ ‖vn‖1

)

Batch RLSI p (uk) ∝ exp
(
–λ1 ‖uk‖1

)
p (vn) ∝ exp

(
–λ2 ‖vn‖2

2

)

Fig. 4. Probabilistic framework for non-probabilistic methods.

Table IV. Space and Time Complexity of Batch RLSI and Online RLSI

Method Space complexities Time complexity

Batch RLSI γKM +
(
AvgDL × N + KN

)
+ max

{
K2 + KM, K2 + KN

}
O
(

To max
{

NK2, AvgDL × NK, TiMK2
})

Online RLSI γKM +
(
AvgDL + K

)
+
(

K2 + KM
)

O
(

ToTiMK2
)

the collection, γ is the sparsity of topics, and To and Ti are respectively the numbers
of outer and inner iterations in Algorithm 1 and Algorithm 4.

The space complexity of batch RLSI is γKM +
(
AvgDL × N + KN

)
+

max
{

K2 + KM, K2 + KN
}

, where the first term is for storing U, the second term
is for storing D and V, and the third term is for storing S and R when updating U or
storing ΣΣΣ and ΦΦΦ when updating V. Online RLSI processes one document at a time,
thus we only need to keep one document in memory as well as its representation in
the topic space. Thus the second term reduces to AvgDL + K for online RLSI. This is
why we say that online RLSI has better scalability than batch RLSI.

The time complexities of batch RLSI and online RLSI are also compared. For batch
RLSI, in each outer iteration, the time for updating U (i.e., Algorithm 2) dominates,
and thus its time complexity is of order To max

{
NK2, AvgDL × NK, TiMK2

}
, where

NK2 is for computing S, AvgDL×NK is for computing R, and TiMK2 is for running the
inner iterations in each outer iteration. For online RLSI, in the processing of each doc-
ument, the time for updating U (i.e., line 9 in Algorithm 4) dominates, and thus its time
complexity is of order ToTiMK2. In practice, the vocabulary size M is usually larger
than the document collection size N, and thus max

{
NK2, AvgDL × NK, TiMK2

}
=

TiMK2 holds with some properly chosen K and Ti. Even in that case, online RLSI has
higher total time complexity than batch RLSI, since the number of outer iterations in
Algorithm 4 (i.e., total number of documents) is usually larger than that in Algorithm
1 (i.e., fixed to 100).

The main reason that online RLSI has even higher time complexity than batch RLSI
is that stochastic learning can only perform efficient learning of document represen-
tations (topic-document matrix V) but not learning of topics (term-topic matrix U),
which dominates the total computation cost. Nonetheless, online RLSI is still superior
to batch RLSI when processing stream data.
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Table V. Complexities of Parallel/Distributed Topic Models

Method Space complexity Time complexity (per iteration)

AD-LDA N×AvgDL+NK
P + MK NK×AvgDL

P + MK logP

Async-CGS N×AvgDL+NK
P + 2MK NK×AvgDL

P + MK logP
Async-CVB N×AvgDL+2NK

P + 4MK MK
P + MK logP

Distributed RLSI N×AvgDL+γMK+NK+max{MK,NK}
P + K2 TiMK2+NK2

P + CU + CV

6.4. Scalability of Distributed RLSI

As explained, several methods for improving the efficiency and scalability of existing
topic models, especially LDA, have been proposed. Table V shows the space and time
complexities of AD-LDA [Newman et al. 2008], Async-CBS, Async-CVB [Asuncion
et al. 2011], and distributed RLSI, where AvgDL is the average document length in
the collection and γ is the sparsity of topics.

The space complexity of AD-LDA (also Async-CGS and Async-CVB) is of order
N×AvgDL+NK

P + MK, where MK is for storing the term-topic matrix on each proces-
sor. For a large text collection, the vocabulary size M will be very large, thus the space
complexity will be very high. This will hinder it from being applied to large datasets
in real-world applications.

The space complexity of distributed RLSI is N×AvgDL+γMK+NK+max{MK,NK}
P + K2,

where K2 is for storing S or ΣΣΣ, γMK+NK
P is for storing U and V in P processors, and

max{MK,NK}
P is for storing R or ΦΦΦ in P processors. Since K � M, it is clear that dis-

tributed RLSI has better scalability. We can reach the same conclusion when compar-
ing distributed RLSI with other parallel/distributed topic modeling methods. The key
is that distributed RLSI can distribute both terms and documents over P processors.
The sparsity of the term-topic matrix can also help save space in each processor.

The time complexities of different topic modeling methods are also listed. For dis-
tributed RLSI, Ti is the number of inner iterations in Algorithm 2, CU and CV are for
the matrix operations in Algorithms 2 and 3 (e.g., VVT, DVT, UTU, UTD, and matrix
inversion), respectively.

CU = max

{
AvgDL × NK

P
+ nnz(R) logP,

NK2

P
+ K2 logP

}
,

CV = max

{
AvgDL × γNK

P
+ nnz(ΦΦΦ) logP,

M(γK)2

P
+ K2 logP + K3

}
,

where nnz(·) is the number of nonzero entries in the input matrix. For details, please
refer to Liu et al. [2010]. Note that the time complexities of these methods are
comparable.

7. RELEVANCE RANKING

Topic models can be used in a wide variety of applications. We apply RLSI for relevance
ranking in information retrieval (IR) and evaluate its performance in comparison to
existing topic modeling methods. The use of topic modeling techniques, such as LSI,
was proposed in IR many years ago [Deerwester et al. 1990]. Some recent work [Lu
et al. 2011; Wei and Croft 2006; Yi and Allan 2009] showed improvements in relevance
ranking by applying probabilistic topic models, such as LDA and PLSI.
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The advantage of incorporating topic modeling in relevance ranking is to reduce
term mismatch. Traditional relevance models, such as VSM [Salton et al. 1975] and
BM25 [Robertson et al. 1994], are all based on term matching. The term mismatch
problem arises when the authors of documents and the users of search systems use
different terms to describe the same concepts, and as a result, relevant documents can
only get low relevance scores. For example, if the query contains the term “airplane”
and the document contains the term “aircraft,” then there is a mismatch between the
two, and the document may not be regarded relevant. It is very likely that the two
terms are included in the same topic, however, and thus the use of matching score in
the topic space can help solve the mismatch problem. In practice, it is beneficial to
combine topic matching scores with term matching scores to leverage both broad topic
matching and specific term matching.

There are several ways to conduct the combination. A simple and effective approach
is to use a linear combination, which was first proposed in Hofmann [1999] and then
further adopted [Atreya and Elkan 2010; Kontostathis 2007]. The final relevance rank-
ing score s(q, d) is the following.

s(q, d) = αstopic(q, d) + (1 – α)sterm(q, d), (9)

where α ∈ [0, 1] is the interpolation coefficient. sterm(q, d) can be calculated with any
of the conventional relevance models, such as VSM and BM25. Another combination
approach is to incorporate the topic matching score as a feature in a learning to rank
model, for example, LambdaRank [Burges et al. 2007]. In this article, we use both
approaches in our experiments.

For the probabilistic approaches, the combination can also be realized by smoothing
the document language models or query language models with the topic models [Lu
et al. 2011; Wei and Croft 2006; Yi and Allan 2009]. In this article, we use linear
combinations for the probabilistic approaches as well, and our experimental results
show that they are still quite effective.

We next describe how to calculate the topic matching score between query and docu-
ment, with RLSI as an example. Given a query and document, we first calculate their
matching scores in both term space and topic space. For query q, we represent it in the
topic space.

vq = argmin
v

‖q – Uv‖2
2 + λ2‖v‖2

2,

where vector q is the tf-idf representation of query q in the term space.6 Similarly, for
document d (and its tf-idf representation d in the term space), we represent it in the
topic space as vd. The matching score between the query and the document in the topic
space is then calculated as the cosine similarity between vq and vd.

stopic(q, d) =
〈vq, vd〉

‖vq‖2 · ‖vd‖2
.

The topic matching score stopic(q, d) is then combined with the term matching score
sterm(q, d) in relevance ranking.

8. EXPERIMENTS

We have conducted experiments to compare different RLSI regularization strategies,
to compare RLSI with existing topic modeling methods, to test the capability of online
RLSI for dynamic topic modeling, to compare online RLSI with batch RLSI, and to test
the scalability and performance of distributed RLSI.

6Using vq = argminv ‖q – Uv‖2
2 + λ2‖v‖1 if �1 norm is imposed on V.
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Table VI. Statistics of Datasets

Dataset AP WSJ OHSUMED Web

# terms 83,541 106,029 26,457 7,014,881
# documents 29,528 45,305 14,430 1,562,807
# queries 250 250 106 10,680

8.1. Experimental Settings

Our three TREC datasets were AP, WSJ, and OHSUMED, which are widely used
in relevance ranking experiments. AP consists of the Associated Press articles from
February to December 1988. WSJ consists of the Wall Street Journal articles from
April 1990 to March 1992. OHSUMED consists of MEDLINE documents from 1987
to 1991. In AP, WSJ, and OHSUMED, the documents are time stamped. For AP and
WSJ, we used TREC topics 51–300. For OHSUMED, there are 106 queries associated.7
We also used a large real-world Web dataset from a commercial Web search engine
containing about 1.6 million documents and 10 thousand queries. There is no time
information for the Web dataset, and the documents are randomly ordered.

Besides documents and queries, each dataset has relevance judgments on some doc-
uments with respect to each query. For all four datasets, only the judged documents
were included, and the titles and bodies were taken as the contents of the documents.8

From the four datasets, stop words in a standard list were removed.9 From the Web
dataset, the terms whose frequencies are less than two were further discarded. Ta-
ble VI gives some statistics on the datasets. We utilized tf-idf to represent the weight
of a term in a document given a document collection. The formula for calculating tf-idf
which we employed is the following.

tf-idf
(
t, d,D

)
=

n
(
t, d
)

|d| × log
|D|

|{d ∈ D : t ∈ d}| ,

where t refers to a term, d refers to a document, D refers to a document collection,
n
(
t, d
)

is the number of times that term t appears in document d, |d| is the length of
document d, |D| is the total number of documents in the collection, and |{d ∈ D : t ∈ d}|
is the number of documents in which term t appears.

In AP and WSJ, the relevance judgments are at two levels: relevant or irrelevant. In
OHSUMED, the relevance judgments are at three levels: definitely relevant, partially
relevant, and not relevant. In the Web dataset, there are five levels: perfect, excellent,
good, fair, and bad. In the experiments of relevance ranking, we used MAP and NDCG
at the positions of 1, 3, 5, and 10 to evaluate the performance. In calculating MAP,
we considered definitely relevant and partially relevant in OHSUMED, and perfect,
excellent, and good in the Web dataset as relevant.

In the experiments on the TREC datasets (Section 8.2), no validation set was used,
since we only have small query sets. Instead, we chose to evaluate each model in a pre-
defined grid of parameters, showing its performance under the best parameter choices.
In the experiments on the Web dataset (Section 8.3), the queries were randomly split
into training/validation/test sets, with 6,000/2,000/2,680 queries, respectively. We
trained the ranking models with the training set, selected the best models with the
validation set, and evaluated the performances of the methods with the test set. We

7AP and WSJ queries: http://trec.nist.gov/data/intro eng.html; OHSUMED queries:
http://ir.ohsu.edu/ohsumed/ohsumed.html.
8Note that the whole datasets are too large to handle for the baseline methods, such as LDA. Therefore, only
the judged documents were used.
9http://www.textfixer.com/resources/common-english-words.txt
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selected models based on their NDCG@1 values, because NDCG is more suitable as
the evaluation measure in Web search. The reasons are as follows. First, MAP is
based on two-level relevance judgments, while NDCG is based on multilevel relevance
judgments, which is more common in Web search. Second, MAP takes into account
all relevant documents, while NDCG focuses on top-ranked documents, which is more
essential in Web search.

The experiments on AP, WSJ, and OHSUMED were conducted on a server with Intel
Xeon 2.33 GHZ CPU, 16 GB RAM. The experiments on the Web dataset were conducted
on a distributed system, and the distributed RLSI (both batch RLSI and online RLSI)
was implemented with the SCOPE language [Chaiken et al. 2008].

8.2. Experiments on TREC Datasets

8.2.1. Regularization in RLSI. In this experiment, we compared different regularization
strategies on (batch) RLSI. Regularization on U and V via either �1 or �2 norm gives us
four RLSI variants: RLSI (U�1-V�2), RLSI (U�2-V�1), RLSI (U�1-V�1), and RLSI (U�2-
V�2), where RLSI (U�1-V�2) means, for example, applying �1 norm on U and �2 norm
on V. For all the variants, parameters K, λ1, and λ2 were respectively set in ranges
of [10, 50], [0.01, 1], and [0.01, 1], and interpolation coefficient α was set from 0 to 1 in
steps of 0.05. We ran all the methods in 100 iterations (convergence confirmed).

We first compared the RLSI variants in terms of topic readability by looking at the
contents of topics they generated. Note that throughout the article, topic readability
refers to coherence of top weighted terms in a topic. We adopt the terminology “read-
ability” from the Stanford Topic Modeling Toolbox.10 As example, Table VII shows ten
topics (randomly selected) and the average topic compactness (AvgComp) on the AP
dataset for each of the four RLSI variants when K = 20 and λ1 and λ2 are the optimal
parameters for the retrieval experiment described next. Here, average topic compact-
ness is defined as the average ratio of terms with nonzero weights per topic. For each
topic, its top five weighted terms are shown.11 From the results, we have found that
(1) if �1 norm is imposed on either U or V, RLSI can always discover readable topics;
(2) without �1 regularization (i.e., RLSI( U�2-V�2 )), many topics are not readable; and
(3) if �1 norm is only imposed on V (i.e., RLSI (U�2-V�1)), the discovered topics are not
compact or sparse (e.g., AvgComp = 1). We conducted the same experiments on WSJ
and OHSUMED and observed similar phenomena.

We also compared the RLSI variants in terms of retrieval performance. Specifi-
cally, for each of the RLSI variants, we combined topic-matching scores with term-
matching scores given by conventional IR models of VSM or BM25. When calculating
BM25 scores, we used the default parameters, that is, k1 = 1.2 and b = 0.75. Since
BM25 performs better than VSM on AP and WSJ and VSM performs better than
BM25 on OHSUMED, we combined the topic-matching scores with BM25 on AP
and WSJ and with VSM on OHSUMED. The methods we tested are denoted as
BM25+RLSI (U�1-V�2), BM25+RLSI (U�2-V�1), BM25+RLSI (U�1-V�1), BM25+RLSI
(U�2-V�2), etc. Tables VIII, IX, and X show the retrieval performance of RLSI vari-
ants achieved by the best parameter setting (measured by NDCG@1) on AP, WSJ,
and OHSUMED, respectively. Stars indicate significant improvements on the baseline
method, that is, BM25 on AP and WSJ and VSM on OHSUMED, according to the

10http://nlp.stanford.edu/software/tmt/tmt-0.4/
11In all the results presented in this paper, the terms with the dominating contribution in a topic were used
to represent the topic. The dominating contribution will be discussed later in Section 8.4.
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Table VII. Topics Discovered by RLSI Variants on AP

bush yen student israeli opec
dukakis trade school palestinian oil
quayle dollar teacher israel cent
bentsen japan educate arab barrel

RLSI (U�1-V�2) campaign market protest plo price
AvgComp = 0.0075 noriega quake iran court soviet

panama earthquake iranian prison nuclear
panamanian richter iraq sentence treaty
delva scale iraqi judge missile
canal damage gulf trial weapon

nuclear court noriega africa cent
treaty judge panama south opec
missile prison panamanian african oil
weapon trial delval angola barrel

RLSI (U�2-V�1) soviet sentence canal apartheid price
AvgComp = 1 israeli dukakis student plane percent

palestinian bush school crash billion
israel jackson teacher flight rate
arab democrat educate air 0
plo campaign college airline trade

court plane dukakis israeli africa
prison crash bush palestinian south
judge air jackson israel african
sentence flight democrat arab angola

RLSI (U�1-V�1) trial airline campaign plo apartheid
AvgComp = 0.0197 soviet school yen cent noriega

treaty student trade opec panama
missile teacher dollar oil panamanian
nuclear educate market barrel delval
gorbachev college japan price canal

dukakis palestinian soviet school africa
oil israeli noriega student south
opec israel panama bakker iran
cent arab drug trade african

RLSI (U�2-V�2) bush plo quake china dukakis
AvgComp = 1 dukakis soviet drug percent soviet

bush treaty cent billion israeli
democrat student police price missile
air nuclear student trade israel
jackson missile percent cent treaty

one-sided t-test (p-value < 0.05).12 From the results, we can see that (1) all of these
methods can improve over the baseline, and in some cases, the improvements are sta-
tistically significant; (2) among the RLSI variants, RLSI (U�1-V�2) performs best, and
its improvements over baseline are significant on all three TREC datasets; and (3) any
improvement of RLSI (U�1-V�2) over other RLSI variants, however, is not significant.

12Note that in all the experiments, we tested whether the ranking performance of one method (method A) is
significantly better than that of the other method (method B). Thus, the alternative hypothesis is that the
NDCG/MAP value of method A is larger than that of method B, which is a one-sided significance test.
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Table VIII. Retrieval Performance of RLSI Variants on AP

Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25 0.3918 0.4400 0.4268 0.4298 0.4257
BM25+RLSI (U�1-V�2) 0.3998 * 0.4800 * 0.4461 * 0.4498 * 0.4420 *
BM25+RLSI (U�2-V�1) 0.3964 0.4640 0.4337 0.4357 0.4379 *
BM25+RLSI (U�1-V�1) 0.3987 * 0.4640 * 0.4360 0.4375 0.4363 *
BM25+RLSI (U�2-V�2) 0.3959 0.4520 0.4409 0.4337 0.4314

Table IX. Retrieval Performance of RLSI Variants on WSJ

Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25 0.2935 0.3720 0.3717 0.3668 0.3593
BM25+RLSI (U�1-V�2) 0.2968 0.4040 * 0.3851 * 0.3791 * 0.3679 *
BM25+RLSI (U�2-V�1) 0.2929 0.3960 0.3738 0.3676 0.3627
BM25+RLSI (U�1-V�1) 0.2970 0.3960 0.3827 0.3798 * 0.3668 *
BM25+RLSI (U�2-V�2) 0.2969 0.3920 0.3788 0.3708 0.3667 *

Table X. Retrieval Performance of RLSI Variants on OHSUMED

Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

VSM 0.4288 0.4780 0.4159 0.3932 0.3840
VSM+RLSI (U�1-V�2) 0.4291 0.5377 * 0.4383 * 0.4145 * 0.4010 *
VSM+RLSI (U�2-V�1) 0.4282 0.5252 0.4351 0.4018 0.3952
VSM+RLSI (U�1-V�1) 0.4285 0.5377 * 0.4291 0.4105 0.3972
VSM+RLSI (U�2-V�2) 0.4310 0.5189 * 0.4279 0.4078 * 0.3928 *

Table XI summarizes the experimental results in terms of topic readability, topic
compactness, and retrieval performance. From the result, we can see that in RLSI,
�1 norm is essential for discovering readable topics, and the discovered topics will
also be compact if �1 norm is imposed on U. Furthermore, between the two RLSI
variants with good topic readability and compactness, that is, RLSI (U�1-V�2) and
RLSI (U�1-V�1), RLSI (U�1-V�2) performs better in improving retrieval performance,
because when �1 norm is imposed on V, the document and query representations in
the topic space will also be sparse, thus the topic-matching scores will not be reliable
enough. We conclude that it is a better practice to apply �1 norm on U and �2 norm
on V in RLSI for achieving good topic readability, topic compactness, and retrieval
performance.

We will use RLSI (U�1-V�2) in the following experiments and denote it as RLSI for
simplicity.

8.2.2. Comparison of Topic Models. In this experiment, we compared (batch) RLSI with
LDA, PLSI, LSI, and NMF.

We first compared RLSI with LDA, PLSI, LSI, and NMF in terms of topic readability
by looking at the topics they generated. We made use of the tools publically available
when running the baselines.13 The number of topics K was again set to 20 for all the
methods. In RLSI, λ1 and λ2 were the optimal parameters used in Section 8.2.1 (i.e.,
λ1 = 0.5 and λ2 = 1.0). For LDA, PLSI, LSI, and NMF, there is no additional parameter

13LDA: http://www.cs.princeton.edu/∼blei/lda-c/; PLSI: http://www.lemurproject.org/; LSI:
http://tedlab.mit.edu/∼dr/SVDLIBC/; NMF: http://cogsys.imm.dtu.dk/toolbox/nmf/.
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Table XI. Performance of the RLSI Variants

Topic Readability Topic Compactness Retrieval performance

RLSI (U�1-V�2)
√ √ √

RLSI (U�2-V�1)
√ × ×

RLSI (U�1-V�1)
√ √ ×

RLSI (U�2-V�2) × × ×

to tune. Table XII shows all the 20 topics discovered by RLSI, LDA, PLSI, LSI, and
NMF and the average topic compactness (AvgComp) on the AP dataset. For each topic,
its top five weighted terms are shown. From the results, we have found that (1) RLSI
can discover readable and compact (e.g., AvgComp = 0.0075) topics; (2) PLSI, LDA, and
NMF can discover readable topics as expected, however the discovered topics are not so
compact (e.g., AvgComp = 0.9534, AvgComp = 1, and AvgComp = 0.5488, respectively);
and (3) the topics discovered by LSI are hard to understand due to its orthogonality
assumption. We also conducted the same experiments on WSJ and OHSUMED and
observed similar phenomena.

We further evaluated the quality of the topics discovered by (batch) RLSI, LDA,
PLSI, and NMF in terms of topic representability and topic distinguishability. Here,
topic representability is defined as the average contribution of top terms in each topic,
where the contribution of top terms in a topic is defined as the sum of absolute weights
of top terms divided by the sum of absolute weights of all terms. Topic representability
indicates how well the topics can be described by their top terms. The larger the topic
representability is, the better the topics can be described by their top terms. Topic dis-
tinguishability is defined as average overlap of the top terms among topic pairs. Topic
distinguishability indicates how distinct the topics are. The smaller the topic distin-
guishability, the more distinct the topics are. Figures 5 and 6 show the representability
and distinguishability of the topics discovered by (batch) RLSI, LDA, PLSI, and NMF
when the number of top terms increases. The results show that (1) RLSI has much
larger topic representability than NMF, LDA, and PLSI, indicating that the topics dis-
covered by RLSI can be described by their top terms better than the topics discovered
by the other methods; and (2) RLSI and NMF have larger topic distinguishability than
LDA and PLSI, indicating that the topics discovered by RLSI and NMF are more dis-
tinct from each other. We conducted the same experiments on WSJ and OHSUMED
and observed similar trends.

We also tested the performance of (batch) RLSI in terms of retrieval performance in
comparison to LSI, PLSI, LDA, and NMF. The experimental setting was similar to that
in Section 8.2.1. For the five methods, parameter K was set in the range of [10, 50], and
the interpolation coefficient α was set from 0 to 1 in steps of 0.05. For RLSI, parameter
λ2 was fixed to 1 and parameter λ1 was set in the range of [0.1, 1]. For LSI, PLSI, LDA,
and NMF, there is no additional parameter to tune. Tables XIII, XIV, and XV show
retrieval performance achieved by the best parameter setting (measured by NDCG@1)
on AP, WSJ, and OHSUMED, respectively. Stars indicate significant improvements on
the baseline method, that is, BM25 on AP and WSJ and VSM on OHSUMED, according
to the one-sided t-test (p-value < 0.05). From the results, we can see that (1) RLSI can
significantly improve the baseline, going beyond the simple term-matching paradigm;
(2) among the different topic modeling methods, RLSI and LDA perform slightly better
than the other methods, and sometimes the improvements are statistically significant;
and (3) any improvement of RLSI over LDA, however, is not significant. We conclude
that RLSI is a proper choice for improving relevance.
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Table XII. Topics Discovered by Batch RLSI, LDA, PLSI, LSI, and NMF on AP

bush yen student contra israeli
dukakis trade school sandinista palestinian
quayle dollar teacher rebel israel
bentsen japan educate nicaragua arab
campaign market protest nicaraguan plo
senate opec noriega drug soviet
program oil panama test afghanistan
house cent panamanian cocain afghan
reagan barrel delva aid gorbachev

Batch RLSI state price canal trafficker pakistan
AvgComp = 0.0075 percent quake jackson iran court

0 earthquake dukakis iranian prison
rate richter democrat iraq sentence
billion scale delegate iraqi judge
increase damage party gulf trial
police firefighter soviet hostage africa
kill acr nuclear lebanon south
crash forest treaty beirut african
plane park missile hijack angola
air blaze weapon hezbollah apartheid

soviet school dukakis party year
nuclear student democrat govern new
union year campaign minister time
state educate bush elect television
treaty university jackson nation film
water price court police iran
year year charge south iranian
fish market case govern ship
animal trade judge kill iraq

LDA 0 percent attorney protest navy
AvgComp = 1 people percent state state president

0 1 govern house reagan
city year unit senate bush
mile million military year think
area 0 american congress american
air company police plant health
plane million year worker aid
flight bank death strike us
crash new kill union test
airline year old new research

company israeli bush year govern
million iran dukakis state military
share israel democrat new south
billion palestinian campaign nation state
stock arab republican 0 president
soviet year pakistan mile year
treaty movie afghan 0 state
missile film guerrilla people new
nuclear new afghanistan area people

PLSI gorbachev play vietnam year nation
AvgComp = 0.9534 percent year plane year court

0 state flight animal charge
10 new airline people attorney
12 nation crash new judge
1 govern air 0 trial
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year year percent year year
state aid price state police
new us market new offici
nation new 1 nation report
govern study billion govern state
soviet 567 0 earthquake drug
percent 234 yen quake school
police 0 dollar richter test
govern percent percent scale court
state 12 tokyo damage dukakis
0 yen yen urgent soviet
dukakis police dukakis oil 0
bush 0 bush opec test
jackson dollar dollar dukakis nuclear

LSI dem kill jackson cent urgent
AvgComp = 1 lottery bakker israel south bakker

lotto ptl israeli africa ptl
weekly lottery student rebel spe
pick lotto palestinian african israeli
connecticut soviet africa angola israel
spe bakker noriega hostage student
bc virus panama hamadi school
iran aid plane hijack noriega
iranian ptl drug africa panama
school infect contra south teacher

spe iran yen noriega soviet
bc iranian dollar panama nuclear
car hostage tokyo contra treaty
laserphoto iraq exchange sandinista missile
mature lebanon close rebel gorbachev
lottery africa 576 urgent 0
lotto south 234 caliguiry percent
weekly african 12 allegheny dem
connecticut angola percent ercan uncommitted

NMF pick mandela precinct coron gop
AvgComp = 0.5488 bakker earthquake plane police israeli

ptl quake crash kill isra
ministry richter flight firefighter palestinian
benton scale air injure plo
bankruptcy damage airline car arab
test court percent dukakis opec
virus prison billion bush oil
school sentence company jackson cent
aid judge trade democrat barrel
patient charge million campaign price

8.2.3. Online RLSI for Topic Tracking. In this experiment, we tested the capability of on-
line RLSI for topic tracking. Here, we adopted online RLSI with �1 regularization on
topics and �2 regularization on document representations.14 Documents were treated

14This regularization strategy in batch RLSI has been demonstrated to be the best, as described in Sec-
tion 8.2.1. We tested all four online RLSI variants with regularization on topics and document representa-
tions via either �1 or �2 norm and found a similar trend as in batch RLSI.
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Fig. 5. Topic representability of different methods when the number of top terms increases.

Fig. 6. Topic distinguishability of different methods when the number of top terms increases.

Table XIII. Retrieval Performance of Topic Models on AP

Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25 0.3918 0.4400 0.4268 0.4298 0.4257
BM25+LSI 0.3952 0.4720 0.4410 0.4360 0.4365
BM25+PLSI 0.3928 0.4680 0.4383 0.4351 0.4291
BM25+LDA 0.3952 0.4760 * 0.4478 * 0.4332 0.4292
BM25+NMF 0.3985 * 0.4600 0.4445 * 0.4408 * 0.4347 *
BM25+RLSI 0.3998 * 0.4800 * 0.4461 * 0.4498 * 0.4420 *

as a stream ordered by their time stamps, and the entire collection was processed once
without repeated sampling.

To test the performance of the basic version (described in Section 5.2) and the im-
proved version (described in Section 5.4) of online RLSI, we first decided the ranges
of the parameter ρ ∈ {0, 0.1, 0.2, 0.5, 1, 2, 5, 10}, η ∈ {1, 2, 5, 10, 20, 50, 100}, and ξ ∈
{1, 2, 5, 10, 20, 50, 100}, and selected the best parameters for the two versions. The ba-
sic version of online RLSI was run with ρ = 0, η = 1, and ξ = 1. The improved version
of online RLSI was run with ρ = 1, η = 10, and ξ = 10, because we observed that (1) to
make online RLSI capable of topic tracking, rescaling (controlled by ρ) and embedded
iterations (controlled by ξ) are necessary, and the improved version of online RLSI is
capable of capturing the evolution of latent topics only when ρ ≥ 1 and ξ ≥ 10; and (2)
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Table XIV. Retrieval Performance of Topic Models on WSJ

Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25 0.2935 0.3720 0.3717 0.3668 0.3593
BM25+LSI 0.2953 0.3800 0.3765 0.3710 0.3615
BM25+PLSI 0.2976 * 0.3800 0.3815 * 0.3738 * 0.3619
BM25+LDA 0.2996 * 0.3960 0.3858 * 0.3777 * 0.3683 *
BM25+NMF 0.2954 0.3880 0.3772 0.3725 0.3616
BM25+RLSI 0.2968 0.4040 * 0.3851 * 0.3791 * 0.3679 *

Table XV. Retrieval Performance of Topic Models on OHSUMED

Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

VSM 0.4288 0.4780 0.4159 0.3932 0.3840
VSM+LSI 0.4296 0.4969 0.4337 0.4085 0.3948 *
VSM+PLSI 0.4325 0.4843 0.4171 0.3978 0.3820
VSM+LDA 0.4326 0.5094 * 0.4474 * 0.4115 * 0.3906
VSM+NMF 0.4293 0.5000 0.4316 * 0.4087 * 0.3937 *
VSM+RLSI 0.4291 0.5377 * 0.4383 * 0.4145 * 0.4010 *

mini-batch (controlled by η) does not make a critical impact on topic tracking but can
save execution time when η is large.

Figures 7 and 8 show two example topics discovered by online RLSI on the AP
dataset, with K = 20 and λ1 and λ2 set to the optimal parameters for the retrieval
experiment described next (i.e., λ1 = 0.5 and λ2 = 1.0). Figures 7 and 8 show the pro-
portion of the two topics in the AP dataset as well as some example documents talking
about the topics along the time axis. Here, the proportion of a topic in a document is
defined as the absolute weight of the topic in the document normalized by the �2 norm
of the document. The proportion of a topic in a dataset is then defined as the sum
over all the documents. For each topic, its top five weighted terms in each month are
shown. Also shown are the normalized weights of the representative terms in each
topic along the time axis. Here, the normalized weight of a term in a topic is defined as
the absolute weight of the term in the topic normalized by the �1 norm of the topic. The
first topic (Figure 7), with top term “honduras”, increases sharply in March 1988. This
is because President Reagan ordered over 3,000 U.S. troops to Honduras on March 16
that year, claiming that Nicaraguan soldiers had crossed its borders. About 10% of the
AP documents in March reported this event, and the AP documents later also followed
up on the event. The second topic (Figure 8), with top term “hijack”, increases sharply
in April 1988. This is because on April 5, a Kuwait Airways Boeing 747 was hijacked
and diverted to Algiers on its way to Kuwait from Bangkok. About 8% of the AP docu-
ments in April reported this event and the AP documents in later months followed up
the event. From the results, we conclude that online RLSI is capable of capturing the
evolution of the latent topics and can be used to track the trends of topics.

8.2.4. Online RLSI vs. Batch RLSI. In this experiment, we made comparisons between
online RLSI (oRLSI) and batch RLSI (bRLSI).

We first compared the performance of online RLSI and batch RLSI in terms of topic
readability by looking at the topics they generated. Table XVI shows all 20 final topics
discovered by online RLSI and the average topic compactness (AvgComp) on the AP
dataset, with K = 20 and λ1 and λ2 set to the optimal parameters for the retrieval
experiment described next (i.e., λ1 = 0.5 and λ2 = 1.0). For each topic, its top five
weighted terms are shown. From the results, we have found that (1) online RLSI can
discover readable and compact (e.g., AvgComp = 0.0079) topics; and (2) the topics dis-
covered by online RLSI are similar to those discovered by batch RLSI, as in Table XII.
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Fig. 7. Example topic discovered by online RLSI on AP.

We also compared the performance of online RLSI and batch RLSI in terms of re-
trieval performance. The experimental setting was similar to that in Section 8.2.2.
For both batch RLSI and online RLSI, parameter K was set in the range of [10, 50],
parameter λ2 was fixed to 1, parameter λ1 was set in the range of [0.1, 1], and inter-
polation coefficient α was set from 0 to 1 in steps of 0.05. Tables XVII, XVIII, and
XIX show the retrieval performances achieved by the best parameter setting (mea-
sured by NDCG@1) on AP, WSJ, and OHSUMED, respectively. Stars indicate signifi-
cant improvement on the baseline method, that is, BM25 on AP and WSJ and VSM on
OHSUMED, according to the one-sided t-test (p-value < 0.05). From the results, we
can see that (1) online RLSI can improve the baseline, and in most cases, the improve-
ment is statistically significant; and (2) online RLSI performs slightly worse than batch
RLSI, however, the improvement of batch RLSI over online RLSI is not statistically
significant, because online RLSI updates the term-topic matrix as well as the docu-
ment representation(s) with the documents observed so far, while batch RLSI updates
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Table XVI. Topics Discovered by Online RLSI on AP (AvgComp = 0.0079)

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

africa noriega opec student tax percent dukakis hostage hijack drug
south panama oil school budget billion bush lebanon plane aid
african panamanian cent teacher billion rate jackson beirut hamadi test
angola delva barrel educate senate trade democrat hezbollah crash virus
apartheid military price college reagan price campaign syrian hostage infect
Topic 11 Topic 12 Topic 13 Topic 14 Topic 15 Topic 16 Topic 17 Topic 18 Topic 19 Topic 20

police 0 contra iran palestinian bush soviet gang yen bakker
court party sandinista iranian israel robertson treaty police dollar ptl
people delegate rebel iraq israeli quayle nuclear drug tokyo swaggart
prison percent nicaragua iraqi plo republican missile arrest trade ministry
govern democrat ortega gulf arab reagan gorbachev cocain market church

the term-topic matrix as well as the topic-document matrix with the whole document
collection.

We conclude that online RLSI can discover readable and compact topics and can
achieve high enough accuracy in relevance ranking. More importantly, online RLSI
can capture the temporal evolution of the topics, which batch RLSI cannot.

8.3. Experiments on Web Dataset

We tested the scalability of both batch RLSI and online RLSI using a large real-world
Web dataset. Table XX lists the sizes of the datasets used to evaluate existing dis-
tributed/parallel topic models, as well as the size of the Web dataset in this article. We
can see that the number of terms in the Web dataset is much larger. RLSI can handle
much larger datasets with a much smaller number of machines than existing models.
(Note that it is difficult for us to re-implement existing parallel topic modeling methods
because most of them require special computing infrastructures and the development
costs of the methods are high.)

In the experiments, the number of topics K was set to 500; λ1 and λ2 were again
set to 0.5 and 1.0, respectively; and the mini-batch size in online RLSI was adjusted
to η = 10, 000 because the number of documents is large (e.g., N = 1, 562, 807). It took
about 1.5 and 0.6 hours, respectively, for batch and online RLSI to complete an iter-
ation on the MapReduce system with 16 processors. Table XXI shows ten randomly
selected topics discovered by batch RLSI and online RLSI and the average topic com-
pactness (AvgComp) on the Web dataset. We can see that the topics obtained by both
(distributed) batch RLSI and (distributed) online RLSI are compact and readable.

Next, we tested the retrieval performance of distributed RLSI. We took LambdaRank
[Burges et al. 2007] as the baseline. There are 16 features used in the LambdaRank
model, including BM25, PageRank, and Query-Exact-Match, etc. The topic-matching
scores by batch RLSI and online RLSI were respectively used as a new feature in
LambdaRank, and the obtained ranking models are denoted as LambdaRank+bRLSI
and LambdaRank+oRLSI, respectively. We randomly split the queries into train-
ing/validation/test sets with 6,000/2,000/2,680 queries, respectively. We trained the
ranking models with the training set, selected the best models (measured by NDCG@1)
with the validation set, and evaluated the performances of the models with the test
set. Tables XXII and XXIII show the ranking performance of batch RLSI and on-
line RLSI on the test set, respectively, where stars indicate significant improvements
on the baseline method of LambdaRank according to the one-sided t-test (p-value
< 0.05). The results indicate that LambdaRank+bRLSI and LambdaRank+oRLSI, en-
riched by batch and online RLSI, can significantly outperform LambdaRank in terms of
NDCG@1.
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Fig. 8. Example topic discovered by online RLSI on AP.

Since other papers reduced the input vocabulary size, we tested the effect of reduc-
ing the vocabulary size in RLSI. Specifically, we removed the terms whose total term
frequency is less than 100 from the Web dataset, obtaining a new dataset with 222,904
terms. We applied both batch RLSI and online RLSI on the new dataset with param-
eters K = 500,λ1 = 0.5, and λ2 = 1.0. We then created two LambdaRank models with
topic-matching scores as features, denoted as LambdaRank+bRLSI (Reduced Vocab-
ulary) and LambdaRank+oRLSI (Reduced Vocabulary), respectively. Tables XXII and
XXIII show the retrieval performances of LambdaRank+bRLSI (Reduced Vocabulary)
and LambdaRank+oRLSI (Reduced Vocabulary) on the test set, where stars indicate
significant improvements on the baseline method of LambdaRank according to the
one-sided t-test (p-value < 0.05). The results indicate that reducing the vocabulary
size will sacrifice accuracy of RLSI (both batch version and online version) and conse-
quently hurt the retrieval performance, because after reducing the vocabulary, some of
the query terms (as well as the document terms) will not be included in the topic mod-
els, and hence the topic-matching scores will not be as accurate as before. Let us take
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Table XVII. Retrieval Performance of Online RLSI and Batch RLSI on AP

Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25 0.3918 0.4400 0.4268 0.4298 0.4257
BM25+bRLSI 0.3998 * 0.4800 * 0.4461 * 0.4498 * 0.4420 *
BM25+oRLSI 0.3980 0.4720 * 0.4455 * 0.4419 0.4386 *

Table XVIII. Retrieval Performance of Online RLSI and Batch RLSI on WSJ

Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25 0.2935 0.3720 0.3717 0.3668 0.3593
BM25+bRLSI 0.2968 0.4040 * 0.3851 * 0.3791 * 0.3679 *
BM25+oRLSI 0.2947 0.4040 * 0.3836 * 0.3743 0.3646

query “myspacegraphics” as an example. Without reducing the vocabulary, the query
term “myspacegraphics” is mapped to the topic containing “myspace” and “graphics,”
and thus the relevant documents with respect to the query will get high topic-matching
scores. However, after reducing the vocabulary, the query term “myspacegraphics” is
not included in the topic models, and thus the relevant documents with respect to the
query will get zero topic matching scores. This will hurt the retrieval performance.
We further conducted one-sided t-tests on the difference of NDCG@1 between Lamb-
daRank+bRLSI (Reduced Vocabulary) and LambdaRank+bRLSI, as well as between
LambdaRank+oRLSI (Reduced Vocabulary) and LambdaRank+oRLSI, and found that
the differences are statistically significant (p-value < 0.05) in both cases. We observed
the same trends on the TREC datasets for RLSI and LDA and omit the details
here.

8.4. Discussions

In this section, we discuss the properties of batch RLSI and online RLSI from the
experimental results. Without loss of generality, all the discussions are made on the
AP dataset.

8.4.1. Entries with Negative Values in the Term-Topic Matrix. In LDA, PLSI, and NMF, the
probabilities or weights of terms are all nonnegative. In RLSI, the weights of terms can
be either positive or negative. In this experiment, we investigated the distributions of
terms with positive weights and negative weights in the topics of RLSI.

We examined the positive contribution (PosContri), negative contribution (Neg-
Contri), and majority ratio (MR) of each topic created by batch RLSI and online
RLSI. Here, the positive or negative contribution of a topic is defined as the sum
of absolute weights of positive or negative terms in the topic, and the majority ra-
tio of a topic is defined as the ratio of the dominating contribution, that is, MR =
max {PosContri, NegContri} /

(
PosContri + NegContri

)
. A larger MR value reflects a

larger gap between positive and negative contributions in the topic, indicating that
the topic is “pure”. Table XXIV and Table XXV show the results for batch RLSI and on-
line RLSI, with the same parameter settings as in Section 8.2.2 (i.e., K = 20, λ1 = 0.5,
and λ2 = 1.0) and Section 8.2.4 (i.e., K = 20, λ1 = 0.4, and λ2 = 1.0). From the results,
we can see that (1) almost every RLSI topic is pure and the average MR value of topic
is quite high; (2) in a topic, the positive contribution usually dominates; and (3) online
RLSI has a lower average MR than batch RLSI.

Table XXVI shows four example topics from Table XXIV. Among them, two are with
dominating positive contributions (i.e., Topics 9 and 17), and the other two are with
dominating negative contributions (i.e., Topics 10 and 20). For each topic, 20 terms as
well as their weights are shown—10 with the largest weights and the other 10 with
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Table XIX. Retrieval Performance of Online RLSI and Batch RLSI on OHSUMED

Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

VSM 0.4288 0.4780 0.4159 0.3932 0.3840
VSM+bRLSI 0.4291 0.5377 * 0.4383 * 0.4145 * 0.4010 *
VSM+oRLSI 0.4266 0.5252 * 0.4330 0.4091 0.4020 *

Table XX. Sizes of Datasets used in Distributed/Parallel Topic Models

Dataset # docs # terms Applied algorithms

NIPS 1,500 12,419 Async-CVB, Async-CGS, PLDA
Wiki-200T 2,122,618 200,000 PLDA+
PubMed 8,200,000 141,043 AD-LDA, Async-CVB, Async-CGS
Web dataset 1,562,807 7,014,881 Distributed RLSI

Table XXI. Topics Discovered by Batch RLSI and Online RLSI on the Web Dataset

casino mortgage wheel cheap login
poker loan rim flight password
slot credit tire hotel username
game estate truck student registration

Batch RLSI vegas bank car travel email
AvgComp = 0.0035 christian google obj spywar friend

bible web pdf anti myspace
church yahoo endobj sun music
god host stream virus comment
jesus domain xref adwar photo

book estate god law furniture
science real bible obama bed
math property church war decoration
write sale christian govern bedroom

Online RLSI library rental jesus president bathroom
AvgComp = 0.0018 february cancer ebay jewelry music

january health store diamond song
october medical buyer ring album
december disease seller gold guitar
april patient item necklace artist

Table XXII. Retrieval Performance of Batch RLSI on the Web Dataset

Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

LambdaRank 0.3076 0.4398 0.4432 0.4561 0.4810
LambdaRank+bRLSI 0.3116 * 0.4528 * 0.4494 * 0.4615 * 0.4860 *
LambdaRank+bRLSI (Reduced Vocabulary) 0.3082 0.4448 * 0.4483 * 0.4608 0.4861 *

Table XXIII. Retrieval Performance of Online RLSI on the Web Dataset

Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

LambdaRank 0.3076 0.4398 0.4432 0.4561 0.4810
LambdaRank+oRLSI 0.3088 0.4478 * 0.4473 * 0.4592 0.4851 *
LambdaRank+oRLSI (Reduced Vocabulary) 0.3092 0.4442 * 0.4464 0.4583 0.4842
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Table XXIV. Characteristics of Topics by Batch RLSI

PosContri NegContri MR (%)

Topic 1 21.76 1.34 94.18
Topic 2 22.96 1.72 93.04
Topic 3 19.13 1.91 90.92
Topic 4 25.92 0.64 97.58
Topic 5 28.13 0.92 96.83
Topic 6 116.83 1.70 98.57
Topic 7 23.58 1.06 95.69
Topic 8 18.24 0.16 99.14
Topic 9 16.26 0.44 97.35
Topic 10 3.17 20.33 86.51
Topic 11 43.35 1.18 97.35
Topic 12 19.17 0.03 99.86
Topic 13 26.43 1.22 95.60
Topic 14 24.12 0.91 96.36
Topic 15 32.82 4.00 89.14
Topic 16 52.61 6.84 88.50
Topic 17 24.82 0.47 98.13
Topic 18 28.19 2.20 92.77
Topic 19 24.63 0.32 98.71
Topic 20 0.33 19.54 98.31

Average —- —- 95.23

Table XXV. Characteristics of Topics by Online RLSI

PosContri NegContri MR (%)

Topic 1 20.84 0.50 97.66
Topic 2 18.51 0.03 99.84
Topic 3 3.42 18.01 84.02
Topic 4 17.01 1.21 93.36
Topic 5 33.47 9.72 77.50
Topic 6 55.26 2.24 96.10
Topic 7 37.51 1.13 97.08
Topic 8 13.88 10.17 57.71
Topic 9 7.70 14.61 65.48
Topic 10 20.42 2.27 89.99
Topic 11 124.52 1.28 98.98
Topic 12 6.39 11.38 64.05
Topic 13 26.59 1.53 94.55
Topic 14 24.87 1.09 95.79
Topic 15 28.37 0.44 98.48
Topic 16 6.65 4.84 57.89
Topic 17 33.42 2.29 93.60
Topic 18 4.07 11.19 73.36
Topic 19 10.23 6.90 59.70
Topic 20 12.24 0.00 100.00

Average —- —- 84.76

Table XXVI. Example Topics Discovered by Batch RLSI on AP

Topic 9 Topic 10

drug (3.638) party (–0.120) nuclear (0.313) soviet (–2.735)
test (0.942) tax (–0.112) plant (0.255) afghanistan (–1.039)
cocain (0.716) strike (–0.085) senate (0.161) afghan (–1.032)
aid (0.621) elect (–0.042) reactor (0.134) gorbachev (–0.705)
trafficker (0.469) court (–0.038) air (0.127) pakistan (–0.680)
virus (0.411) opposite (–0.012) test (0.115) guerrilla (–0.673)
infect (0.351) plant (–0.012) contra (0.114) kabul (–0.582)
enforce (0.307) reform (–0.011) palestinian (0.109) union (–0.512)
disease (0.274) polite (–0.010) safety (0.084) moscow (–0.511)
patient (0.258) govern (–0.002) pentagon (0.082) troop (–0.407)

Topic 17 Topic 20

firefighter (1.460) plane (–0.057) soviet (0.073) africa (–2.141)
acr (1.375) bomb (–0.053) crash (0.057) south (–1.881)
forest (1.147) crash (–0.051) contra (0.041) african (–1.357)
park (0.909) airline (–0.048) flight (0.029) angola (–1.125)
blaze (0.865) party (–0.043) sandinista (0.027) apartheid (–0.790)
yellowstone (0.857) police (–0.040) air (0.026) black (–0.684)
fire (0.773) military (–0.035) plane (0.020) botha (–0.601)
burn (0.727) govern (–0.032) investigate (0.016) cuban (–0.532)
wind (0.537) flight (–0.027) program (0.015) mandela (–0.493)
evacuate (0.328) elect (–0.020) airline (0.010) namibia (–0.450)

the smallest weights. From the result, we can see that all the topics are readable if the
dominating parts are taken.
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Table XXVII. Judgments and Matching Scores of Example Query and Documents

QryID/DocID Title/Head Judgment sterm stopic

T-059 Weather Related Fatalities — — —
AP880502-0086 May Snowstorm Hits Rockies Relevant 0 0.9434
AP880219-0053 Rain Heavy in South; Snow Scattered Irrelevant 0 0.8438

Table XXVIII. Corresponding Topics

Topic 6 Topic 16 Topic 17

senate police firefighter
program kill acr
house crash forest
reagan plane park
state air blaze
congress bomb yellowstone
tax attack fire
budget flight burn
govern army wind
committee soldier evacuate

Fig. 9. Representations for sampled query and
documents.

8.4.2. Linear Combination of Topic- and Term-Matching Scores. In this experiment, we in-
vestigated how topic models, such as RLSI and LDA, can address the term mismatch
problem when combined with the term-based matching models, for example, BM25
(with default parameters k1 = 1.2 and b = 0.75).

We take query “Weather Related Fatalities” (T-059) as an example. There are two
documents, AP880502-0086 and AP880219-0053, associated with the query; the first
is relevant, the second is not. Table XXVII shows the titles of the two documents.15

Neither document shares a term with the query, and thus their term-based match-
ing scores (sterm) are both zero. In contrast, the matching scores of the two documents
based on RLSI are large (i.e., 0.9434 and 0.8438), where parameters K = 20, λ1 = 0.5,
and λ2 = 1.0. The topics of the RLSI model are those in Table XII. Figure 9 shows
the representations of the query and the documents in the topic space. We can see
that the query and the documents are mainly represented by the 6th, 16th, and 17th
topics. Table XXVIII shows the details of the three topics regarding the U.S. govern-
ment, accidents, and disasters, respectively.16 We can judge that the representations
are reasonable given the contents of the documents.

This example indicates that relevant documents that do not share terms with the
query may still receive large scores through matching in the topic space. That is the
reason that RLSI can address the term mismatch problem and improve retrieval per-
formance. On the other hand, irrelevant documents that do not share terms with the
query may also get some scores through the matching. That is to say, RLSI may oc-
casionally hurt the retrieval performance because matching in the topic space can
be coarse. Therefore, employing a combination of topic-based model and term-based
model may leverage the advantages of both and significantly improve the overall re-
trieval performance. Similar phenomenon was observed in the study of LDA [Wei and
Croft 2006] in which the authors suggested a combination of language model and LDA.

We examined how the retrieval performance of RLSI and LDA combined with BM25
change, denoted as BM25+RLSI and BM25+LDA, when the interpolation coefficient α

15The whole documents can be found at http://www.daviddlewis.com/resources/testcollections/trecap/.
16Note that the topics here are identical to those in Table XII, where the top ten instead of five terms are
shown here.
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Fig. 10. Retrieval performances of linear combination with different interpolation coefficient values.

varies from 0 to 1. For both RLSI and LDA, the optimal parameters were used, as in
Section 8.2.2 (i.e., K = 50, λ1 = 0.5, and λ2 = 1.0 for RLSI; K = 50 for LDA). Figure 10
shows the NDCG@1 scores of BM25+RLSI and BM25+LDA at different α values. Note
that BM25+RLSI and BM25+LDA degenerate into RLSI and LDA, respectively, when
α = 1, and they degenerate into BM25 when α = 0. From the result, we can see that
(1) RLSI alone and LDA alone perform worse than BM25; and (2) RLSI and LDA can
significantly improve the overall retrieval performance when properly combined with
BM25, that is, with proper α values.

We further examined the precisions at position n (p@n) of three models—BM25
only (BM25), RLSI only (RLSI), and their linear combination (BM25+RLSI)—when
n increases from 1 to 50. Here, the optimal parameters of RLSI and the optimal
interpolation coefficient were used, as in Section 8.2.2 (i.e., K = 50, λ1 = 0.5, λ2 = 1.0,
and α = 0.75). Figure 11 shows the precision curves of the three models at different
positions. We also conducted the same experiment with BM25 only (BM25), LDA only
(LDA), and their linear combination (BM25+LDA). Here, the optimal parameters
of LDA and the optimal interpolation coefficient were used, as in Section 8.2.2 (i.e.,
K = 50 and α = 0.75). The corresponding result is shown in Figure 12. From the
results, we can see that (1) BM25 performs quite well when n is small, and its
performance drops rapidly as n increases; (2) neither RLSI alone nor LDA alone
performs well when n takes different values; (3) RLSI alone, as well as LDA alone,
perform even worse than BM25; (4) BM25+RLSI outperforms both BM25 and RLSI,
and BM25+LDA outperforms both BM25 and LDA, particularly when n is small; and
(5) BM25+RLSI performs better than BM25+LDA. We can conclude that: (1) term
matching and topic matching are complementary; and (2) the most relevant documents
are relevant (have high scores) from both the viewpoints of term matching and topic
matching. That is to say, combining topic-based matching models with term-based
matching models is effective for enhancing the overall retrieval performance.

8.4.3. BM25 with Fine-Tuned Parameters as Baseline. In this experiment, we investigated
how topic models, such as LSI, PLSI, LDA, NMF, and RLSI, behave when combined
with fine-tuned BM25.

First, to tune the parameters of BM25, we set k1 from 1.2 to 2.0 in steps of 0.1, and b
from 0.5 to 1 in steps of 0.05. We found that BM25 with k1 = 1.5 and b = 0.5 performs
best (measured by NDCG@1). Then, we combined topic models LSI, PLSI, LDA, NMF,
and RLSI with the best-performing BM25 model, denoted as BM25+LSI, BM25+PLSI,
BM25+LDA, BM25+NMF, and BM25+RLSI, respectively, and tested their retrieval
performances. The experimental setting was the same as that in Section 8.2.2, that is,
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Fig. 11. Precisions at different positions p@n.

Fig. 12. Precisions at different positions p@n.

Table XXIX. Retrieval Performance of Topic Models Combined with Fine-Tuned BM25

Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25 0.3983 0.4760 0.4465 0.4391 0.4375
BM25+LSI 0.4005 0.4880 0.4500 0.4430 0.4405
BM25+PLSI 0.4000 0.4880 0.4599 * 0.4510 * 0.4452 *
BM25+LDA 0.3985 0.4960 * 0.4577 * 0.4484 0.4453
BM25+NMF 0.4021 * 0.4880 0.4504 0.4465 0.4421
BM25+RLSI 0.4002 0.5000 * 0.4585 * 0.4535 * 0.4502 *

parameter K was set in a range of [10, 50], interpolation coefficient α was set from 0 to 1
in steps of 0.05, λ2 was fixed to 1, and λ1 was set in range of [0.1, 1] in RLSI. Table XXIX
shows the results achieved by the best parameter setting (measured by NDCG@1) on
AP. Stars indicate significant improvements on the baseline method, that is, the best-
performing BM25 according to one-sided t-test (p-value < 0.05). From the results, we
can see that (1) when combined with a fine-tuned term-based matching model, topic-
based matching models can still significantly improve the retrieval performance; and
(2) RLSI performs equally well compared with the other topic models, which is the
same trend as in Section 8.2.2. We also conducted the same experiments on WSJ and
OHSUMED and obtained similar results.
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9. CONCLUSIONS

In this article, we have studied topic modeling from the viewpoint of enhancing the
scalability. We have proposed a new method for topic modeling, called Regularized La-
tent Semantic Indexing (RLSI). RLSI formalizes topic modeling as minimization of
a quadratic loss function with a regularization (either �1 or �2 norm). Two versions
of RLSI have been given, namely the batch mode and online mode. Although similar
techniques have been used in other fields, such as sparse coding in computer vision,
this is the first comprehensive study of regularization for topic modeling as far as we
know. It is exactly the formulation of RLSI that makes its optimization process decom-
posable and thus scalable. Specifically, RLSI replaces the orthogonality constraint or
probability distribution constraint with regularization. Therefore, RLSI can be more
easily implemented in a parallel and/or distributed computing environment, such as
MapReduce.

In our experiments on topic discovery and relevance ranking, we have tested differ-
ent variants of RLSI and confirmed that the sparse topic regularization and smooth
document regularization are the best choice from the viewpoint of overall performance.
Specifically, the �1 norm on topics (making topics sparse) and �2 norm on document
representations gave the best readability and retrieval performance. We have also
confirmed that both batch RLSI and online RLSI can work almost equally well. In
our experiments on topic detection and tracking, we have verified that online RLSI
can effectively capture the evolution of the topics over time.

Experimental results on TREC data and large-scale Web data show that RLSI is bet-
ter than or comparable with existing methods, such as LSI, PLSI, and LDA, in terms
of readability of topics and accuracy in relevance ranking. We have also demonstrated
that RLSI can scale up to large document collections with 1.6 million documents and 7
million terms, which is very difficult for existing methods. Most previous work reduced
the input vocabulary size to tens of thousands of terms, which has been demonstrated
to hurt the ranking accuracy.

As future work, we plan to further enhance the performance of online RLSI. More
specifically, we try to develop better online RLSI algorithms which can not only save
memory but also save computation cost. We make comparison of the online RLSI algo-
rithms with other online topic modeling algorithms (e.g., [Hoffman et al. 2010; Mimno
et al. 2010]). We also want to enhance the scale of experiments to process even larger
datasets and further study the theoretical properties of RLSI and other applications of
RLSI, both batch version and online version.
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APPENDIX

In this section, we provide the proof of Proposition 5.5. Before that, we give and prove
several lemmas.

LEMMA A.1. Let f : R → R, f (x) = ax2 – 2bx + λ|x| with a > 0 and λ > 0. Let x*

denote the minimum of f (x). Then,

x* =

(
|b| – 1

2λ
)

+
sign(b)

a
, (10)
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where (·)+ denotes the hinge function. Moreover, f (x) ≥ f (x*) + a
(

x – x*
)2

holds for all
x ∈ R.

PROOF. Note that

f (x) =
{

ax2 – (2b – λ)x, if x ≥ 0,
ax2 – (2b + λ)x, if x ≤ 0,

which can be minimized in the following three cases. First, if b > 1
2λ, we obtain

x* =
(

b – 1
2λ
)/

a, f
(

x*
)

= –
(

b – 1
2λ
)2/

a,

by using min
x≥0

f (x) = f
(

x*
)
≤ 0 and min

x≤0
f (x) = f (0) = 0. Second, if b < –1

2λ, we obtain

x* =
(

b + 1
2λ
)/

a, f
(

x*
)

= –
(

b + 1
2λ
)2/

a,

by using min
x≥0

f (x) = f (0) = 0 and min
x≤0

f (x) = f
(

x*
)
≤ 0. Finally, we can easily get f

(
x*
)

=

0 with x* = 0, if |b| ≤ 1
2λ, since min

x≥0
f (x) = f (0) = 0 and min

x≤0
f (x) = f (0) = 0. To conclude,

we have

x* =

⎧⎪⎪⎨
⎪⎪⎩

b– 1
2λ

a , if b > 1
2λ,

b+ 1
2λ

a , if b < –1
2λ,

0, if |b| ≤ 1
2λ,

which is equivalent to Eq. (10). Moreover,

f
(

x*
)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

–

(
b– 1

2λ
)2

a , if b > 1
2λ,

–

(
b+ 1

2λ
)2

a , if b < –1
2λ,

0, if |b| ≤ 1
2λ.

Next, we consider function Δ(x) = f (x) – f (x*) – a
(

x – x*
)2

. A short calculation shows
that

Δ(x) =

⎧⎪⎨
⎪⎩

λ |x| – λx, if b > 1
2λ,

λ |x| + λx, if b < –1
2λ,

λ |x| – 2bx, if |b| ≤ 1
2λ.

Note that |x| ≥ x, |x| ≥ –x, and λ ≥ 2b when |b| ≤ 1
2λ. Thus, we obtain Δ(x) ≥ 0 for all

x ∈ R, which gives us the desired result.

LEMMA A.2. Consider the following optimization problem.

min
β∈RK

f (β) = ‖y – Xβ‖2
2 + λ ‖β‖1 ,

where y ∈ R
N is a real vector, X ∈ R

N×K is an N × K real matrix such that all the
diagonal entries of matrix XTX are larger than zero, and λ > 0 is a parameter. For any
β(0) ∈ R

K, take β(0) as the initial value and minimize f (β) with respect to one entry of
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β while keep the others fixed (i.e., minimizing with respect to β1, · · · ,βK in turn). After
one round of such iterative minimization, we obtain β(1) ∈ R

K such that

f
(
β(0)
)

– f
(
β(1)
)
≥ κ2

∥∥∥β(0) – β(1)
∥∥∥2

2
, (11)

with a constant κ2 > 0. Moreover, we obtain β(T) ∈ R
K such that

f
(
β(0)
)

– f
(
β(T)

)
≥ κ2

T

∥∥∥β(0) – β(T)
∥∥∥2

2
, (12)

after T rounds of such iterative minimization.

PROOF. Define β(0)
j ∈ R

K as β(0)
j =

(
β(1)

1 , · · · ,β(1)
j ,β(0)

j+1, · · · ,β(0)
K

)T
for j = 1, · · · , K – 1,

where β(0)
j is the jth entry of β(0) and β(1)

j is the jth entry of β(1). By defining β(0)
0 = β(0)

and β(0)
K = β(1), it is easy to see that starting from β(0)

j–1, minimizing f (β) with respect

to βj (i.e., the jth entry of β) leads us to β(0)
j for j = 1, · · · , K. After one round of such

iterative minimization, we move from β(0) to β(1).
Consider minimizing f (β) with respect to βj. Let β\j denote the vector of β with the

jth entry removed, xj denote the jth column of X, and X\j denote the matrix of X with
the jth column removed. Rewrite f (β) as a function respect to βj, and we obtain the
following.

f (β) =
∥∥xj
∥∥2

2 β
2
j – 2xT

j

(
y – X\jβ\j

)
βj + λ

∣∣βj
∣∣ + const,

where const is a constant with respect to βj. Let κ2 = min
{
‖x1‖2

2 , · · · , ‖xK‖2
2

}
. The

second conclusion of Lemma A.1 indicates that

f
(
β(0)

j–1

)
– f
(
β(0)

j

)
≥
∥∥xj
∥∥2

2

(
β(0)

j – β(1)
j

)2
≥ κ2

(
β(0)

j – β(1)
j

)2
,

for j = 1, · · · , K. Summing over the K inequalities, we obtain the first part of the theo-
rem from Eq. (11) by noting that β(0)

0 = β(0) and β(0)
K = β(1). Here κ2 > 0 holds since all

the diagonal entries of matrix XTX are larger than zero.
The second part is easy to prove. First, the first part indicates that

f
(
β(0)
)

– f
(
β(T)

)
=

T∑
t=1

f
(
β(t–1)

)
– f
(
β(t)
)
≥ κ2

T∑
t=1

∥∥∥β(t–1) – β(t)
∥∥∥2

2
.

Furthermore, the triangle inequality of Euclidean distance (�2-norm distance) leads to

∥∥∥β(0) – β(T)
∥∥∥2

2
=

T∑
i=1

T∑
j=1

(
β(i–1) – β(i)

)T (
β( j–1) – β( j)

)

≤1
2

T∑
i=1

T∑
j=1

(∥∥∥β(i–1) – β(i)
∥∥∥2

2
+
∥∥∥β( j–1) – β( j)

∥∥∥2

2

)

=T
T∑

t=1

∥∥∥β(t–1) – β(t)
∥∥∥2

2
.

From these two inequalities, we obtain the second part of Eq. (12).
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LEMMA A.3. Let v* =
(

UTU + λ2I
)–1

UTd, and let Assumptions 5.1 and 5.2 hold.

Then,
∥∥∥v*
∥∥∥2

2
≤ δ2

1
/

4λ2 holds for all d ∈ K and U ∈ U .

PROOF. Without loss of generality, we suppose that M ≥ K. Suppose that the SVD of
U has the form U = PΩΩΩQT, where P ∈ R

M×M and Q ∈ R
K×K are orthogonal matrices,

and ΩΩΩ ∈ R
M×K is a diagonal matrix with diagonal entries ω11 ≥ ω22 ≥ · · · ≥ ωKK ≥ 0.

Computing the squared �2-norm of v*, we get the following∥∥∥v*
∥∥∥2

2
=dTU

(
UTU + λ2I

)–2
UTd

=dTPΩΩΩ
(
ΩΩΩTΩΩΩ + λ2I

)–2
ΩΩΩTPTd

=
K∑

k=1

dTpk
ω2

kk(
ω2

kk + λ2

)2 pT
k d,

where pk ∈ R
M is the kth column of P. By noting that ω2

kk

/(
ω2

kk + λ2

)2
≤ 1
/

4λ2 holds
for k = 1, · · · , K, it is easy to show that

∥∥∥v*
∥∥∥2

2
≤ 1

4λ2
dT

⎛
⎝ K∑

k=1

pkpT
k

⎞
⎠d =

1
4λ2

‖d‖2
2 –

1
4λ2

M∑
i=K+1

(
dTpi

)2
≤

δ2
1

4λ2
,

where we use the fact that I = PPT =
∑M

m=1 pmpT
m.

LEMMA A.4. Let f̂t denote the loss defined in Eq. (6), and let Assumptions 5.1 and

5.2 hold. Then, f̂t – f̂t+1 is Lipschitz with constant Lt = 1
t+1

(
δ2

1δ2
λ2

+ 2δ2
1√
λ2

)
.

PROOF. A short calculation shows that

f̂t – f̂t+1 =
1

t + 1

[
1
t

t∑
i=1

(
‖di – Uvi‖2

2 + λ2 ‖vi‖2
2

)
–
(
‖dt+1 – Uvt+1‖2

2 + λ2 ‖vt+1‖2
2

)]
,

whose gradient can be calculated as

∇U

(
f̂t – f̂t+1

)
=

2
t + 1

[
U

(
1
t

t∑
i=1

viv
T
i – vt+1vT

t+1

)
–

(
1
t

t∑
i=1

div
T
i – dt+1vT

t+1

)]
.

To prove Lipschitz continuity, we consider the Frobenius norm of the gradient, obtain-
ing the following bound.
∥∥∥∇U

(
f̂t – f̂t+1

)∥∥∥
F
≤ 2

t + 1

[
‖U‖F

(
1
t

t∑
i=1

‖vi‖2
2 + ‖vt+1‖2

2

)
+

(
1
t

t∑
i=1

‖di‖2 ‖vi‖2 + ‖dt+1‖2 ‖vt+1‖2

)]

≤ 1
t + 1

(
δ2

1δ2
λ2

+
2δ2

1√
λ2

)
,

where we use Assumption 5.1, Assumption 5.2, and Lemma A.3. Then, the mean value
theorem gives the desired results.
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PROOF OF PROPOSITION 5.5. This proof is partially inspired by Bonnans and
Shapiro [1998] and Mairal et al. [2010]. Let

gm (ū) =
∥∥∥d̄(t)

m – VT
t ū
∥∥∥2

2
+ θt ‖ū‖1 ,

denote the objective function in Eq. (7). With Assumption 5.3, starting from ū(t+1)
m , op-

timization problem Eq. (7) reaches its minimum ū(t)
m after at most T rounds of iterative

minimization, where ū(t)
m and ū(t+1)

m are the column vectors whose entries are those of
the mth row of Ut and Ut+1, respectively. Lemma A.2 applies, and

gm

(
ū(t+1)

m

)
– gm

(
ū(t)

m

)
≥ κ3

T

∥∥∥ū(t+1)
m – ū(t)

m

∥∥∥2

2
,

for m = 1, · · · , M, where κ3 is the smallest diagonal entry of St. Summing over the M
inequalities and using Assumption 5.4, we obtain the following.

f̂t
(
Ut+1

)
– f̂t (Ut) ≥

κ1
T

‖Ut+1 – Ut‖2
F . (13)

Moreover,

f̂t
(
Ut+1

)
– f̂t (Ut) =f̂t

(
Ut+1

)
– f̂t+1

(
Ut+1

)
+ f̂t+1

(
Ut+1

)
– f̂t+1 (Ut) + f̂t+1 (Ut) – f̂t (Ut)

≤f̂t
(
Ut+1

)
– f̂t+1

(
Ut+1

)
+ f̂t+1 (Ut) – f̂t (Ut) ,

where f̂t+1
(
Ut+1

)
– f̂t+1 (Ut) ≤ 0, since Ut+1 minimizes f̂t+1. Given Assumptions 5.1 and

5.2, Lemma A.4 indicates that f̂t – f̂t+1 is Lipschitz with constant Lt = 1
t+1

(
δ2

1δ2
λ2

+ 2δ2
1√
λ2

)
,

which leads to the following.

f̂t
(
Ut+1

)
– f̂t (Ut) ≤

1
t + 1

(
δ2
1δ2

λ2
+

2δ2
1√
λ2

)
‖Ut+1 – Ut‖F . (14)

From Eq. (13) and (14), we get the desired result, that is, Eq. (8).
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