
AdaRank: A Boosting Algorithm for Information Retrieval

Jun Xu
Microsoft Research Asia

No. 49 Zhichun Road, Haidian Distinct
Beijing, China 100080

junxu@microsoft.com

Hang Li
Microsoft Research Asia

No. 49 Zhichun Road, Haidian Distinct
Beijing, China 100080

hangli@microsoft.com

ABSTRACT
In this paper we address the issue of learning to rank for document
retrieval. In the task, a model is automatically created with some
training data and then is utilized for ranking of documents. The
goodness of a model is usually evaluated with performance mea-
sures such as MAP (Mean Average Precision) and NDCG (Nor-
malized Discounted Cumulative Gain). Ideally a learning algo-
rithm would train a ranking model that could directly optimize the
performance measures with respect to the training data. Existing
methods, however, are only able to train ranking models by mini-
mizing loss functions loosely related to the performance measures.
For example, Ranking SVM and RankBoost train ranking mod-
els by minimizing classification errors on instance pairs. To deal
with the problem, we propose a novel learning algorithm within
the framework of boosting, which can minimize a loss function
directly defined on the performance measures. Our algorithm, re-
ferred to as AdaRank, repeatedly constructs ‘weak rankers’ on the
basis of re-weighted training data and finally linearly combines the
weak rankers for making ranking predictions. We prove that the
training process of AdaRank is exactly that of enhancing the per-
formance measure used. Experimental results on four benchmark
datasets show that AdaRank significantly outperforms the baseline
methods of BM25, Ranking SVM, and RankBoost.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models

General Terms
Algorithms, Experimentation, Theory

Keywords
Information retrieval, Learning to rank, Boosting

1. INTRODUCTION
Recently ‘learning to rank’ has gained increasing attention in

both the fields of information retrieval and machine learning. When

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’07, July 23–27, 2007, Amsterdam, The Netherlands.
Copyright 2007 ACM 978-1-59593-597-7/07/0007 ...$5.00.

applied to document retrieval, learning to rank becomes a task as
follows. In training, a ranking model is constructed with data con-
sisting of queries, their corresponding retrieved documents, and rel-
evance levels given by humans. In ranking, given a new query, the
corresponding retrieved documents are sorted by using the trained
ranking model. In document retrieval, usually ranking results are
evaluated in terms of performance measures such as MAP (Mean
Average Precision) [1] and NDCG (Normalized Discounted Cumu-
lative Gain) [15]. Ideally, the ranking function is created so that the
accuracy of ranking in terms of one of the measures with respect to
the training data is maximized.

Several methods for learning to rank have been developed and
applied to document retrieval. For example, Herbrich et al. [13]
propose a learning algorithm for ranking on the basis of Support
Vector Machines, called Ranking SVM. Freund et al. [8] take a
similar approach and perform the learning by using boosting, re-
ferred to as RankBoost. All the existing methods used for docu-
ment retrieval [2, 3, 8, 13, 16, 20] are designed to optimize loss
functions loosely related to the IR performance measures, not loss
functions directly based on the measures. For example, Ranking
SVM and RankBoost train ranking models by minimizing classifi-
cation errors on instance pairs.

In this paper, we aim to develop a new learning algorithm that
can directly optimize any performance measure used in document
retrieval. Inspired by the work of AdaBoost for classification [9],
we propose to develop a boosting algorithm for information re-
trieval, referred to as AdaRank. AdaRank utilizes a linear com-
bination of ‘weak rankers’ as its model. In learning, it repeats the
process of re-weighting the training sample, creating a weak ranker,
and calculating a weight for the ranker.

We show that AdaRank algorithm can iteratively optimize an ex-
ponential loss function based on any of IR performance measures.
A lower bound of the performance on training data is given, which
indicates that the ranking accuracy in terms of the performance
measure can be continuously improved during the training process.

AdaRank offers several advantages: ease in implementation, the-
oretical soundness, efficiency in training, and high accuracy in ranking.
Experimental results indicate that AdaRank can outperform the base-
line methods of BM25, Ranking SVM, and RankBoost, on four
benchmark datasets including OHSUMED, WSJ, AP, and .Gov.

Tuning ranking models using certain training data and a perfor-
mance measure is a common practice in IR [1]. As the number of
features in the ranking model gets larger and the amount of train-
ing data gets larger, the tuning becomes harder. From the viewpoint
of IR, AdaRank can be viewed as a machine learning method for
ranking model tuning.

Recently, direct optimization of performance measures in learn-
ing has become a hot research topic. Several methods for classifi-

SIGIR 2007 Proceedings Session 16: Learning to Rank II

391

cation [17] and ranking [5, 19] have been proposed. AdaRank can
be viewed as a machine learning method for direct optimization of
performance measures, based on a different approach.

The rest of the paper is organized as follows. After a summary
of related work in Section 2, we describe the proposed AdaRank
algorithm in details in Section 3. Experimental results and discus-
sions are given in Section 4. Section 5 concludes this paper and
gives future work.

2. RELATED WORK

2.1 Information Retrieval
The key problem for document retrieval is ranking, specifically,

how to create the ranking model (function) that can sort documents
based on their relevance to the given query. It is a common practice
in IR to tune the parameters of a ranking model using some labeled
data and one performance measure [1]. For example, the state-of-
the-art methods of BM25 [24] and LMIR (Language Models for
Information Retrieval) [18, 22] all have parameters to tune. As
the ranking models become more sophisticated (more features are
used) and more labeled data become available, how to tune or train
ranking models turns out to be a challenging issue.

Recently methods of ‘learning to rank’ have been applied to
ranking model construction and some promising results have been
obtained. For example, Joachims [16] applies Ranking SVM to
document retrieval. He utilizes click-through data to deduce train-
ing data for the model creation. Cao et al. [4] adapt Ranking
SVM to document retrieval by modifying the Hinge Loss function
to better meet the requirements of IR. Specifically, they introduce
a Hinge Loss function that heavily penalizes errors on the tops of
ranking lists and errors from queries with fewer retrieved docu-
ments. Burges et al. [3] employ Relative Entropy as a loss function
and Gradient Descent as an algorithm to train a Neural Network
model for ranking in document retrieval. The method is referred to
as ‘RankNet’.

2.2 Machine Learning
There are three topics in machine learning which are related to

our current work. They are ‘learning to rank’, boosting, and direct
optimization of performance measures.

Learning to rank is to automatically create a ranking function
that assigns scores to instances and then rank the instances by us-
ing the scores. Several approaches have been proposed to tackle
the problem. One major approach to learning to rank is that of
transforming it into binary classification on instance pairs. This
‘pair-wise’ approach fits well with information retrieval and thus is
widely used in IR. Typical methods of the approach include Rank-
ing SVM [13], RankBoost [8], and RankNet [3]. For other ap-
proaches to learning to rank, refer to [2, 11, 31].

In the pair-wise approach to ranking, the learning task is formal-
ized as a problem of classifying instance pairs into two categories
(correctly ranked and incorrectly ranked). Actually, it is known
that reducing classification errors on instance pairs is equivalent to
maximizing a lower bound of MAP [16]. In that sense, the exist-
ing methods of Ranking SVM, RankBoost, and RankNet are only
able to minimize loss functions that are loosely related to the IR
performance measures.

Boosting is a general technique for improving the accuracies of
machine learning algorithms. The basic idea of boosting is to re-
peatedly construct ‘weak learners’ by re-weighting training data
and form an ensemble of weak learners such that the total perfor-
mance of the ensemble is ‘boosted’. Freund and Schapire have
proposed the first well-known boosting algorithm called AdaBoost

(Adaptive Boosting) [9], which is designed for binary classifica-
tion (0-1 prediction). Later, Schapire & Singer have introduced a
generalized version of AdaBoost in which weak learners can give
confidence scores in their predictions rather than make 0-1 deci-
sions [26]. Extensions have been made to deal with the problems
of multi-class classification [10, 26], regression [7], and ranking
[8]. In fact, AdaBoost is an algorithm that ingeniously constructs
a linear model by minimizing the ‘exponential loss function’ with
respect to the training data [26]. Our work in this paper can be
viewed as a boosting method developed for ranking, particularly
for ranking in IR.

Recently, a number of authors have proposed conducting direct
optimization of multivariate performance measures in learning. For
instance, Joachims [17] presents an SVM method to directly opti-
mize nonlinear multivariate performance measures like the F1 mea-
sure for classification. Cossock & Zhang [5] find a way to ap-
proximately optimize the ranking performance measure DCG [15].
Metzler et al. [19] also propose a method of directly maximizing
rank-based metrics for ranking on the basis of manifold learning.
AdaRank is also one that tries to directly optimize multivariate per-
formance measures, but is based on a different approach. AdaRank
is unique in that it employs an exponential loss function based on
IR performance measures and a boosting technique.

3. OUR METHOD: ADARANK

3.1 General Framework
We first describe the general framework of learning to rank for

document retrieval. In retrieval (testing), given a query the system
returns a ranking list of documents in descending order of the rel-
evance scores. The relevance scores are calculated with a ranking
function (model). In learning (training), a number of queries and
their corresponding retrieved documents are given. Furthermore,
the relevance levels of the documents with respect to the queries are
also provided. The relevance levels are represented as ranks (i.e.,
categories in a total order). The objective of learning is to construct
a ranking function which achieves the best results in ranking of the
training data in the sense of minimization of a loss function. Ideally
the loss function is defined on the basis of the performance measure
used in testing.

Suppose that Y = {r1, r2, · · · , r`} is a set of ranks, where ` denotes
the number of ranks. There exists a total order between the ranks
r` � r`−1 � · · · � r1, where ‘�’ denotes a preference relationship.

In training, a set of queries Q = {q1, q2, · · · , qm} is given. Each
query qi is associated with a list of retrieved documents di = {di1, di2,
· · · , di,n(qi)} and a list of labels yi = {yi1, yi2, · · · , yi,n(qi)}, where n(qi)
denotes the sizes of lists di and yi, di j denotes the jth document in
di, and yi j ∈ Y denotes the rank of document di j. A feature vec-
tor ~xi j = Ψ(qi, di j) ∈ X is created from each query-document pair
(qi, di j), i = 1, 2, · · · ,m; j = 1, 2, · · · , n(qi). Thus, the training set
can be represented as S = {(qi,di, yi)}mi=1.

The objective of learning is to create a ranking function f : X 7→
<, such that for each query the elements in its corresponding doc-
ument list can be assigned relevance scores using the function and
then be ranked according to the scores. Specifically, we create a
permutation of integers π(qi,di, f) for query qi, the correspond-
ing list of documents di, and the ranking function f . Let di =

{di1, di2, · · · , di,n(qi)} be identified by the list of integers {1, 2, · · · , n(qi)},
then permutation π(qi,di, f) is defined as a bijection from {1, 2, · · · ,
n(qi)} to itself. We use π(j) to denote the position of item j (i.e.,
di j). The learning process turns out to be that of minimizing the
loss function which represents the disagreement between the per-
mutation π(qi,di, f) and the list of ranks yi, for all of the queries.

SIGIR 2007 Proceedings Session 16: Learning to Rank II

392

Table 1: Notations and explanations.
Notations Explanations
qi ∈ Q ith query
di = {di1, di2, · · · , di,n(qi)} List of documents for qi

yi j ∈ {r1, r2, · · · , r`} Rank of di j w.r.t. qi

yi = {yi1, yi2, · · · , yi,n(qi)} List of ranks for qi

S = {(qi,di, yi)}mi=1 Training set
~xi j = Ψ(qi, di j) ∈ X Feature vector for (qi, di j)
f (~xi j) ∈ < Ranking model
π(qi,di, f) Permutation for qi, di, and f
ht(~xi j) ∈ < tth weak ranker
E(π(qi,di, f), yi) ∈ [−1,+1] Performance measure function

In the paper, we define the rank model as a linear combination of
weak rankers: f (~x) =

∑T
t=1 αtht(~x), where ht(~x) is a weak ranker, αt

is its weight, and T is the number of weak rankers.
In information retrieval, query-based performance measures are

used to evaluate the ‘goodness’ of a ranking function. By query
based measure, we mean a measure defined over a ranking list
of documents with respect to a query. These measures include
MAP, NDCG, MRR (Mean Reciprocal Rank), WTA (Winners Take
ALL), and Precision@n [1, 15]. We utilize a general function
E(π(qi,di, f), yi) ∈ [−1,+1] to represent the performance mea-
sures. The first argument of E is the permutation π created using
the ranking function f on di. The second argument is the list of
ranks yi given by humans. E measures the agreement between π
and yi. Table 1 gives a summary of notations described above.

Next, as examples of performance measures, we present the def-
initions of MAP and NDCG. Given a query qi, the corresponding
list of ranks yi, and a permutation πi on di, average precision for qi

is defined as:

AvgPi =

∑n(qi)
j=1 Pi(j) · yi j
∑n(qi)

j=1 yi j

, (1)

where yi j takes on 1 and 0 as values, representing being relevant or
irrelevant and Pi(j) is defined as precision at the position of di j:

Pi(j) =

∑
k:πi(k)≤πi(j) yik

πi(j)
, (2)

where πi(j) denotes the position of di j.
Given a query qi, the list of ranks yi, and a permutation πi on di,

NDCG at position m for qi is defined as:

Ni = ni ·
∑

j:πi(j)≤m

2yi j − 1
log(1 + πi(j))

, (3)

where yi j takes on ranks as values and ni is a normalization con-
stant. ni is chosen so that a perfect ranking π∗i ’s NDCG score at
position m is 1.

3.2 Algorithm
Inspired by the AdaBoost algorithm for classification, we have

devised a novel algorithm which can optimize a loss function based
on the IR performance measures. The algorithm is referred to as
‘AdaRank’ and is shown in Figure 1.

AdaRank takes a training set S = {(qi,di, yi)}mi=1 as input and
takes the performance measure function E and the number of itera-
tions T as parameters. AdaRank runs T rounds and at each round it
creates a weak ranker ht(t = 1, · · · ,T). Finally, it outputs a ranking
model f by linearly combining the weak rankers.

At each round, AdaRank maintains a distribution of weights over
the queries in the training data. We denote the distribution of weights

Input: S = {(qi,di, yi)}mi=1, and parameters E and T
Initialize P1(i) = 1/m.
For t = 1, · · · ,T
• Create weak ranker ht with weighted distribution Pt on train-

ing data S .

• Choose αt

αt =
1
2
· ln

∑m
i=1 Pt(i){1 + E(π(qi,di, ht), yi)}∑m
i=1 Pt(i){1 − E(π(qi,di, ht), yi)} .

• Create ft

ft(~x) =

t∑

k=1

αkhk(~x).

• Update Pt+1

Pt+1(i) =
exp{−E(π(qi,di, ft), yi)}∑m

j=1 exp{−E(π(q j,d j, ft), y j)} .

End For
Output ranking model: f (~x) = fT (~x).

Figure 1: The AdaRank algorithm.

at round t as Pt and the weight on the ith training query qi at round
t as Pt(i). Initially, AdaRank sets equal weights to the queries. At
each round, it increases the weights of those queries that are not
ranked well by ft, the model created so far. As a result, the learning
at the next round will be focused on the creation of a weak ranker
that can work on the ranking of those ‘hard’ queries.

At each round, a weak ranker ht is constructed based on training
data with weight distribution Pt. The goodness of a weak ranker is
measured by the performance measure E weighted by Pt:

m∑

i=1

Pt(i)E(π(qi,di, ht), yi).

Several methods for weak ranker construction can be considered.
For example, a weak ranker can be created by using a subset of
queries (together with their document list and label list) sampled
according to the distribution Pt. In this paper, we use single features
as weak rankers, as will be explained in Section 3.6.

Once a weak ranker ht is built, AdaRank chooses a weight αt > 0
for the weak ranker. Intuitively, αt measures the importance of ht.

A ranking model ft is created at each round by linearly com-
bining the weak rankers constructed so far h1, · · · , ht with weights
α1, · · · , αt. ft is then used for updating the distribution Pt+1.

3.3 Theoretical Analysis
The existing learning algorithms for ranking attempt to minimize

a loss function based on instance pairs (document pairs). In con-
trast, AdaRank tries to optimize a loss function based on queries.
Furthermore, the loss function in AdaRank is defined on the basis
of general IR performance measures. The measures can be MAP,
NDCG, WTA, MRR, or any other measures whose range is within
[−1,+1]. We next explain why this is the case.

Ideally we want to maximize the ranking accuracy in terms of a
performance measure on the training data:

max
f∈F

m∑

i=1

E(π(qi,di, f), yi), (4)

SIGIR 2007 Proceedings Session 16: Learning to Rank II

393

where F is the set of possible ranking functions. This is equivalent
to minimizing the loss on the training data

min
f∈F

m∑

i=1

(1 − E(π(qi,di, f), yi)). (5)

It is difficult to directly optimize the loss, because E is a non-
continuous function and thus may be difficult to handle. We instead
attempt to minimize an upper bound of the loss in (5)

min
f∈F

m∑

i=1

exp{−E(π(qi,di, f), yi)}, (6)

because e−x ≥ 1 − x holds for any x ∈ <. We consider the use of a
linear combination of weak rankers as our ranking model:

f (~x) =

T∑

t=1

αtht(~x). (7)

The minimization in (6) then turns out to be

min
ht∈H ,αt∈<+

L(ht, αt) =

m∑

i=1

exp{−E(π(qi,di, ft−1 + αtht), yi)}, (8)

whereH is the set of possible weak rankers, αt is a positive weight,
and (ft−1 + αtht)(~x) = ft−1(~x) + αtht(~x). Several ways of computing
coefficients αt and weak rankers ht may be considered. Following
the idea of AdaBoost, in AdaRank we take the approach of ‘forward
stage-wise additive modeling’ [12] and get the algorithm in Figure
1. It can be proved that there exists a lower bound on the ranking
accuracy for AdaRank on training data, as presented in Theorem 1.

T 1. The following bound holds on the ranking accu-
racy of the AdaRank algorithm on training data:

1
m

m∑

i=1

E(π(qi,di, fT), yi) ≥ 1 −
T∏

t=1

e−δ
t
min

√
1 − ϕ(t)2,

where ϕ(t) =
∑m

i=1 Pt(i)E(π(qi,di, ht), yi), δt
min = mini=1,··· ,m δt

i, and

δt
i = E(π(qi,di, ft−1 + αtht), yi) − E(π(qi,di, ft−1), yi)

−αtE(π(qi,di, ht), yi),

for all i = 1, 2, · · · ,m and t = 1, 2, · · · ,T.

A proof of the theorem can be found in appendix. The theorem
implies that the ranking accuracy in terms of the performance mea-
sure can be continuously improved, as long as e−δ

t
min

√
1 − ϕ(t)2 < 1

holds.

3.4 Advantages
AdaRank is a simple yet powerful method. More importantly, it

is a method that can be justified from the theoretical viewpoint, as
discussed above. In addition AdaRank has several other advantages
when compared with the existing learning to rank methods such as
Ranking SVM, RankBoost, and RankNet.

First, AdaRank can incorporate any performance measure, pro-
vided that the measure is query based and in the range of [−1,+1].
Notice that the major IR measures meet this requirement. In con-
trast the existing methods only minimize loss functions that are
loosely related to the IR measures [16].

Second, the learning process of AdaRank is more efficient than
those of the existing learning algorithms. The time complexity of
AdaRank is of order O((k+T)·m·n log n), where k denotes the num-
ber of features, T the number of rounds, m the number of queries
in training data, and n is the maximum number of documents for

queries in training data. The time complexity of RankBoost, for
example, is of order O(T · m · n2) [8].

Third, AdaRank employs a more reasonable framework for per-
forming the ranking task than the existing methods. Specifically in
AdaRank the instances correspond to queries, while in the existing
methods the instances correspond to document pairs. As a result,
AdaRank does not have the following shortcomings that plague the
existing methods. (a) The existing methods have to make a strong
assumption that the document pairs from the same query are inde-
pendently distributed. In reality, this is clearly not the case and this
problem does not exist for AdaRank. (b) Ranking the most relevant
documents on the tops of document lists is crucial for document re-
trieval. The existing methods cannot focus on the training on the
tops, as indicated in [4]. Several methods for rectifying the problem
have been proposed (e.g., [4]), however, they do not seem to fun-
damentally solve the problem. In contrast, AdaRank can naturally
focus on training on the tops of document lists, because the perfor-
mance measures used favor rankings for which relevant documents
are on the tops. (c) In the existing methods, the numbers of docu-
ment pairs vary from query to query, resulting in creating models
biased toward queries with more document pairs, as pointed out in
[4]. AdaRank does not have this drawback, because it treats queries
rather than document pairs as basic units in learning.

3.5 Differences from AdaBoost
AdaRank is a boosting algorithm. In that sense, it is similar to

AdaBoost, but it also has several striking differences from AdaBoost.
First, the types of instances are different. AdaRank makes use of

queries and their corresponding document lists as instances. The la-
bels in training data are lists of ranks (relevance levels). AdaBoost
makes use of feature vectors as instances. The labels in training
data are simply +1 and −1.

Second, the performance measures are different. In AdaRank,
the performance measure is a generic measure, defined on the doc-
ument list and the rank list of a query. In AdaBoost the correspond-
ing performance measure is a specific measure for binary classifi-
cation, also referred to as ‘margin’ [25].

Third, the ways of updating weights are also different. In Ad-
aBoost, the distribution of weights on training instances is calcu-
lated according to the current distribution and the performance of
the current weak learner. In AdaRank, in contrast, it is calculated
according to the performance of the ranking model created so far,
as shown in Figure 1. Note that AdaBoost can also adopt the weight
updating method used in AdaRank. For AdaBoost they are equiva-
lent (cf., [12] page 305). However, this is not true for AdaRank.

3.6 Construction of Weak Ranker
We consider an efficient implementation for weak ranker con-

struction, which is also used in our experiments. In the implemen-
tation, as weak ranker we choose the feature that has the optimal
weighted performance among all of the features:

max
k

m∑

i=1

Pt(i)E(π(qi,di, xk), yi).

Creating weak rankers in this way, the learning process turns out
to be that of repeatedly selecting features and linearly combining
the selected features. Note that features which are not selected in
the training phase will have a weight of zero.

4. EXPERIMENTAL RESULTS
We conducted experiments to test the performances of AdaRank

using four benchmark datasets: OHSUMED, WSJ, AP, and .Gov.

SIGIR 2007 Proceedings Session 16: Learning to Rank II

394

Table 2: Features used in the experiments on OHSUMED,
WSJ, and AP datasets. C(w, d) represents frequency of word
w in document d; C represents the entire collection; n denotes
number of terms in query; | · | denotes the size function; and
id f (·) denotes inverse document frequency.

1
∑

wi∈q
⋂

d ln(c(wi, d) + 1) 2
∑

wi∈q
⋂

d ln(|C|
c(wi ,C) + 1)

3
∑

wi∈q
⋂

d ln(id f (wi)) 4
∑

wi∈q
⋂

d ln(c(wi ,d)
|d| + 1)

5
∑

wi∈q
⋂

d ln(c(wi ,d)
|d| · id f (wi) + 1) 6

∑
wi∈q

⋂
d ln(c(wi ,d)·|C|

|d|·c(wi ,C) + 1)
7 ln(BM25 score)

0.2

0.3

0.4

0.5

0.6

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25

Ranking SVM

RarnkBoost

AdaRank.MAP

AdaRank.NDCG

Figure 2: Ranking accuracies on OHSUMED data.

4.1 Experiment Setting
Ranking SVM [13, 16] and RankBoost [8] were selected as base-

lines in the experiments, because they are the state-of-the-art learn-
ing to rank methods. Furthermore, BM25 [24] was used as a base-
line, representing the state-of-the-arts IR method (we actually used
the tool Lemur1).

For AdaRank, the parameter T was determined automatically
during each experiment. Specifically, when there is no improve-
ment in ranking accuracy in terms of the performance measure, the
iteration stops (and T is determined). As the measure E, MAP and
NDCG@5 were utilized. The results for AdaRank using MAP and
NDCG@5 as measures in training are represented as AdaRank.MAP
and AdaRank.NDCG, respectively.

4.2 Experiment with OHSUMED Data
In this experiment, we made use of the OHSUMED dataset [14]

to test the performances of AdaRank. The OHSUMED dataset con-
sists of 348,566 documents and 106 queries. There are in total
16,140 query-document pairs upon which relevance judgments are
made. The relevance judgments are either ‘d’ (definitely relevant),
‘p’ (possibly relevant), or ‘n’(not relevant). The data have been
used in many experiments in IR, for example [4, 29].

As features, we adopted those used in document retrieval [4].
Table 2 shows the features. For example, tf (term frequency), idf
(inverse document frequency), dl (document length), and combina-
tions of them are defined as features. BM25 score itself is also a
feature. Stop words were removed and stemming was conducted in
the data.

We randomly divided queries into four even subsets and con-
ducted 4-fold cross-validation experiments. We tuned the parame-
ters for BM25 during one of the trials and applied them to the other
trials. The results reported in Figure 2 are those averaged over four
trials. In MAP calculation, we define the rank ‘d’ as relevant and

1http://www.lemurproject.com

Table 3: Statistics on WSJ and AP datasets.
Dataset # queries # retrieved docs # docs per query
AP 116 24,727 213.16
WSJ 126 40,230 319.29

0.40

0.45

0.50

0.55

0.60

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25

Ranking SVM

RankBoost

AdaRank.MAP

AdaRank.NDCG

Figure 3: Ranking accuracies on WSJ dataset.

the other two ranks as irrelevant. From Figure 2, we see that both
AdaRank.MAP and AdaRank.NDCG outperform BM25, Ranking
SVM, and RankBoost in terms of all measures. We conducted sig-
nificant tests (t-test) on the improvements of AdaRank.MAP over
BM25, Ranking SVM, and RankBoost in terms of MAP. The re-
sults indicate that all the improvements are statistically significant
(p-value < 0.05). We also conducted t-test on the improvements
of AdaRank.NDCG over BM25, Ranking SVM, and RankBoost
in terms of NDCG@5. The improvements are also statistically
significant.

4.3 Experiment with WSJ and AP Data
In this experiment, we made use of the WSJ and AP datasets

from the TREC ad-hoc retrieval track, to test the performances of
AdaRank. WSJ contains 74,520 articles of Wall Street Journals
from 1990 to 1992, and AP contains 158,240 articles of Associ-
ated Press in 1988 and 1990. 200 queries are selected from the
TREC topics (No.101 ∼ No.300). Each query has a number of doc-
uments associated and they are labeled as ‘relevant’ or ‘irrelevant’
(to the query). Following the practice in [28], the queries that have
less than 10 relevant documents were discarded. Table 3 shows the
statistics on the two datasets.

In the same way as in section 4.2, we adopted the features listed
in Table 2 for ranking. We also conducted 4-fold cross-validation
experiments. The results reported in Figure 3 and 4 are those aver-
aged over four trials on WSJ and AP datasets, respectively. From
Figure 3 and 4, we can see that AdaRank.MAP and AdaRank.NDCG
outperform BM25, Ranking SVM, and RankBoost in terms of all
measures on both WSJ and AP. We conducted t-tests on the im-
provements of AdaRank.MAP and AdaRank.NDCG over BM25,
Ranking SVM, and RankBoost on WSJ and AP. The results indi-
cate that all the improvements in terms of MAP are statistically sig-
nificant (p-value < 0.05). However only some of the improvements
in terms of NDCG@5 are statistically significant, although overall
the improvements on NDCG scores are quite high (1-2 points).

4.4 Experiment with .Gov Data
In this experiment, we further made use of the TREC .Gov data

to test the performance of AdaRank for the task of web retrieval.
The corpus is a crawl from the .gov domain in early 2002, and
has been used at TREC Web Track since 2002. There are a total

SIGIR 2007 Proceedings Session 16: Learning to Rank II

395

0.40

0.45

0.50

0.55

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25

Ranking SVM

RankBoost

AdaRank.MAP

AdaRank.NDCG

Figure 4: Ranking accuracies on AP dataset.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25

Ranking SVM

RankBoost

AdaRank.MAP

AdaRank.NDCG

Figure 5: Ranking accuracies on .Gov dataset.

Table 4: Features used in the experiments on .Gov dataset.
1 BM25 [24] 2 MSRA1000 [27]
3 PageRank [21] 4 HostRank [30]
5 Relevance Propagation [23] (10 features)

of 1,053,110 web pages with 11,164,829 hyperlinks in the data.
The 50 queries in the topic distillation task in the Web Track of
TREC 2003 [6] were used. The ground truths for the queries are
provided by the TREC committee with binary judgment: relevant
or irrelevant. The number of relevant pages vary from query to
query (from 1 to 86).

We extracted 14 features from each query-document pair. Ta-
ble 4 gives a list of the features. They are the outputs of some
well-known algorithms (systems). These features are different from
those in Table 2, because the task is different.

Again, we conducted 4-fold cross-validation experiments. The
results averaged over four trials are reported in Figure 5. From the
results, we can see that AdaRank.MAP and AdaRank.NDCG out-
perform all the baselines in terms of all measures. We conducted t-
tests on the improvements of AdaRank.MAP and AdaRank.NDCG
over BM25, Ranking SVM, and RankBoost. Some of the improve-
ments are not statistically significant. This is because we have only
50 queries used in the experiments, and the number of queries is
too small.

4.5 Discussions
We investigated the reasons that AdaRank outperforms the base-

line methods, using the results of the OHSUMED dataset as examples.
First, we examined the reason that AdaRank has higher perfor-

mances than Ranking SVM and RankBoost. Specifically we com-

0.58

0.60

0.62

0.64

0.66

0.68

d-n d-p p-n

ac
cu

ra
cy

pair type

Ranking SVM

RankBoost

AdaRank.MAP

AdaRank.NDCG

Figure 6: Accuracy on ranking document pairs with
OHSUMED dataset.

0

2

4

6

8

10

12

n
u
m

b
er

 o
f

q
u
er

ie
s

number of document pairs per query

Figure 7: Distribution of queries with different number of doc-
ument pairs in training data of trial 1.

pared the error rates between different rank pairs made by Rank-
ing SVM, RankBoost, AdaRank.MAP, and AdaRank.NDCG on the
test data. The results averaged over four trials in the 4-fold cross
validation are shown in Figure 6. We use ‘d-n’ to stand for the pairs
between ‘definitely relevant’ and ‘not relevant’, ‘d-p’ the pairs be-
tween ‘definitely relevant’ and ‘partially relevant’, and ‘p-n’ the
pairs between ‘partially relevant’ and ‘not relevant’. From Fig-
ure 6, we can see that AdaRank.MAP and AdaRank.NDCG make
fewer errors for ‘d-n’ and ‘d-p’, which are related to the tops of
rankings and are important. This is because AdaRank.MAP and
AdaRank.NDCG can naturally focus upon the training on the tops
by optimizing MAP and NDCG@5, respectively.

We also made statistics on the number of document pairs per
query in the training data (for trial 1). The queries are clustered into
different groups based on the the number of their associated docu-
ment pairs. Figure 7 shows the distribution of the query groups. In
the figure, for example, ‘0-1k’ is the group of queries whose num-
ber of document pairs are between 0 and 999. We can see that the
numbers of document pairs really vary from query to query. Next
we evaluated the accuracies of AdaRank.MAP and RankBoost in
terms of MAP for each of the query group. The results are reported
in Figure 8. We found that the average MAP of AdaRank.MAP
over the groups is two points higher than RankBoost. Furthermore,
it is interesting to see that AdaRank.MAP performs particularly
better than RankBoost for queries with small numbers of document
pairs (e.g., ‘0-1k’, ‘1k-2k’, and ‘2k-3k’). The results indicate that
AdaRank.MAP can effectively avoid creating a model biased to-
wards queries with more document pairs. For AdaRank.NDCG,
similar results can be observed.

SIGIR 2007 Proceedings Session 16: Learning to Rank II

396

0.2

0.3

0.4

0.5

M
A

P

query group

RankBoost

AdaRank.MAP

Figure 8: Differences in MAP for different query groups.

0.30

0.31

0.32

0.33

0.34

trial 1 trial 2 trial 3 trial 4

M
A

P

AdaRank.MAP

AdaRank.NDCG

Figure 9: MAP on training set when model is trained with MAP
or NDCG@5.

We further conducted an experiment to see whether AdaRank has
the ability to improve the ranking accuracy in terms of a measure
by using the measure in training. Specifically, we trained ranking
models using AdaRank.MAP and AdaRank.NDCG and evaluated
their accuracies on the training dataset in terms of both MAP and
NDCG@5. The experiment was conducted for each trial. Figure
9 and Figure 10 show the results in terms of MAP and NDCG@5,
respectively. We can see that, AdaRank.MAP trained with MAP
performs better in terms of MAP while AdaRank.NDCG trained
with NDCG@5 performs better in terms of NDCG@5. The results
indicate that AdaRank can indeed enhance ranking performance in
terms of a measure by using the measure in training.

Finally, we tried to verify the correctness of Theorem 1. That is,
the ranking accuracy in terms of the performance measure can be
continuously improved, as long as e−δ

t
min

√
1 − ϕ(t)2 < 1 holds. As

an example, Figure 11 shows the learning curve of AdaRank.MAP
in terms of MAP during the training phase in one trial of the cross
validation. From the figure, we can see that the ranking accuracy
of AdaRank.MAP steadily improves, as the training goes on, until
it reaches to the peak. The result agrees well with Theorem 1.

5. CONCLUSION AND FUTURE WORK
In this paper we have proposed a novel algorithm for learning

ranking models in document retrieval, referred to as AdaRank. In
contrast to existing methods, AdaRank optimizes a loss function
that is directly defined on the performance measures. It employs
a boosting technique in ranking model learning. AdaRank offers
several advantages: ease of implementation, theoretical soundness,
efficiency in training, and high accuracy in ranking. Experimental
results based on four benchmark datasets show that AdaRank can
significantly outperform the baseline methods of BM25, Ranking
SVM, and RankBoost.

0.49

0.50

0.51

0.52

0.53

trial 1 trial 2 trial 3 trial 4

N
D

C
G

@
5

AdaRank.MAP

AdaRank.NDCG

Figure 10: NDCG@5 on training set when model is trained
with MAP or NDCG@5.

0.29

0.30

0.31

0.32

0 50 100 150 200 250 300 350

M
A

P

number of rounds

Figure 11: Learning curve of AdaRank.

Future work includes theoretical analysis on the generalization
error and other properties of the AdaRank algorithm, and further
empirical evaluations of the algorithm including comparisons with
other algorithms that can directly optimize performance measures.

6. ACKNOWLEDGMENTS
We thank Harry Shum, Wei-Ying Ma, Tie-Yan Liu, Gu Xu, Bin

Gao, Robert Schapire, and Andrew Arnold for their valuable com-
ments and suggestions to this paper.

7. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information

Retrieval. Addison Wesley, May 1999.
[2] C. Burges, R. Ragno, and Q. Le. Learning to rank with

nonsmooth cost functions. In Advances in Neural
Information Processing Systems 18, pages 395–402. MIT
Press, Cambridge, MA, 2006.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In ICML 22, pages 89–96, 2005.

[4] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon.
Adapting ranking SVM to document retrieval. In SIGIR 29,
pages 186–193, 2006.

[5] D. Cossock and T. Zhang. Subset ranking using regression.
In COLT, pages 605–619, 2006.

[6] N. Craswell, D. Hawking, R. Wilkinson, and M. Wu.
Overview of the TREC 2003 web track. In TREC, pages
78–92, 2003.

SIGIR 2007 Proceedings Session 16: Learning to Rank II

397

[7] N. Duffy and D. Helmbold. Boosting methods for regression.
Mach. Learn., 47(2-3):153–200, 2002.

[8] Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, 4:933–969, 2003.

[9] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

[10] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic
regression: A statistical view of boosting. The Annals of
Statistics, 28(2):337–374, 2000.

[11] G. Fung, R. Rosales, and B. Krishnapuram. Learning
rankings via convex hull separation. In Advances in Neural
Information Processing Systems 18, pages 395–402. MIT
Press, Cambridge, MA, 2006.

[12] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of
Statistical Learning. Springer, August 2001.

[13] R. Herbrich, T. Graepel, and K. Obermayer. Large Margin
rank boundaries for ordinal regression. MIT Press,
Cambridge, MA, 2000.

[14] W. Hersh, C. Buckley, T. J. Leone, and D. Hickam.
Ohsumed: an interactive retrieval evaluation and new large
test collection for research. In SIGIR, pages 192–201, 1994.

[15] K. Jarvelin and J. Kekalainen. IR evaluation methods for
retrieving highly relevant documents. In SIGIR 23, pages
41–48, 2000.

[16] T. Joachims. Optimizing search engines using clickthrough
data. In SIGKDD 8, pages 133–142, 2002.

[17] T. Joachims. A support vector method for multivariate
performance measures. In ICML 22, pages 377–384, 2005.

[18] J. Lafferty and C. Zhai. Document language models, query
models, and risk minimization for information retrieval. In
SIGIR 24, pages 111–119, 2001.

[19] D. A. Metzler, W. B. Croft, and A. McCallum. Direct
maximization of rank-based metrics for information
retrieval. Technical report, CIIR, 2005.

[20] R. Nallapati. Discriminative models for information retrieval.
In SIGIR 27, pages 64–71, 2004.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library Technologies
Project, 1998.

[22] J. M. Ponte and W. B. Croft. A language modeling approach
to information retrieval. In SIGIR 21, pages 275–281, 1998.

[23] T. Qin, T.-Y. Liu, X.-D. Zhang, Z. Chen, and W.-Y. Ma. A
study of relevance propagation for web search. In SIGIR 28,
pages 408–415, 2005.

[24] S. E. Robertson and D. A. Hull. The TREC-9 filtering track
final report. In TREC, pages 25–40, 2000.

[25] R. E. Schapire, Y. Freund, P. Barlett, and W. S. Lee. Boosting
the margin: A new explanation for the effectiveness of voting
methods. In ICML 14, pages 322–330, 1997.

[26] R. E. Schapire and Y. Singer. Improved boosting algorithms
using confidence-rated predictions. Mach. Learn.,
37(3):297–336, 1999.

[27] R. Song, J. Wen, S. Shi, G. Xin, T. yan Liu, T. Qin, X. Zheng,
J. Zhang, G. Xue, and W.-Y. Ma. Microsoft Research Asia at
web track and terabyte track of TREC 2004. In TREC, 2004.

[28] A. Trotman. Learning to rank. Inf. Retr., 8(3):359–381, 2005.
[29] J. Xu, Y. Cao, H. Li, and Y. Huang. Cost-sensitive learning

of SVM for ranking. In ECML, pages 833–840, 2006.

[30] G.-R. Xue, Q. Yang, H.-J. Zeng, Y. Yu, and Z. Chen.
Exploiting the hierarchical structure for link analysis. In
SIGIR 28, pages 186–193, 2005.

[31] H. Yu. SVM selective sampling for ranking with application
to data retrieval. In SIGKDD 11, pages 354–363, 2005.

APPENDIX
Here we give the proof of Theorem 1.

P. Set ZT =
∑m

i=1 exp {−E(π(qi,di, fT), yi)} and φ(t) = 1
2 (1 +

ϕ(t)). According to the definition of αt, we know that eαt =

√
φ(t)

1−φ(t) .

ZT =

m∑

i=1

exp {−E(π(qi,di, fT−1 + αT hT), yi)}

=

m∑

i=1

exp
{
−E(π(qi,di, fT−1), yi) − αT E(π(qi,di, hT), yi) − δT

i

}

≤
m∑

i=1

exp {−E(π(qi,di, fT−1), yi)} exp {−αT E(π(qi,di, hT), yi)} e−δT
min

= e−δ
T
min ZT−1

m∑

i=1

exp {−E(π(qi,di, fT−1), yi)}
ZT−1

exp{−αT E(π(qi,di, hT), yi)}

= e−δ
T
min ZT−1

m∑

i=1

PT (i) exp{−αT E(π(qi,di, hT), yi)}.

Moreover, if E(π(qi,di, hT), yi) ∈ [−1,+1] then,

ZT ≤ e−δ
T
minZT−1

m∑

i=1

PT (i)
(
1+E(π(qi,di, hT), yi)

2
e−αT+

1−E(π(qi,di, hT), yi)
2

eαT

)

= e−δ
T
min ZT−1

φ(T)

√
1 − φ(T)
φ(T)

+ (1 − φ(T))

√
φ(T)

1 − φ(T)

= ZT−1e−δ
T
min

√
4φ(T)(1 − φ(T))

≤ ZT−2

T∏

t=T−1

e−δ
t
min

√
4φ(t)(1 − φ(t))

≤ Z1

T∏

t=2

e−δ
t
min

√
4φ(t)(1 − φ(t))

= m
m∑

i=1

1
m

exp{−E(π(qi,di, α1h1), yi)}
T∏

t=2

e−δ
t
min

√
4φ(t)(1 − φ(t))

= m
m∑

i=1

1
m

exp{−α1E(π(qi,di, h1), yi) − δ1
i }

T∏

t=2

e−δ
t
min

√
4φ(t)(1 − φ(t))

≤ me−δ
1
min

m∑

i=1

1
m

exp{−α1E(π(qi,di, h1), yi)}
T∏

t=2

e−δ
t
min

√
4φ(t)(1 − φ(t))

≤ m
{
e−δ

1
min

√
4φ(1)(1 − φ(1))

} T∏

t=2

e−δ
t
min

√
4φ(t)(1 − φ(t))

= m
T∏

t=1

e−δ
t
min

√
1 − ϕ(t)2.

∴
1
m

m∑

i=1

E(π(qi,di, fT), yi) ≥ 1
m

m∑

i=1

{1 − exp(−E(π(qi,di, fT), yi))}

≥ 1 −
T∏

t=1

e−δ
t
min

√
1 − ϕ(t)2.

SIGIR 2007 Proceedings Session 16: Learning to Rank II

398

