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ABSTRACT
Hashing techniques for approximate nearest neighbor search (ANNS)
encode data points into a set of short binary codes, while trying to
preserve the neighborhood structure of the original data as much
as possible. With the binary codes, the task of ANNS can be easily
conducted over large-scale dataset, due to the high eciency of
pairwise comparison with the Hamming distance. Although binary
codes have low computation and storage cost, the data are heavily
compressed so that partial neighborhood structure information
would be inevitably lost. To address this issue, we propose to in-
troduce the k-nearest neighbors (k-NNs) in the original space into
the Hamming space (i.e., associating a binary code with its original
k-NNs) to enhance the eectiveness of existing hashing techniques
with little overhead. Based on this idea, we develop a novel search
scheme for hashing techniques namely neighborhood voting, i.e.,
each point retrieved by a query code will vote for its neighbors and
itself, and the more voted, the better candidates. In this way, search
in hashing is not simply the collision between codes (i.e., query
code and candidate code), but also the collision between neighbors
(i.e., neighbors of candidate points). The underlying assumption is
that the true neighbors of a query point should be close to each
other, while points with similar binary codes but seldom be the
neighbors of other candidate points would be false positives. We
introduce a novel data structure called aggregated hash table for
implementing our idea and accelerating the online search process.
Experimental results show that our search scheme can signicantly
improve the search eectiveness while having good eciency over
dierent existing hashing techniques.

CCS CONCEPTS
• Information systems → Search engine indexing;

KEYWORDS
Nearest Neighbor Search; Hashing; Information Retrieval

ACM Reference Format:
Yan Xiao, Jiafeng Guo, Yanyan Lan, Jun Xu and Xueqi Cheng. 2018. Neigh-
borhood Voting: A Novel Search Scheme for Hashing. In The 27th ACM
International Conference on Information and Knowledge Management (CIKM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specic permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00
https://doi.org/10.1145/3269206.3269240

’18), October 22–26, 2018, Torino, Italy. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3269206.3269240

1 INTRODUCTION
Approximate nearest neighbor search is considered as a fundamen-
tal problem in many elds, such as image retrieval and data mining.
One of the major approach for ANNS is hashing technique [2, 4, 9],
whose main idea is to transform data points into compact binary
hash codes. Searching with hash codes can be extremely ecient
due to the low distance computation cost in the Hamming space.
Moreover, the compact representation makes it scalable to large
scale dataset due to the low cost of storage [9]. Most research eorts
on hashing focus on the design of good hash functions, which aim
to generate binary codes with shorter bits but better preserve the
data closeness relationship in the original space. For example, lo-
cality sensitive hashing [4] employs a number of data-independent
random projections as the hash function, and learning to hash ap-
proaches [2, 9] are proposed to learn the hash function from the
data distribution.While good search eciency can be achieved with
hash codes, good search eectiveness is hard to be guaranteed since
original data are heavily compressed so that partial neighborhood
structure information would be inevitably lost.

Meanwhile, the neighborhood structure is well preserved in the
graph-based ANNS methods [3, 5, 6], which employ a neighbor-
hood graph as the index, e.g., k-nearest neighbor graph. However,
graph-based methods search in the original space which may not be
easily scalable to large scale dataset. The original high dimensional
representations can be too large to be loaded into memory, resulting
in additional expensive disk I/O cost [10].

Inspired by the graph-based methods, we propose to introduce
the k-NNs in the original space into the Hamming space to enhance
the eectiveness of the existing hashing techniques with little over-
head. We associate each binary hash code with its original k-NNs,
and develop a novel search scheme namely neighborhood voting,
i.e., each point retrieved by a query code will vote for its neighbors
and the more voted points will be considered as the better candi-
dates. The underlying assumption is that the true neighbors of a
query point should be close to each other, while points with similar
binary codes that are rarely the neighbors of other candidate points
would be false positives. In this way, we consider not only the colli-
sion between the query code and the candidate code, but also the
collision between neighbors. This may bring back the points with
large Hamming distance that are actually close, and discard the
points with small Hamming distance that are actually far away.

As described above, our method contains an additional voting
process. To reduce the cost of voting, we propose to aggregate the
votes from points with the same hash code and improve cache
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hit rate. We further propose a novel data structure, called aggre-
gated hash table, to implement this technology by incorporating
the neighborhood structure into the traditional hash table.

We conduct experiments on public datasets to demonstrate the
eectiveness and eciency of the proposed search scheme imple-
mented with the aggregated hash table. The empirical results show
that our approach can signicantly improve the search eective-
ness while having good eciency over dierent existing hashing
techniques. Meanwhile, we do not need to compute in original
space and the additional memory cost is negligible.

2 RELATEDWORK
Hashing methods can be classied as locality sensitive hashing
(LSH) or learning to hash [10] , based on whether data distribu-
tion is taken into consideration. LSH adopts a number of random
projections as single hash functions and concatenates them as a
compound hash function [4]. Learning to hash has been a popular
topic in recent literature due to that the hash function is learned
from the data distribution, which can achieve better search eective-
ness. For example, iterative quantization (ITQ) [2] learns a rotation
of zero-centered data to map data to a binary hypercube.

The direct search with hash codes is to perform an exhaustive
search of the codes in database using bit operations. Since hash
codes can be directly used as indices, hash table lookup [10] can be
adopted to speed up the search in Hamming space. Points with the
same hash code are stored in a bucket indexed by the hash code,
and all the buckets are organized as a hash table. Searching with
a hash table can be performed by looking up the buckets that are
within small Hamming distance of the query code, and indices of
these buckets can be directly obtained via ipping a few bits of
the query code. Hash table lookup avoids the exhaustive search
and works well for codes within 32 bits, but lose its eciency for
longer bits since the combination number of the ipped bits grows
exponentially with the search radius [8]. Other eorts propose to
use an extra structure for ANNS in the Hamming space, such as
hierarchical k-means trees [7] and multi-index hashing [8].

3 OUR APPROACH
3.1 Key Idea
Although binary codes have low computation and storage cost,
partial neighborhood structure information is inevitably lost due
to the compact representation. To address this issue, we introduce
the k-NNs in the original space into the Hamming space and de-
velop the neighborhood voting scheme to boost hashing techniques.
Specically, each point retrieved will vote for its k-NNs, and this
point will also have one vote due to its collision with the query. The
points with highest number of votes can be returned as candidates
when a certain number of points have voted.

Our approach comes from the assumption that the true neigh-
bors of a query point should be close to each other, while points
with similar binary codes that are rarely the neighbors of other
candidates could be false positives. Meanwhile, the hashing method
is expected to recall a certain number of true neighbors. Therefore,
these true neighbors will vote for each other, thus getting more
votes than outliers. In this way, the missed true neighbors in hash
could be taken back while outliers could be discarded.

3.2 Implementation
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(a) 3-bit LSH. The number in each blue
point denotes its unique identier (ID).
The binary sequence bits denote the hash
code of corresponding area, e.g., the bi-
nary code of point 4 is 100.
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(b) 3-NN graph. The rst column is
the ID of each point to which 3-NN list
are attached, e.g., the 3-nearest neigh-
bors of point 7 is point 3, 8 and 4.
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(c) Aggregated hash table. Each bucket stores the <point ID, voted number> pairs gen-
erated by aggregating all the votes from the points in this bucket. For example, in the
bucket whose hash code is 010, point 5 has one vote initially and votes for its 3-NNs:
point 8, 4 and 3, resulting in these points all having one vote.

Figure 1: Illustration for the aggregated hash table.

Here we use an example to describe of our approach. As shown
in Figure 1(a), we have a few data points which can be mapped
to binary codes using LSH. To record the neighbors of each point,
we approximately and eciently construct a k-NN graph by NN-
Descent [1], where k denotes the number of neighbors. As shown in
Figure 1(b), the k-NN graph are organized by attaching a k-NN list
to each point. The search process of our approach follows the same
framework with hash table lookup. Dierently, the points in visited
buckets are not immediately considered as the neighbor candidates
but will vote for its neighbors instead. To avoid the cost of ranking
all the votes, the points whose votes exceed a pre-dened threshold
will be considered as good candidates and the search process stops
when enough candidates are retrieved.

This straightforward implementation can enhance the eective-
ness of hashing methods. We further have two considerations about
the eciency. Firstly, votes from points of one bucket can be ag-
gregated in the oine stage to accelerate the online voting process.
Secondly, points in one bucket will look up the k-NN graph fre-
quently, which is not cache-friendly because of the approximately
random distribution of the entries in the graph.

Short Paper CIKM’18, October 22-26, 2018, Torino, Italy

1732



Based on these two considerations, we propose the aggregated
hash table as illustrated in Figure 1(c). Each bucket in the aggregated
hash table stores the <point, voted number> pair list, where these
pairs are generated by aggregating all the votes from points in
the same bucket. Therefore, we can collect votes bucket by bucket
rather than point by point. Meanwhile, the k-NN graph has been
incorporated into the aggregated hash table and can be discarded
during the online search stage. The detailed construction algorithm
of the aggregated hash table is formally described in Algorithm 1,
while corresponding search algorithm is described in Algorithm 2.

3.3 Complexity Analysis
The time complexity in oine stage consists of the k-NN graph con-
struction and the aggregated hash table construction. NN-Descent
has a low empirical complexity of O(N 1.14) [1], where N is the total
number of points. As for the aggregated hash table, the hash codes
of N points are processed in one pass. Since the neighborhood
lookup is O(1) time complexity while the vote counting is also O(1),
the voting process of one point has O(k) time complexity. Therefore,
the total time complexity of a aggregated hash table construction
is O(N 1.14 + kN ). In the online search stage, our approach has the
same encoding process (i.e., encode the query to a hash code) with
hash table lookup and contains an additional voting process, which
will increase the search cost. On the other hand, our approach in-
troduces neighbor points and less buckets need to be visited, which
will decrease the search cost. The entire search eciency depends
on the trade-o between the additional voting cost and the visiting
reduction. We will give the empirical result in our experiments.

As for the memory, without the voting aggregation, the addi-
tional memory cost of the k-NN graph is O(kN ). With the aggre-
gated hash table, the worst case is that no two points have the same
hash code. In this case, each bucket stores additional k neighbors
and voted numbers of all the points. Thus the additional memory
complexity of our approach is still O(kN ) in the worst case.

Algorithm 1 Construction algorithm for the aggregated hash table

Input: k-NN graph G, hash codes of N points {c j }j ∈[N ]
Output: Aggregated hash table A

for j = 1 to N do
if c j < A then

A[c j ] ← {}
end if
for v ∈ {j} ∪G[j] do

if v < A[c j ] then
A[c j ][v] ← 0

end if
A[c j ][v] ← A[c j ][v] + 1

end for
end for
return A

3.4 Discussions
As new points come, the neighborsmay change. Rather than rebuild-
ing the data structure, we could adopt an approximate updating
strategy. Specically, we perform ANNS to nd the k-NNs for a

Algorithm 2 Search algorithm with the aggregated hash table
Input: Query point q, candidate number n, aggregated hash table
A and corresponding l-bit hash function H , voting thresholdm

Output: n neighbor candidates
C ← array of size N whose entries are initialized to 0
S ← ∅
for r = 0 to l do

B ← list of all buckets with r Hamming distance to H (q) inA
for b ∈ B do

for v ∈ A[b] do
C[v] ← C[v] +A[b][v]
if C[v] ≥ m then

S ← S ∪ {v}
if #S ≥ n then

return S
end if

end if
end for

end for
end for

new point and update the neighbors of these k-NNs with the new
point. With the aggregated hash table, only buckets where the new
point and its k-NNs fall into will be updated.

Note that we introduce our idea based on hash table lookup since
this is an ecient way with compact short hash codes. Due to the
fact that the input of our approach is a sequence of retrieved points
and the output is a better sequence, our proposed neighborhood
voting search scheme can be naturally applied over other search
schemes, such as other binary indices [7, 8] for long hash codes.
Moreover, our proposed voting aggregation technology can also
be implemented beyond the hash table. For example, the leaf of a
hierarchical k-means tree [7] is actually similar to one bucket of a
hash table, and votes from points fall in one leaf can be aggregated
in oine stage to accelerate online search. We leave the empirical
test of our approach over other search schemes as further study.

4 EXPERIMENTS
4.1 Experimental Settings
The experiments are conducted on a machine with 2.7 GHz Intel
Core i5-5257U CPU and 8 GB memory. Hash codes of dierent
methods are generated by matlab code, while the search methods
are implemented with C++ and compiled with д++6 and O3 option.
A single thread is used in testing stage.

The evaluationmetric of the eectiveness is averaged recall@n in
nding 10-NNs. As for the eciency, we use averaged locating time
(i.e., the time to locate these returned points) since our approach
has the same query encoding time with boosted hashing methods.

We conduct experimentswith the representative data-independent
locality sensitive hashing (LSH) and data-dependent iterative quan-
tization (ITQ) on two popular public datasets: SIFT-1M1 andMNIST2
to evaluate the eectiveness and eciency of our approach. We
reshape the 28 x 28 grayscale images in MNIST into vectors and
1http://corpus-texmex.irisa.fr/
2http://yann.lecun.com/exdb/mnist/
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(a) LSH and ITQ on SIFT-1M
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(b) LSH and ITQ on MNIST

Figure 2: Results on SIFT-1M and MNIST with dierent base hashing methods.

the detailed information of the datasets are summarized in Table 1.
32-bit hash codes and 10-NN graph are used for all the hashing
methods. Constructing the graph costs 293s on SIFT-1M and 23s
on MNIST respectively using 4 threads in the oine stage.

Table 1: Detailed information of the datasets

Dataset Dimension Base number Query number

SIFT-1M 128 1,000,000 10,000
MNIST 784 60,000 10,000

4.2 Experimental Results
The key parameter is voting threshold (i.e.,m). We setm = 0 to
denote the boosted hashing method and the impact ofm based on
ITQ is shown in Table 2.We can seem = 2 can signicantly improve
the eectiveness, thus being used as our default setting. Although
m ≥ 3 can further improve the results, it will decrease eciency at
the same time. Note that whenm = 1, our voting scheme reduces to
one-iteration neighborhood expansion [5] . The results show that
simple neighborhood expansion is not robust, as it may introduce
noise and decrease the eectiveness on some dataset.

Table 2: Recall@100 based on ITQ with dierentm

m 0 1 2 3

SIFT-1M 0.101 0.090 0.119 0.129
MNIST 0.356 0.360 0.413 0.417

As we can see in Figure 2, on both datasets, our approach can
boost corresponding hashingmethods signicantly and consistently
in terms of dierent recall@n, which demonstrates the eectiveness
of our approach. We also nd that our approach usually reduces
the locating time with the same number of candidates, leading to
good search eciency. For example, on SIFT-1M, our approach can
improve the recall@1000 of ITQ from 0.329 to 0.393. Meanwhile, the
locating time decreases from 0.376ms to 0.258ms. Note that under
very small n, the location time might increase a little. In this case,
the visiting reduction will be smaller than the additional voting
cost in our approach, leading to a little bit higher locating time.

The memory overhead of our approach is small as compared
with the size of original dataset (i.e., 488M for SIFT-1M and 179M

for MNIST). For example, with the aggregated hash table based
on ITQ, the additional overhead is 63M on SIFT-1M and 3.7M on
MNIST in the case of k = 10.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we introduce k-NNs into hashing techniques and
develop a novel search scheme namely neighborhood voting to
enhance the search eectiveness of existing hashing methods. We
also propose a novel data structure called aggregated hash table for
ecient implementation. Experimental results show that our search
scheme can signicantly improve the search eectiveness while
having good eciency over dierent existing hashing techniques.
In the future, wewant to test our idea over other search schemes and
investigate whether some theoretical guarantees can be provided.
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