
Name Entity Recognition with Policy-Value Networks

Yadi Lao† Jun Xu‡∗ Sheng Gao† Jun Guo† Ji-Rong Wen‡

† Beijing University of Posts and Telecommunications
‡ School of Information, Beijing Key Laboratory of Big Data Management and Analysis Methods, Renmin University of China

{laoyadi,gaosheng,junguo}@bupt.edu.cn,{junxu,jrwen}@ruc.edu.cn

ABSTRACT
In this paper we propose a novel reinforcement learning based
model for named entity recognition (NER), referred to as MM-
NER. Inspired by the methodology of the AlphaGo Zero, MM-NER
formalizes the problem of named entity recognition with a Monte-
Carlo tree search (MCTS) enhanced Markov decision process (MDP)
model, in which the time steps correspond to the positions of words
in a sentence from left to right, and each action corresponds to
assign an NER tag to a word. Two Gated Recurrent Units (GRU)
are used to summarize the past tag assignments and words in the
sentence. Based on the outputs of GRUs, the policy for guiding
the tag assignment and the value for predicting the whole tagging
accuracy of the whole sentence are produced. The policy and value
are then strengthened with MCTS, which takes the produced raw
policy and value as inputs, simulates and evaluates the possible tag
assignments at the subsequent positions, and outputs a better search
policy for assigning tags. A reinforcement learning algorithm is
proposed to train the model parameters. Empirically, we show that
MM-NER can accurately predict the tags thanks to the exploratory
decision making mechanism introduced by MCTS. It outperformed
the conventional sequence tagging baselines and performed equally
well with the state-of-the-art baseline BLSTM-CRF.

ACM Reference Format:
Yadi Lao, Jun Xu, Sheng Gao, Jun Guo, Ji-Rong Wen. 2019. Name Entity
Recognition with Policy-Value Networks. In Proceedings of the 42nd Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’19), July 21–25, 2019, Paris, France. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3331184.3331349

1 INTRODUCTION
Named entity recognition (NER) has gained considerable research
attention for a few decades. The main goal is to extract entities
such as PERSON, LOCATION etc. in a given sentence. Existing
models can be categorized into the statistical models and the deep
neural networks based models. Traditional research focuses on the
∗ Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’19, July 21–25, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6172-9/19/07. . . $15.00
https://doi.org/10.1145/3331184.3331349

linear statistical models, including the maximum entropy (ME) clas-
si�er [10] and maximum entropy Markov models (MEMMs) [8].
These models predict a distribution of the tags at each time step
and then use beam-like decoding to �nd optimal tag sequences.
La�erty et al. proposed conditional random �elds (CRF) to leverage
global sentence level feature and solve the label bias problem in
MEMM [5]. All the linear statistical models rely heavily on hand-
crafted features, e.g., the true entities usually start with capital
letters. In recent years deep neural networks based models have
been proposed for NER. Most of them directly combine the deep
neural networks with CRF. For example, Huang et al. [4] used a
bidirectional LSTM to automatically extract word-level representa-
tions and then combined with CRF for jointly label decoding. Ma
and Hovy [6] introduced a neural network architecture that both
word level and character level features are used, in which bidirec-
tional LSTM, CNN, and CRF are combined. Reinforcement learning
has also been proposed for the task. For example, Maes et al. [7]
formalized the sequence tagging task as a Markov decision process
(MDP) and used SARSA to construct optimal sequence directly in
a greedy manner. Chang et al. [1] proposed a novel bandit-like
strategy to search a better policy than its reference teacher in struc-
tured prediction task. Inspired by the reinforcement learning model
of AlphaGO Zero [11] programs designed for the Game of Go, in
this paper we solve the NER task with a Monte Carlo tree search
(MCTS) enhanced Markov decision process (MDP). The new model,
referred to as MM-NER (MCTS enhanced MDP for Name Entity
Recognition), makes use of an MDP to model the sequential tag
assignment process. At each position (corresponding to word po-
sition), based on the past words and tags, two Gated Recurrent
Unit (GRUs) are used to summarize the past words and tags respec-
tively. Based on the outputs of these two GRUs, a policy function
(a distribution over the valid tags) for guiding the tag assignment
and a value function for estimating the accuracy of tagging are
produced. To avoid the problem of assigning tags without utilizing
the whole sentence level tags, in stead of choosing a tag directly
with the raw policy predicted by the policy function, MM-NER
explores more possibilities in the whole space. The exploration is
conducted with the MCTS guided by the produced policy function
and value function, resulting a strengthened search policy for the
tag assignment. Moving to the next iteration, the algorithm moves
to the next position and continue the above process until at the end
of the sentence.

Reinforcement learning is used to train the model parameters.
In the training phase, at each learning iteration and for each train-
ing sentence (and the corresponding labels), the algorithm �rst
conducts an MCTS inside the training loop, guided by the current
policy function and value function. Then the model parameters are

Short Research Papers 3C: Search SIGIR ’19, July 21–25, 2019, Paris, France

1245

https://doi.org/10.1145/3331184.3331349
https://doi.org/10.1145/3331184.3331349

adjusted to minimize the loss function. The loss function consists
of two terms: 1) the squared error between the predicted value and
the �nal ground truth accuracy of the whole sentence tagging; and
2) the cross entropy of the predicted policy and the search proba-
bilities for tags selection. Stochastic gradient descent is utilized for
conducting the optimization.

To evaluate the e�ectiveness of MM-NER, we conducted experi-
ments on the basis of CoNLL 2003 NER dataset. The experimental re-
sults showed that MM-NER can outperform the baselines of BLSTM,
BLSTM-CNN, and CRF, BLSTM-CRF with random initialization.
The results also showed that MM-NER performed almost equally
well with the state-of-the-art baseline of BLSTM-CRF with Glove
initialization. We analyzed the results and showed that MM-NER
achieved the performances through conducting lookahead MCTS
to explore in the whole tagging space.

2 MDP FORMULATION OF NER
2.1 NER as an MDP
Suppose thatX = {x1, · · · , xM } is a sequence of words to be labeled
for NER, and Y = {y1, · · · ,yM } is the corresponding ground truth
NER tag sequence. All components xi of X are the L-dimensional
preliminary representations of the words, i.e., the word embedding.
All components yi of Y are assumed to be selected from possible
NER tags setY. The goal is to learn a model that can automatically
assign a tag to each word in the input sentence X.

MM-NER formulates the assignment of tags to sentences as a
process of sequential decision making with an MDP in which each
time step corresponds to a position in the sentence. The states,
actions, transition function, value function, and policy function of
the MDP are set as:

States S :We design the state at time step t as a triple st = [Xl
t =

{xt−w , · · · , xt },Xr
t = {xt , · · · , xt+w },Yt = {y1, · · · , yt−1}]where

Xl
t and Xr

t are the sequences of the left context window and right
context window of the input sentence with length M . w is the
window size and Yt is the pre�x of the label sequence of length
t − 1. At the beginning (t = 1), the state is initialized as s1 =
[{x1}, {x1, · · · , x1+w }, ∅], where ∅ is the empty sequence.

Actions A: At each time step t , the A(st) ⊆ Y is the set of
actions the agent can choose. That is, the action at ∈ A(st) actually
is a tag yt ∈ Y for word xt .

Transition function T : T : S × A → S is de�ned as

st+1 = T (st ,at) = T ([Xl
t ,X

r
t ,Yt],at) = [X

l
t+1,X

r
t+1,Yt ⊕ {at }]

where ⊕ appends at to Yt . At each time step t , based on state st
the system chooses an action (tag) at for the word position t . Then,
the system moves to time step t + 1 and the system transits to a
new state st+1: �rst, the left and right context window Xl

t ,X
r
t are

updated by moving its window to obtain Xl
t+1,X

r
t+1; second, the

system appends the selected tag to the end of Yt , generating a new
tag sequence.

Value function V : The state value function V : S → R is a
scalar evaluation, predicting the accuracy of the tag assignments
for the whole sentence (an episode), on the basis of the input state.
The value function is learned so as to �t the real tag assignment
accuracy of the training sentences.

In this paper, we use twoGRUs and one-layerMLP to respectively

map the left and right context window Xl
t ,X

r
t in the state st to

two real vectors, and then de�ne the value function as nonlinear
transformation of the weighted sum of the MLP’s outputs g(s) and
current candidate action in one-hot representation at :

V (s) = σ (〈Wvg(s), at 〉) (1)

whereWv ∈ R
|A(s) |∗ |д(s) | is the weight vector to be learned during

training, |д(s)|, |A(s)| are the dimension of MLP’s output and the
number of possible action, 〈·, ·〉 is dot product operation, σ (x) =

1
1+e−x is the nonlinear sigmoid function.

l(s) =
[
GRUl(Xl

t)
T ,GRUr(Xr

t)
T
]T
, g(s) =Wд l(s) + bд (2)

The two GRU networks are de�ned as follows: given st = [Xl
t =

{xt−w , · · · , xt },Xr
t = {xt , · · · , xt+w },Yt = {y1, · · · , yt−1}], where

xk (k = 1, · · · , t) is the word at k-th position, represented with its
word embedding. GRUl outputs a representation hk for position k :

zk =σ (Wzxk + Uzhk−1), rk = σ (Wr xk + Ur hk−1),

h̃k = tanh(Whxk + Uz (fk ◦ ck−1)),

hk =(1 − zk) ◦ tanh(ck) + zt ◦ h̃k
where h and c are initialized with zero vector; operator “◦” denotes
the element-wise product and “σ ” is applied to each of the entries.
The last hidden state vector is used as the output of GRU, that is
GRUl(Xl

t) = h1+wT .

The function GRUr(Xr
t), which is used to map the right context

Xr
t into a real vector, is de�ned similarly to that of for GRUl(Xl

t).
Policy function p: The policy p(s) de�nes a function that takes

the state as input and output a distribution over all of the possible
actions a ∈ A(s). Speci�cally, each probability in the distribution is
a normalized softmax function whose input is the bilinear product
of the state representation in Equation (2):

p(a |s) = so�max(Upg(s)),

where Up ∈ R |A(s) |∗ |д(s) | is the parameter. The policy function is:

p(s) = 〈p(a1 |s), · · · ,p(a |A(s) | |s)〉. (3)

2.2 Strengthening raw policy with MCTS
Selecting the NER tags directly with the predicted raw policy p in
Equation (3) may lead to suboptimal results because the policy is
calculated based on the past tags. The raw policy has no idea about
the tags that will be assigned for the future words. To alleviate the
problem, following the practices in AlphaGo Zero [11], we propose
to conduct lookahead search with MCTS. That is, at each position
t , an MCTS search is executed, guided by the policy function p and
the value function V , and output a strengthened new search policy
π . Usually, the search policy π has high probability to select a tag
with higher accuracy than the raw policy p de�ned in Equation (3).

Algorithm 1 shows the details of the MCTS in which each tree
node corresponds to an MDP state. It takes a root node sR , value
function V and policy function p as inputs. The algorithm iterates
K times and outputs a strengthened search policy π for selecting a
tag for the root node sR . Suppose that each edge e(s,a) (the edge
from state s to the state T (s,a)) of the MCTS tree stores an action
value Q(s,a), visit count N (s,a), and prior probability P(s,a). At
each of the iteration, the MCTS executes the following steps:

Short Research Papers 3C: Search SIGIR ’19, July 21–25, 2019, Paris, France

1246

Selection: Each iterations starts from the root sR and iteratively
selects the tags that maximize an upper con�dence bound:

at = argmax
a
(Q(st ,a) + λU (st ,a)), (4)

where λ > 0 is the tradeo� coe�cient, and the bonus U (st ,a) =

p(a |st)

√∑
a′∈A(st) N (st ,a

′)

1+N (st ,a) .U (st ,a) is proportional to the prior prob-
ability but decays with repeated visits to encourage exploration.

Evaluation and expansion: When the traversal reaches a leaf
node sL , the node is evaluated with the value functionV (sL) (Equa-
tion (1)). Note following the practices in AlphaGo Zero, we use the
value function instead of rollouts for evaluating a node.

Then, the leaf node sL may be expanded. Each edge from the leaf
position sL (corresponds to each action a ∈ A(sL)) is initialized as:
P(sL ,a) = p(a |sL) (Equation (3)), Q(sL ,a) = 0, and N (sL ,a) = 0. In
this paper all of the available actions of sL are expanded.

Back-propagation and update: At the end of evaluation, the
action values and visit counts of all traversed edges are updated.
For each edge e(s,a), the prior probability P(s,a) is kept unchanged,
and Q(s,a) and N (s,a) are updated:

Q(s,a) ←
Q(s,a) × N (s,a) +V (sL)

N (s,a) + 1
;N (s,a) ← N (s,a) + 1. (5)

Calculate the strengthened search policy: Finally after iterat-
ing K times, the strengthened search policy π for the root node sR
can be calculated according to the visit counts N (sR ,a) of the edges
starting from sR :

π (a |sR) =
N (sR ,a)∑

a′∈A(sR) N (sR ,a
′)
, (6)

for all a ∈ A(sR).

2.3 Learning and inference algorithms
2.3.1 Reinforcement learning of the parameters. The model has

parameters Θ (including Wv ,Wд ,bд ,Up and parameters in GRUs)
to learn. In the training phase, suppose we are given N labeled
sentence D = {(X(n),Y(n))}Nn=1. Algorithm 2 shows the training
procedure. First, the parameters Θ is initialized to random weights
in [−1, 1]. At each subsequent iteration, for each (X,Y), a tag se-
quence is predicted for X with current parameter setting: at each
position t , an MCTS search is executed, using previous iteration of
value function and policy function, and a tag at is selected accord-
ing to the search policy πt . The tagging terminates at the end of
the sentence and achieved a predicted tag sequence (a1, · · · ,aM).
Given the ground truth tag sequence Y, the overall tagging metric
of the sentence X is calculated, denoted as r . The data generated
at each time step E = {(st ,πt)}Mt=1 and the �nal evaluation r are
utilized as the signals in training for adjusting the value function.
The model parameters are adjusted to minimize the error between
the predicted valueV (st) and tagging metric r , and to maximize the
similarity of the policy p(st) to the search probabilities πt . Speci�-
cally, the parameters Θ are adjusted by gradient descent on a loss
function ` that sums over themean-squared error and cross-entropy
losses, respectively:

`(E, r) =

|E |∑
t=1

©­«(V (st) − r)2 +
∑

a∈A(st)

πt (a |st) log
1

p(a |st)

ª®¬ . (7)

Algorithm 1 TreeSearch
Input: root sR , value V , policy p, search times K
1: for k = 0 to K − 1 do
2: sL ← sR
3: {Selection}
4: while sL is not a leaf node do
5: a ← argmaxa∈A(sL)Q(sL ,a) + λ ·U (sL ,a){Eq. (4)}
6: sL ← child node pointed by edge (sL ,a)
7: end while
8: {Evaluation and expansion}
9: v ← V (sL) {simulate v with value function V }
10: for all a ∈ A(sL) do
11: Expand an edge e to s = [sL .Xl

t+1, sL .X
r
t+1, sL .Yt ⊕ {a}]

12: e .P ← p(a |sL); e .Q ← 0; e .N ← 0{init edge properties}
13: end for
14: {Back-propagation}
15: while sL , sR do
16: s ← parent of sL ; e ← edge from s to sL
17: e .Q ←

e .Q×e .N+v
e .N+1 {Eq. (5)}; e .N ← e .N + 1; sL ← s

18: end while
19: end for
20: for all a ∈ A(sR) do
21: π (a |sR) ←

e(sR,a).N∑
a′∈A(sR) e(sR,a

′).N
22: end for
23: return π

Algorithm 2 Train MM-NER model

Input: Labeled data D = {(X(n),Y(n))}Nn=1, learning rate η, K
1: Initialize Θ← random values in [−1, 1]
2: repeat
3: for all (X,Y) ∈ D do
4: s1 = [{x1}, {x1, · · · , x1+w }, {∅}];M ← |X |;E ← ∅
5: for t = 1 toM do
6: π ← TreeSearch(s,V , p,K) {Alg. (1)}
7: a = argmaxa∈A(s) π (a |s) {select the best tag}
8: E ← E ⊕ {(s,π)}
9: s ← [s .Xl

t+1, s .X
r
t+1, s .Yt ⊕ {a}]

10: end for
11: r ← Metric(Y, s .YM){overall tagging metric}
12: Θ← Θ − η ∂`(E,r)

∂Θ {` is de�ned in Eq. (7)}
13: end for
14: until converge
15: return Θ

The model parameters are trained by back propagation and sto-
chastic gradient descent. Speci�cally, we use AdaGrad [3] on all
parameters in the training process.

2.3.2 Inference. The inference of the NER tag sequence for a
sentence is shown in Algorithm 3. Given a sentence X, the system
state is initialized as s1 = [{x1}, {x1, · · · , x1+w }, ∅]. Then, at each
of the time steps t = 1, · · · ,M , the agent receives the state st =
[Xl

t ,X
r
t ,Yt] and search the policy π with MCTS, on the basis of the

value function V and policy function p. Then, it chooses an action

Short Research Papers 3C: Search SIGIR ’19, July 21–25, 2019, Paris, France

1247

Algorithm 3 MM-NER Inference

Input: sentence X = {x1, · · · , xM }, value V , policy p, and K ,
1: s ← [{x1}, {x1, · · · , x1+w }, {∅}];M ← |X|
2: for t = 1 toM do
3: π ← TreeSearch(s,V , p,K)
4: a ← argmaxa∈A(s) π (a |s)
5: s ← [s .Xl

t+1, s .X
r
t+1, s .Y ⊕ {a}]

6: end for
7: return s .Y

Table 1: Performance comparison for all methods .

Precision Recall F1
BLSTM 80.14% 72.81% 76.29%

BLSTM-CNN 83.48% 83.28% 83.38%
CRF (random) 82.93% 79.94% 81.41%

BLSTM-CRF (random) 83.61% 84.78% 84.19%
MM-NER 84.19% 86.28% 85.22%
CRF (Glove) 85.32% 84.55% 84.93%

BLSTM-CRF (Glove) 88.57% 89.04% 88.30%

a for the word at position t . Moving to the next iteration t + 1, the
state becomes st+1 = [Xl

t+1,X
r
t+1,Yt+1]. The process is repeated

until the end of the sentence is reached. The code of MM-NER can
be found at https://github.com/YadiLao/MM_Tag.

3 EXPERIMENTS
We tested the performances of MM-NER on CoNLL 2003 NER
dataset1, which contains 4 types of entities: persons (PER), organi-
zations (ORG), locations (LOC), andmiscellaneous names (MISC). In
the experiments, we used the publicly available GloVe 100-dimensional
embeddings as the representations of the words [9]. For MM-NER,
the tag level macro F1 of the whole sentence is used as the tagging
metric R during the training of the MM-NER model. The learning
rate η, the tree search trade-o� parameter λ, the number of hidden
units h in GRUs, the window sizew and the number of search times
K . They were empirically set to η = 0.01, λ = 1.0, h = 100, w = 3,
K = 600. Spelling features are concatenated in the state.

We reproduced models in [4] and [2] , including linear statistical
model of CRF and neural models of BLSTM, BLSTM-CNN and its
combination model BLSTM-CRF. Table 1 reports the performances
of MM-NER and baseline methods in terms of NER precision, recall,
F1. From the result we can see that, MM-NER outperformed the
conventional baseline CRFwith random initialization, deep learning
baselines of BLSTM, BLSTM-CNN, and BLSTM-CRF with random
initialization, indicating the e�ectiveness of the proposed MM-NER
model. The reason why MM-NER underperform BLSTM-CRF with
Glove initialization is that MCTS is more important than embedding
for guiding the agent to search a better tagging result.

One of the key steps in MM-NER is using MCTS to improve the
raw policy p of MDP. It is likely that the search policy π is better
than the raw policyp. We conducted experiments in inference stage
to test the e�ects that raw policy p, value network v and search

1https://www.clips.uantwerpen.be/conll2003/ner/

Table 2: F1 w.r.t di�erent search times k . F1 scores for the
raw policy p and value functionv are also shown.

100 300 600 1000 1500 p v
F1 85.11% 85.16% 85.20% 85.22% 85.22% 85.17% 83.11%

policy π have on CoNLL 2003. For raw policy p, value network
v , agent will greedily choose action with highest probability or
value at each time step. As illustrated in table 2, we can see search
policy π achieves highest F1. If we ignore the small F1 di�erence
between π and p, we can greatly reduce the time complexity to
O(M ∗ |A|), which is more e�cient than Viterbi decoding whose
time complexity is O(M ∗ |A|2). Since the goodness of the search
policy π rely on the search timesK , it is possible to make a trade-o�
between the tagging result and e�ciency.

4 CONCLUSION
In this paper we have proposed a novel approach to named entity
recognition, referred to as MM-NER. MM-NER formalizes NER for
a sentence as sequential decision making with MDP. The lookahead
MCTS is used to strengthen the raw predicted policy so that the
search policy has high probability to select the correct tags for
each word. Reinforcement learning is utilized to train the model
parameters. MM-NER enjoys several advantages: tagging with the
shared policy and the value functions, end-to-end learning, and low
time complexity in inference. Experimental results show that MM-
NER outperformed or performed equally well with the baselines of
CRF, BLSTM, BLSTM-CNN, and BLSTM-CRF. Future work includes
improving the e�ectiveness and e�ciency of MCTS.

5 ACKNOWLEDGEMENT
This work was funded by National Natural Science Foundation of
China (61872338 and 61702047), Beijing Natural Science Foundation
(4174098), Fundamental Research Funds for the Central Universities,
and Research Funds of Renmin University of China (2018030246).

REFERENCES
[1] Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daume III, and John

Langford. 2015. Learning to search better than your teacher. In ICML (2015).
[2] Jason P. C. Chiu and Eric Nichols. 2016. Named Entity Recognition with Bidirec-

tional LSTM-CNNs. TACL, 4, 357–370 (2016).
[3] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods

for online learning and stochastic optimization. JMLR 12, Jul (2011), 2121–2159.
[4] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF models for

sequence tagging. arXiv preprint arXiv:1508.01991 (2015).
[5] John La�erty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional

random �elds: Probabilistic models for segmenting and labeling sequence data.
In ICML (2001).

[6] Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-
directional lstm-cnns-crf. arXiv preprint arXiv:1603.01354 (2016).

[7] Francis Maes, Ludovic Denoyer, and Patrick Gallinari. 2007. Sequence labeling
with reinforcement learning and ranking algorithms. In ECML, 648–657 (2007).

[8] Andrew McCallum, Dayne Freitag, and Fernando CN Pereira. 2000. Maximum
Entropy Markov Models for Information Extraction and Segmentation.. In ICML,
591–598, (2000).

[9] Je�rey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In EMNLP. 1532–1543. (2014)

[10] Adwait Ratnaparkhi. 1996. Amaximum entropymodel for part-of-speech tagging.
In EMNLP. (1996)

[11] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. Nature 550,
7676 (2017), 354.

Short Research Papers 3C: Search SIGIR ’19, July 21–25, 2019, Paris, France

1248

https://github.com/YadiLao/MM_Tag

	Abstract
	1 Introduction
	2 MDP formulation of NER
	2.1 NER as an MDP
	2.2 Strengthening raw policy with MCTS
	2.3 Learning and inference algorithms

	3 Experiments
	4 Conclusion
	5 Acknowledgement
	References

