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Abstract—Ranking SVM, which formalizes the problem of learning a ranking model as that of learning a binary SVM on preference

pairs of documents, is a state-of-the-art ranking model in information retrieval. The dual form solution of a linear Ranking SVMmodel

can be written as a linear combination of the preference pairs, i.e., ww ¼P
ði;jÞ aijðxxi � xxjÞ, where aij denotes the Lagrange parameters

associated with each preference pair ði; jÞ. It is observed that there exist obvious interactions among the document pairs because two

preference pairs could share a same document as their items, e.g., preference pairs ðd1; d2Þ and ðd1; d3Þ share the document d1.

Thus it is natural to ask if there also exist interactions over the model parameters aij, which may be leveraged to construct better

ranking models. This paper aims to answer the question. We empirically found that there exists a low-rank structure over the

rearranged Ranking SVM model parameters aij, which indicates that the interactions do exist. Based on the discovery, we made

modifications on the original Ranking SVM model by explicitly applying low-rank constraints to the Lagrange parameters, achieving two

novel algorithms called Factorized Ranking SVM and Regularized Ranking SVM, respectively. Specifically, in Factorized Ranking SVM

each parameter aij is decomposed as a product of two low-dimensional vectors, i.e., aij ¼ hvvi; vvji, where vectors vvi and vvj correspond

to document i and j, respectively; In Regularized Ranking SVM, a nuclear norm is applied to the rearranged parameters matrix for

controlling its rank. Experimental results on three LETOR datasets show that both of the proposed methods can outperform state-of-

the-art learning to rank models including the conventional Ranking SVM.

Index Terms—Learning to rank, ranking SVM, parameter interactions, low-rank approximation

Ç

1 INTRODUCTION

IN recent years ‘learning to rank’ [1], [2] has gained increas-
ing attention in both the fields of information retrieval and

machine learning.When applied to document retrieval, learn-
ing to rank becomes a task as follows. In training, a ranking
model is constructedwith data consisting of queries, their cor-
responding retrieved documents, and relevance levels given
by humans. In ranking, given a new query, the corresponding
retrieved documents are sorted by using the trained ranking
model. Among the different learning to rankmodels, the pair-
wise approaches [3], [4] have been widely used. Pairwise
learning to rank formalizes the problem of learning a ranking
model as that of binary classification over the document pref-
erence pairs. Each document preference pair consists of two
retrieved documents in which the first document is more
relevant than the second onew.r.t. the query.

Representative pairwise learning to rank models include
Ranking SVM [4], RankNet [5], RankBoost [6], and IR-SVM [7]

etc. For example, Ranking SVMevolves from the popular sup-
port vector machines (SVM) [8] for classification problems. In
training, Ranking SVM first constructs the preference pairs of
the documents based on their relevance labels (or click-
through data [4]). Then, a binary classification SVM model is
learned based on the preference pairs to capture the differen-
ces between documents with different relevance labels. In
ranking, each document is assigned a relevance score based
on the learned ranking model. According to the representer
theorem [9] inmachine learning, the Ranking SVMmodel can
bewritten in their dual forms. Specifically, the solutions of the
linear Ranking SVM optimization problem can be written as
linear combinations of the training preference pairs, i.e.,
ww ¼P

ði;jÞ aijðxxi � xxjÞ, where ww is the model parameter vec-
tor, xxi and xxj are the feature vectors of the first and second
document in the pair ði; jÞ, and aij 2 R is the corresponding
dualmodel parameter (Lagrangemultiplier).1

Inmachine learning, it is usually supposed that the training
instances are independent and identically distributed (I.I.D.).
In Ranking SVM, however, the I.I.D. assumption is violated. It
is easy to show that the training instances (the constructed
document preference pairs) have strong interactions. This is
because two preference pairs could share a same document as
their preferred or unpreferred documents. For example, given
a query q and three retrieved documents d1; d2 and d3 whose
relevance labels are ‘relevant’, ‘irrelevant’, and ‘irrelevant’,
respectively. Two preference pairs ðd1; d2Þ and ðd1; d3Þwill be

� J. Xu is with the Beijing Key Laboratory of Big Data Management and
Analysis Methods, School of Information, Renmin University of China.
E-mail: junxu@ruc.edu.cn.

� W. Zeng, Y. Lan, J. Guo, and X. Cheng are with the CAS Key Lab of
Network Data Science and Technology, Institute of Computing Technol-
ogy, Chinese Academy of Sciences.
E-mail: zengwei@software.ict.ac.cn, {lanyanyan, guojiafeng, cxq}@ict.ac.cn.

Manuscript received 24 Nov. 2016; revised 13 Mar. 2018; accepted 20 June
2018. Date of publication 28 June 2018; date of current version 26 Apr. 2019.
(Corresponding author: Jun Xu.)
Recommended for acceptance by F. Silvestri.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2018.2851257

1. In dual form Ranking SVM aij is a Lagrange multiplier corre-
sponds to one document preference pair (i; j).
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generated by Ranking SVM as the training instances for learn-
ing the binary SVMmodel. It is obvious that these two prefer-
ence pairs have some interactions as both of them contains the
document d1 as the preferred document.

In the dual form solution of Ranking SVM model, each
preference pair ði; jÞ is associated with a Lagrange multi-
plier aij. Therefore, it is natural to ask the following two
questions: 1) whether there also exist interactions among these
Lagrange multipliers; 2) If the answer is yes, how to utilize the
interactions to improve the Ranking SVM algorithm?

This paper tries to answer the first question by analyzing
the model parameters of a trained Ranking SVMmodel. Spe-
cifically, we analyzed the Lagrange multipliers of a trained
Ranking SVM model as follows: first, we made an arrange-
ment of the Lagrange multipliers and constructed a block
diagonal matrix A, where Aði; jÞ ¼ aij if aij appears in the
Ranking SVMmodel and zero otherwise. In the matrixA, one
block corresponds to the set of the preference pairs generated
for one query. Then,weperformed singular value decomposi-
tion (SVD) [10] on each block ofA and sorted the eigenvalues
in descending order. Finally, for each query, we gradually
removed the dimensions with small eigenvalues, yielding a
low-rank approximation ofA and keepingmost of the energy.
We found that for all the queries, we just need 40 percent
dimensions to capture 90 percent energy. If we want to cap-
ture 100 percent energy, however, almost all the queries need
all of the dimensions. The phenomenon indicates that there
exists a low-rank structure in the matrix A. We conclude that
there exist interactions among the Lagrange multipliers in
Ranking SVMmodels.

To answer the second question, we propose to explicitly
modeling the parameter interactions in the training process
of Ranking SVM, based on the above discovery. Specifically,
two approaches are proposed in the paper, called Factorized
Ranking SVM and Regularized Ranking SVM, respectively.
In Factorized Ranking SVM, each parameter aij in the Rank-
ing SVM dual form objective function is factorized as a
dot product of two K-dimensional latent vectors, i.e.,
aij ¼ hvvi; vvji, where vvi and vvj correspond to the first
document and second document in the preference pair,
respectively. In this way, the rank of each block of matrix A
would be less than K. The learning of the ranking model,
then, becomes optimizing the factorized dual form objective
function with respect to the latent vectors. In Regularized
Ranking SVM, a nuclear norm regularizer is applied to
matrix A and combined with the dual form Ranking SVM
objective function, for controlling the rank of matrix A. The
learning of the ranking model, thus, becomes optimizing a
dual form objective function regularized with a nuclear
norm regularizer over A.

We tested the performances of the proposed Factorized
Ranking SVM and Regularized Ranking SVM models on
the basis of LETOR datasets of OHSUMED, MQ2007, and
MQ2008. Experimental results showed that both Factorized
Ranking SVM and Regularized Ranking SVM can outper-
form several state-of-the-art baseline methods including
Ranking SVM, in term of the popularly used evaluation
measures of MAP and NDCG. Experimental results also
showed that the Factorized Ranking SVM and Regularized
Ranking SVM algorithms can achieve more improvements
on the tasks in which the generated preference pairs have

more interactions, i.e., each query has more labeled docu-
ments and generates more preference pairs.

Contributions of the paper include: 1) The paper investi-
gated the impacts of the interactions among the document
preference pairs generated for training theRanking SVMmod-
els. A low-rank structure among the rearranged Ranking SVM
Lagrange multipliers was observed and verified empirically;
2) Based on the observation, we proposed two approaches to
directly modeling the parameter interactions, achieving two
novel pairwise learning to rank models, referred to as Factor-
ized Ranking SVM and Regularized Ranking SVM, respec-
tively; 3) The effectiveness of the proposed approaches is
tested on public available benchmark datasets.

The observations and the approaches tomodeling parame-
ter interactions (factorizing or regularizing the rearranged
dual form parameters) are quite general. They can also be
used to model the low rank structure in other pairwise learn-
ing to rankmodels.

The rest of the paper are organized as follows. After intro-
ducing the relatedwork in Section 2, we present the pairwise
learning to rank and one of the representative pairwise learn-
ing to rank model Ranking SVM in Section 3. In Section 4 we
analyze the phenomenon of the parameter interactions in the
trained Ranking SVM model. Based on the analysis, we pro-
posed Factorized Ranking SVM and Regularized Ranking
SVM in Section 5. Section 6 presents the experimental results
and the conclusions are drawn in Section 7.

2 RELATED WORK

2.1 Learning to Rank for Information Retrieval

Learning to rank has become one of the most active research
topics in relevance ranking for IR [1]. State-of-the-art learning
to rank models can be categorized into pointwise methods
(e.g., PRank [11] and other models [12], [13]), pairwise meth-
ods (e.g., Ranking SVM [3], [4], RankNet [5], RankBoost [6],
and IRSVM [7], [14]), and listwise methods (e.g., ListNet [15],
AdaRank [16], LambdaMART [17] , XGBoost [18], PermuR-
ank [19], andDSSVM [20]).

In this paper we focus on the pairwise methods which for-
malize the problem of learning a model for ranking docu-
ments as a problem of learning a binary classification model
over the document preference pairs. Thus, the pairwise
approaches first generate a set of preference pairs based on
the labeled data, which is then used as the training data for
learning the binary classification model. In this way, the pair-
wise approaches focus on predicting the relative order
between two documents. Different binary classification mod-
els including SVM, Boosting, and Neural Networks can be
applied here, achieves the pairwise learning to rank algo-
rithms of Ranking SVM [3], [4], RankBoot [6], RankNet [5].
Among these algorithms, Ranking SVM [3], which applies
binary SVM to solve the binary classification problem, is a
representative pairwise learning to rank method. To make
the algorithm more suitable to real-world IR applications,
Joachims [4] proposed to train Ranking SVMwith users’ click-
through data from search engines. Cao et al. [7] adapted Rank-
ing SVM to document retrieval bymodifying the loss function
so that the training can focus on the top ranked documents.

A natural concern on the pairwise learning to rank is that
the generated document preference pairs are not independent
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and identically distributed, which violates the basic assump-
tion of classification. In this paper, we found that these non-I.
I.D. training pairs lead to strong interactions among the
Lagrange multipliers in the Ranking SVM model, which
can be utilized to design better pairwise learning to rank
algorithms.

In recent years, learning to rank has been applied to the
ranking tasks other than the relevance ranking. For exam-
ple, a number of learning to rank algorithms has been pro-
posed for search result diversification in which both the
relevance and document novelty is considered simulta-
neously [21], [22], [23]. Qiang et al. [24] proposed Ranking
FM to rank tweets in microblog retrieval. In Ranking FM,
the interactions between features are modeled with factori-
zation machine [25].

2.2 Low-Rank Approximation of a Matrix

In machine learning, it is common to approximate a set of
parameters of interest as low-rank matrices. It has achieved
great success in various tasks including dictionary learn-
ing [26], topic modeling [27], [28], [29], and low-rank matrix
recovery and completion [30]. In general there exist twomain
approaches: rankminimization andmatrix factorization.

A direct approach to approximating an inputmatrixwith a
low-rank one is to minimize the rank of the matrix with cer-
tain constraints that make the estimated matrix consistent
with the original matrix. However, the rank minimization
problem is combinatorial and known to beNP hard [31]. Con-
vex relaxation is often used to make the minimization tracta-
ble. The most popular choice is to replace rank with the
nuclear norm, which is defined as the sum of all of the singu-
lar values. For example, in [32], the low-rank matrix approxi-
mation problem is formalized as minimizing an objective
function which consists of the F-norm term and the regulari-
zation term. The F-norm term measures the difference
between the recoveredmatrix and the inputmatrix. The regu-
larization term is defined as a nuclear norm over the recov-
eredmatrix. One of themost popular methods for solving this
problem is in the class of iterative shrinkage-thresholding
algorithm (ISTA) [33], where each iteration involves a gradi-
ent step followed by a shrinkage/soft-threshold step. A Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA) [34] is
proposed, which preserves the computational simplicity of
ISTA, but with a global rate of convergence which is proven
to be significantly better, both theoretically and practically.

Another approach to modeling the low-rank structure is
matrix factorization which decomposes the input matrix as
a product of two (or more) matrices. Using matrix factoriza-
tion to model a low-rank matrix is based on the fact that the
rank of the product matrix cannot be greater than the ranks
of any factor matrices. Therefore the problem of modeling a
low rank matrix can be converted to estimating two factor
matrices. A popular approach to solving the problem is to
minimizing the objective function over of of the two factor
matrices alternately by fixing the other one. Matrix factori-
zation has been widely used in variant tasks such as collabo-
rative filtering [35] and topic modeling [27], [29].

In this paper, we utilize both of the rank minimization and
matrix factorization approaches to modeling the low rank
structure over the Lagrange multipliers, which capture the
parameter interactions in the Ranking SVMmodel effectively.

3 RANKING SVM

In this section, we introduce the problem formulation of
pairwise learning to rank and the representative pairwise
learning to algorithm Ranking SVM.

3.1 Pairwise Learning to Rank

The problem of learning to rank for information retrieval
can be formulated as follows. In retrieval (testing), given a
query the retrieval system returns a ranking list of docu-
ments in descending order of the relevance scores. The rele-
vance scores are calculated with a ranking function (model).
In learning (training), a number of queries and their corre-
sponding retrieved documents are given. Furthermore, the
relevance levels of the documents with respect to the
queries are also provided. The relevance levels are repre-
sented as ranks (i.e., categories in a total order). The objec-
tive of learning is to construct a ranking function which
achieves the best results in ranking of the training data in
the sense of minimization of a loss function.

Suppose we are given a set of training label-query-
document tuples ðyi; qi; xxiÞf gNi¼1, where N is the number of
training tuples, yi 2 fr1; � � � ; r‘g is the relevance label for the
ith query-document pair, ‘ is the number of relevance lev-
els, qi 2 Q is the query for the ith query-document pair and
Q is the set of queries in training data. There exists a total
order between the relevance labels r‘ � r‘�1; . . . ;� r1,
where ‘�’ denotes a preference relationship. xxi 2 X is the
feature vector encoding the ith query-document pair ðqi; diÞ,
i.e., the ranking features xxi ¼ fðqi; diÞ, where f is the feature
function describing the relationship between the query qi
and the document di. The objective of learning is to create a
ranking function f : X 7! R such that for each query the
documents in its corresponding document list can be
assigned relevance scores using the function and then be
ranked according to the scores.

In learning, pairwise learning to rank formalizes the
problem of learning a ranking model as the problem of
learning a binary classification model over preference docu-
ment pairs. Thus, the first step of pairwise learning to rank
is to generate a set of preference pairs based on the original
training data. The set of preference pairs is defined as

P � fði; jÞjqi ¼ qj; yi � yjg:

From the definition, we can see that two documents form
a preference pair only if they are retrieved by one query and
are labeled with different relevance levels. The second step
of pairwise learning to rank is to define the pairwise object
function based on the preference pairs. Similar to the loss
functions in conventional classification, the pairwise loss
function consists of the empirical loss on the training data
and the penalty over the ranking model

min
f2F

Lpairwise ¼
X
ði;jÞ2P

lðfðxxiÞ � fðxxjÞÞ þVðfÞ; (1)

where F is the set of possible ranking models, lð�Þ is the loss
for each of the training preference pair which takes the dif-
ference of the ranking scores between the first document
and the second document as input, and V is the regularizer
for controlling the complexity of ranking model f .
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Minimizing the loss function achieves the pairwise learning
to rank model. Different choices of the ranking model f , the
pairwise loss l, the regularizer V, and the optimization tech-
niques lead to different pairwise learning to rank models.

In ranking, given a user query q the retrieve system
returns the retrieved candidate documents. We assign a
score to each of the documents using fðxxÞ and sort the can-
didate documents based on their scores.

Note that the pairwise approach does not focus on accu-
rately predicting the relevance levels of the query-document
pairs. Instead, it cares about the relative order between two
retrieved documents given the query. In this sense, the
learning cares more about the relative differences of the
training pairs (i.e., fðxxiÞ � fðxxjÞ) than the absolute value of
documents (i.e., fðxxiÞ). The property makes the pairwise
learning to rank is closer to the concept of “ranking” than
the pointwise approach which directly considers the rele-
vance labels as categories.

The binary classification used in the pairwise learning to
rank is actually different to the classification used in con-
ventional machine learning, since it operates on every two
documents under investigation. A natural concern is that
document preference pairs are not I.I.D., which violates the
basic assumption of classification. In practice, the problem
is usually ignored and people directly apply the binary clas-
sification technologies for learning the ranking model. In
theory, to the best of our knowledge, there exists very few
work to investigate the fundamental problem.

3.2 The Ranking SVM Model

The Ranking SVM model adopt the hinge loss as its pair-
wise loss and use the large margin binary classifier of SVM
to solve the binary classification problem.

In this paper we consider the linear Ranking SVM model
in which the ranking model f is assumed to be a linear func-
tion. That is, the ranking model f takes a linear form fðxxÞ ¼
hww; xxi; where ww denotes the weights for features and h�; �i
stands for the dot product. Note that compared with the
conventional linear classification model, fðxxÞ contains no
bias term b because in pairwise ranking we only care about
the relative differences of two documents in a preference
pair. The bias term in the ranking model does not affect the
ranking of the documents and thus can be ignored.

Further assuming that the regularizer term takes the
‘2-norm, the optimization problem of Eq. (1) becomes

min
ww

X
ði;jÞ2P

lðhww; xixi � xjxjiÞ þ � � kwwk2; (2)

where k � k2 is the ‘2-norm and � > 0 is the trade-off param-
eter. Assumes that the pairwise loss l takes the hinge func-
tion, i.e., lðxÞ ¼ ½1� x�þ where ½x�þ ¼ maxð0; xÞ. Thus, the
optimization problem can be written as

min
ww

LRSVM ¼ 1

2
kwwk2 þ C

X
ði;jÞ2P

1� hww; xxi � xxji
� �

þ; (3)

where C > 0 is a trade-off parameter which plays a similar
role as � in Eq. (2). In Ranking SVM, it is common to solve
the dual problem

min
aa

1

2
aaTMaa� eeTaa;

s:t: 0 � aij � C; 8ði; jÞ 2 P;
(4)

where aa 2 RjP j is a vector of Lagrange multipliers indexed

by the preference pairs in P , ee 2 RjP j is the vector of ones,

M is a jP j 	 jP j kernel matrix over the preference pairs, and

the entries ofM are defined as

Mði;jÞ;ðu;vÞ ¼ hxxi � xxj; xxu � xxvi; (5)

for all ðði; jÞ; ðu; vÞÞ 2 P 	 P .
In ranking, the learned ranking model fðxxÞ ¼ hww; xxi

assigns a relevance score for each test query-document pair
xx. The documents retrieved by the same query are sorted in
decending order according to the relevance scores.

It can be shown that the optimal solution of Eq. (3) ww can
be represented as its dual form [36]

ww ¼
X
ði;jÞ2P

aijðxxi � xxjÞ; (6)

where aij is the Lagrange multiplier corresponds to prefer-
ence pair ði; jÞ.

4 ANALYSIS OF PARAMETER INTERACTIONS

IN RANKING SVM

Ranking SVM formalizes the problem of learning amodel for
ranking documents as learning a binary classification model
over the document preference pairs and trains a binary clas-
sification SVM model based on the generated pairs. The for-
mulation assumes that the generated document preference
pairs can be used as training data for estimating the model
parameters. In machine learning it is usually assumed that
all of the training instances are I.I.D. It is obvious, however,
that the assumption is violated in Ranking SVM: the docu-
ment preference pairs generated in Ranking SVM have
strong interactions and cannot be I.I.D. This is because two
preference pairsmay share a commondocument as their pre-
ferred or/and not preferred documents.

For example, assuming that there exists a training query q
which retrieves three documents d1; d2, and d3. These three
documents are labeled as ‘relevant’, ‘irrelevant’, and ‘irrele-
vant’, respectively. According to the rules for generating the
preference pairs, two preference pairs ðd1; d2Þ and ðd1; d3Þwill
be generated by Ranking SVM as the training instances. It is
obvious that these two preference pairs cannot be I.I.D. and
have some interactions, as both of themcontains the document
d1 as their preferred document.

From the dual form of the ranking model Eq. (6), we
know that each of the model parameter aij is associated
with a preference pair ði; jÞ. It is natural to ask whether there
also exist interaction among the Ranking SVM Lagrange
multipliers aij’s.

To answer the question, we propose to empirically ana-
lyze the interactions between model parameters based on
SVD [10]. Specifically, we trained a Ranking SVM model
based on one fold of the OHSUMED dataset [37]. Then, we
extracted the Lagrange multipliers aa from the learned Rank-
ing SVM model and rearranged the parameters as a matrix
A 2 RN	N . The entries of matrix A are defined as
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Aði; jÞ ¼ aij ði; jÞ 2 P
0 otherwise;

�
(7)

for all 1 � i � N and 1 � j � N .
Note thatA is a block diagonalmatrix, which consists a set

of sub-matrices Al(l ¼ 1; . . . ; jQjwhereQ is the set of unique
queries in training set), and each block Al corresponds to a
training query, as shown in Fig. 1. This is because in Ranking
SVM the preference pairs reflect the relative relevance given
a specific query. Thus, the preference pairs are generated
within the documents retrieved by one query.

In the analysis, we observed that the interactions in the
training preference pairs make the parameter matrix A (also
the sub-matrices Al’s) tends to be low-rank. To show this,
for each of the sub-matrix Al (corresponds to a query), we
performed the SVD on it. Let

Al ¼
Xrl
i¼1

sliuliv
T
li ;

be the SVD of Al, where sli, uli, and vli are the ith eigen-
value, the ith left eigenvector, and the ith right eigenvector
of matrix Al, respectively. Assuming that the eigenvalues
are sorted in descending order: sl1 
 sl2 
 � � � 
 slrl . For
k 2 f1; 2; . . . ; rlg, let

Ak
l ¼

Xk
i¼1

sliuliv
T
li ;

be the sum truncated after k terms. It is clear that Ak
l has

rank k and keeps only the energy related to the top k eigen-
values. Thus, the percentage of the energy kept in the trun-
cated sum Ak

l is

PElðkÞ ¼
Pk

i¼1 s
2
liP rl

i¼1 s
2
li

	 100%:

With the definition of PElðkÞ, we can empirically find the
smallest dimensions k that can keep at least t% of the energy
in Al, denoted as kl

kl ¼ minfkjPElðkÞ 
 t%g:

For all of the training queries in Q and the corresponding
sub-matrices A1; . . . ;AjQj, given the energy threshold t%,

we can find jQj values fk1; . . . ; kjQjg. Intuitively, these values
reflect the minimal number of dimensions needed for keep-
ing the t%ðt < 100Þ energy for each query. Small values
indicates the low-rank structure.

The dimensions of the sub-matrices A1; . . . ;AjQj could be
very different. For example, some popular queries can
retrieve a lot of related documents for labeling and some
rare queries have a very small number of related docu-
ments. To making the values in fk1; . . . ; kjQjg comparable,
we normalize the kl’s with the corresponding matrix sizes
and get jQj ratios

Dimt ¼ k1
sizeðA1Þ ; . . . ;

kjQj
sizeðAjQjÞ

� �
;

where the operator sizeðAlÞ returns the dimensions of the
input matrix Al. Please note that Al is a square matrix and
sizeðAlÞ only returns the number of columns (or rows) of the
input matrix.

The distribution of the values inDimt can be used to indi-
cate the rank structure of the jQj sub-matrices. For example, if
most of the ratios are small (e.g., less than 50 percent) for a
large energy threshold (e.g., r% ¼ 90%), it indicates that there
exists low-rank structures overmost of the sub-matrices.

Fig. 2a plots the distribution of Dimt and the energy
threshold parameter t% is set to 90 percent. In Fig. 2a, the

Fig. 1. Re-arrangement of the model parameters aa 2 <jP j as a matrix
A 2 RN	N . A is block diagonal and each block Al corresponds to the
Lagrange multipliers related to a training query.

Fig. 2. Distribution of Dimt over percentage ranges when t% is set to 90
percent (a) or 100 percent (b).
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x-axis indicates the range of the values and y-axis is the
amount of elements in Dimt that falls into the range. For
example, the bar denoted with 0%� 10% takes the value 16,
whichmeans that there are 16 elements inDimt whose values
are between 0 and 10 percent. From the statistics shown in
Fig. 2a, we can see that for most of the sub-matrices, less than
30 percent of the original dimensions are needed for captur-
ing 90 percent of the total energy. Since these sub-matrices
are constructed based on the Ranking SVM’s Lagrangemulti-
pliers aa, we can conclude that there exists very strong low-
rank structures over the ranking SVMparameters aa.

We noticed that although these sub-matrices contains a
low rank structure, but most of them are nearly full rank
matrices, as shown in Fig. 2b.

We also conducted the analysis on the Ranking SVMmod-
els trained based on other datasets and similar results were
observed. The results indicate that it is a common phenome-
non that the conventional Ranking SVM model parameters
have interactions, which leads to a low-rank structure upon
the rearranged parameter matrix. It is an interesting and
important question whether the phenomenon can be utilized
to improve the conventional Ranking SVM.

5 RANKING SVM WITH LOW-RANK

APPROXIMATION

Based on the analysis above, we tried to improve the Rank-
ing SVM algorithm through explicitly modeling the low-
rank structure in the rearranged Lagrange multipliers. Spe-
cifically, we propose to approximate the parameter matrix
A in Ranking SVM with its low-rank approximations. Both
the matrix factorization approach and the direct ranking
minimization approach can be used here, lead to the new
algorithms called Factorized Ranking SVM and Regularized
Ranking SVM, respectively.

5.1 Factorized Ranking SVM

Factorization based approaches can be used for modeling
the parameter interactions in Ranking SVM. In this section
we show a method of factorizing the Lagrange multipliers
in Ranking SVM, achieving Factorized Ranking SVM.

5.1.1 Factorizing the Parameter Matrix A

In Factorized Ranking SVM, the low-rank structure of each
block matrix Al in A is explicitly modeled with the product
of a K-dimensional latent matrix and its transpose, i.e.,
Al ¼ VT

l 	Vl where Vl is the corresponding latent matrix,
as shown in Fig. 3. Here Vl consists of the K-dimensional

latent vectors correspond to the parameters aij’s in Al. In
this way, the rank of each block matrix Al will be less than
or equals to K. Usually, K is set to a small number to make
sure that each block matrix is low rank.

More specifically, each of the model parameter aij is
assumed to be a product of two K-dimensional vectors vvi
and vvj

aij ¼ hvvi; vvji; (8)

for all ði; jÞ 2 P . Note that in the approach, if two model
parameters aij and aik whose corresponding preference
pairs share document di as their preferred document, the
same vector vvi will be used for representing both of these
two parameters, i.e., aij ¼ hvvi; vvji and aik ¼ hvvi; vvki.

Replacing the aa in the dual form Ranking SVM objective
function (4) with Eq. (8), we get the optimization problem of
Factorized Ranking SVM

min
vv1;...;vvN

1

2

..

.

hvvi; vvji
..
.

2
6664

3
7775

T

M

..

.

hvvi; vvji
..
.

2
6664

3
7775þ eeT

..

.

hvvi; vvji
..
.

2
6664

3
7775

s:t: 0 � hvvi; vvji � C 8ði; jÞ 2 P:

Replacing the elements in the kernel matrix M with their
definitions in Eq. (5), it is easy to show that above optimiza-
tion problem is equivalent to

min
vv1;...;vvN

1

2

X
ði;jÞ2P

hvvi; vvjiðxxi � xxjÞ
������

������
2

þ
X
ði;jÞ2P

hvvi; vvji

s:t: 0 � hvvi; vvji � C 8ði; jÞ 2 P:

(9)

It is difficult to optimize the Problem (9) directly because
of the complex constraints 0 � hvvi; vvji � C; 8ði; jÞ 2 P . In
this paper we resort to a new problem in which the con-
straints are simpler. More specifically, the constraints that
are defined on the dot products of the pairs are replaced
with the box constraints that are directly defined on each of
the parameters vik’s

min
vv1;...;vvN

1

2

X
ði;jÞ2P

hvvi; vvjiðxxi � xxjÞ
������

������
2

þ
X
ði;jÞ2P

hvvi; vvji

s:t: 0 � vik �
ffiffiffiffiffi
C

K

r
8i; k;

(10)

where vik is the kth element of the parameter vector vvi and
K is the length of vvj. Please note that a feasible region
defined by the constraints in Problem (10) is a convex subset
of the feasible region in Problem (9). The new constraints
are stricter while simpler than the original ones.

5.1.2 Optimization

A number of methods can be used for optimizing Problem
(10). In this paper, we adopt the popularly used projected
gradients method [38]. Projected gradient methods optimize
an unconstrained and uncontinuous loss function through
updates the parameters based on the continuously

Fig. 3. Each sub-matrix of Al is factorized into VT
l 	Vl.
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differentiable part and then make an euclidean projection to
the feasible region.

Let’s define an indicator function that penalizes the point

out of the feasible region: 1CðvvÞ ¼ þ1 vv 2 C;
0 otherwise:

�
where

C is a convex set which defines the feasible results for the
problem. In our problem, C is defined by the box con-

straints: C ¼ vv 8k 2 f1; . . . ; Kg : 0 � vk �
ffiffiffiffi
C
K

q���n o
: With the

definition of 1CðvvÞ, the constrained Problem (10) can be writ-
ten as an unconstrained one

min
vv1;...;vvN

1

2

X
ði;jÞ2P

hvvi; vvjiðxxi � xxjÞ
������

������
2

þ
X
ði;jÞ2P

hvvi; vvji

þ
XN
i¼1

1CðvviÞ;

where

fðvv1; . . . ; vvNÞ ¼ 1

2

X
ði;jÞ2P

hvvivvjiðxxi � xxjÞ
������

������
2

þ
X
ði;jÞ2P

hvvi; vvji;

is the continuous differentiable part of the objective function
and

PN
i¼1 1CðvviÞ is the un-differentiable part of the objective

function.
In the projected gradient method, we compute the gradi-

ent of the differentiable part to update the parameters with
a stochastic manner at the query level. After updating the
parameters, we make an euclidean projection to the convex
set C to make sure that the solution is in the feasible region.
Specifically, given a query q and the corresponding prefer-
ence pairs Pq ¼ fði; jÞjqi ¼ qj ¼ q; yi � yjg: The gradient of
vvi can be calculated as

@f

@vvi
¼ 00 8j : ði; jÞ =2 Pq ^ ðj; iÞ =2 Pq

aaþ bb otherwise;

�
(11)

where 00 is the vector of zeros and

aa ¼
X

i:ði;jÞ2Pq
vvj

X
ðu;vÞ2P

hvvu; vvvihxxu � xxv; xxi � xxji � C

0
@

1
A

¼
X

i:ði;jÞ2Pq
vvj hbb; xxi � xxji � C
	 


;

bb ¼
X

j:ðj;iÞ2Pq
vvj

X
ðu;vÞ2P

hvvu; vvvihxxu � xxv; xxj � xxii � C

0
@

1
A

¼
X

j:ðj;iÞ2Pq
vvj hbb; xxj � xxii � C
	 


;

where bb ¼P
ðk;lÞ2P hvvk; vvliðxxk � xxlÞ. Here we use the inter-

mediate variable bb because it can be updated incrementally

during the optimization, which avoids the algorithm to go

through all of the preference pairs when calculating the gra-

dients. For further details, please see the lines 6, 10, and 11

of Algorithm 1.
Thus in the updating phase, the parameters vvi are

updated as vvi  vvi þ h @f
@vvi

; for all i ¼ 1; . . . ; N , and h is the

step size.

In the projection phase, the updated solution is projected
to the feasible region C: vvi  PCðvviÞ; where PC : Rn ! C is
the euclidean projection on the convex set C, which is
defined as

PCðviviÞk ¼
0 vik � 0;

vik 0 � vik �
ffiffiffiffi
C
K

q
;ffiffiffiffi

C
K

q
vik 


ffiffiffiffi
C
K

q
;

8>><
>>:

(12)

for all k ¼ 1; . . . ; K.
Algorithm 1 illustrates the optimization algorithm.

Please note that in Algorithm 1, we update the bb incremen-
tally after changing the parameters vv’s related to each query.
The operation avoids the algorithm to scan all of the prefer-
ence pairs in P at each iteration.

Algorithm 1. Factorized Ranking SVM

Input: training dataD ¼ fyi; qi; xxigNi¼1, learning rate h > 0,
number of hidden dimensionsK, parameter C, and number
of iterations T

Output:model parameters vv1; . . . ; vvN

1: P  S jQj
q¼1Pq ¼

S jQj
q¼1fði; jÞjqi ¼ qj ¼ q; yi � yjg, where Q

is the set of training queries inD.
2: ðvvð0Þ1 ; . . . ; vv

ð0Þ
N Þ  random values in 0;

ffiffiffiffi
C
K

qh i
3: bb ¼P

ði;jÞ2P hvvi; vvjiðxxi � xxjÞ
4: for t ¼ 1 to T do
5: for all q 2 Q do
6: bbq ¼

P
ði;jÞ2Pq hvvi; vvjiðxxi � xxjÞ

7: for all i 2 fij9j : ði; jÞ 2 Pq _ ðj; iÞ 2 Pqg do
8: vvi  PC vvi þ h @f

@vvi

� �
{Eqs. (11) and (12)}

9: end for
10: bb

0
q ¼

P
ði;jÞ2Pq hvvi; vvjiðxxi � xxjÞ

11: bb bb� bbq þ bb
0
q{update bb incrementally}

12: end for
13: end for
14: return vv1; . . . ; vvN

5.2 Regularized Ranking SVM

Direct rank minimization approaches can also be used for
modeling the parameter interactions in Ranking SVM. In this
sectionwe show amethod of using the nuclear norm regular-
izer for the task, achieving Regularized Ranking SVM.

5.2.1 Ranking SVM with Nuclear Norm Regularizer

The low-rank structure of parameter matrix A can be mod-
eled via directly minimizing the rank of A. Specifically,
given the dual form objective function of Ranking SVM, the
low-rank structure of matrix A can be modeled through
applying a rank regularizer to A, as shown in the follow
optimization problem:

min
aa

1

2
aaTMaa� eeTaaþ g � rankðAÞ

s:t: 0 � ai;j � C; 8ði; jÞ 2 P;
(13)

where the matrix A is achieved by reshaping the vector aa, as
shown in Eq. (7), rankðAÞ 2 Zþ [ f0g is the rank operator of
matrix A, and g 
 0 is the tradeoff parameter.
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It is well known that directly minimizing the rank of a
matrix is NP-hard [31]. Convex relaxation is often used to
replace rank with the nuclear norm [39] which is defined as
kAk� ¼

Pr
i¼1 si; where s1; s2; . . . ; sr are the singular values

of A and r is the rank of A. It can be proved that the nuclear
norm kAk� is the convex envelope of rank(A)[39].2

To describe the relationship between the Lagrange multi-
pliers vector aa and the matrix A, we define two indicator
matrices, I1 2 RN	P and I2 2 RN	P . Each row of I1 (and I2)
corresponds a document and each column corresponds a
preference pair in P . The entries of matrix I1 are set as: the
entry of ith row and ði; jÞth column is set to one if there
exists a preference pair ði; jÞ in P , otherwise zero. Similarly,
the entries of matrix I2 are set as: the entry of jth row and
ði; jÞth column is set to one if there exists a preference pair
ði; jÞ in P , otherwise zero. Please note that each column I1
and I2 has only one nonzero entry.

It is easy to show that the relationship between aa and A
can be described as aa ¼ IT1AI2ee, where ee 2 RjP j is a vector of
ones. Thus, the optimization Problem (13) can be written as

min
aa

1

2
aaTMaa� eTaaþ gkAk� þ 1CðaaÞ

s:t: aa ¼ IT1AI2ee;
(14)

where 1CðaaÞ ¼ þ1 aa 2 C
0 otherwise

�
and C ¼ faaj0 � aij � C;8i; jg.

Problem (14) is not smooth because the indicator function
1CðaaÞ and the nuclear norm regularization kAk� are not
smooth, which makes it hard to directly apply the general
optimization methods such as gradient descent to perform
the optimization.

5.2.2 Optimization

In this paper, we adopt the proximal gradients method for
optimizing the Problem (14). In the method, the parameters
aa and A are decoupled as two sets of parameters during the
optimization process. A new regularizer over both aa and A
is used to avoid the values of aa being too different from the
values of A. Thus, the optimization process can be decom-
posed as alternatively optimizing two sub optimization
problems, which can be solved with standard proximal
optimization methods efficiently.

Specifically, we approximate the Problem (14) by relax-

ing the constraint aa ¼ IT1AI2ee as a regularizer kaa� IT1AI2eek2
in the object function. Thus, we get a new optimization
problem in which the parameters aa and A are decoupled

min
a;Aa;A

’ðaaÞ þ gkAk� þ 1CðaaÞ þ �kaa� IT1AI2eek2; (15)

where ’ðaaÞ ¼ 1
2aa

TMaa� eeTaa is the smooth part of the loss
function, and � > 0 is a parameter for controlling the differ-
ence between aa and IT1AI2ee. Please note that in the new
problem we optimize the objective function with respect to
both aa and A, which means aa and A are considered as two
sets of parameters.

The alternative optimization method is adopted for con-
ducting the optimization, in which the parameters aa and A
are updated alternatively. Specifically, in the tth iteration,
the algorithm first finds the optimal solution of aa (denoted
as aaðtþ1Þ), by fixing the values in matrix A (denoted as AðtÞ).
That is, we solve the problem

aaðtþ1Þ ¼ argmin
aa

’ðaaÞ þ 1CðaaÞ þ �kaa� IT1A
ðtÞI2eek2: (16)

Then, the algorithm finds the optimal solution of A

(denoted as Aðtþ1Þ), by fixing the values in vector aa (denoted

as aaðtþ1Þ). That is, we solve the problem of

Aðtþ1Þ ¼ argmin
A

gkAk� þ �kaaðtþ1Þ � IT1AI2eek2: (17)

The procedure is repeated until convergence.
� Updating aa
The objective function of Problem (16) can be decom-

posed as the sum of the smooth convex function gðaaÞ and a
nonsmooth convex function 1CðaaÞ, where gðaaÞ ¼ ’ðaaÞþ
�kaa� IT1A

ðtÞI2eek2:
The projected gradient method can be used here for con-

duct the optimization. The gradient of the smooth part of
the loss function gðaaÞ is @g

@aa
¼Maa� eeT� 2�ðaa� IT1A

ðtÞI2eeÞ:
Thus, the updating rule for aa can be written as

aaðtþ1Þ  PC aaðtÞ þ h
@g

@aa


 �
; (18)

where h > 0 is the step size and PC is the euclidean projec-
tion onto the set C ¼ faaj0 � aij � C; 8i; jg which is defined
by the box constraints.
� Updating A
It has been extensively studied in the literature for opti-

mizing the problems similar to Problem (17). The solution
can be given by SVD, as shown by the following theorem:

Theorem 1 [40]. For any r 
 0 and matrix X, the solution of the
following problem is given by

DrðXÞ ¼ argmin
A

rkAk� þ
1

2
kX�Ak2F ;

where DrðXÞ is the singular value thresholding operator which
is defined as DrðXÞ ¼ UDrðSÞVT ; where U, V and S are
given by the SVD of the input matrix X ¼ USVT and
DrðSÞ ¼ diagðf½si � r�þgÞ is the singular value shrinkage
operator. Here si is the ith singular value in S and
½x�þ ¼ maxð0; xÞ is the hinge function.
Based on Theorem (1), it is easy to show that the solution

to Problem (17) can be written as

Aðtþ1Þ ¼ argmin
A

gkAk� þ �kaaðtþ1Þ � IT1AI2eek2

¼ argmin
A

g

2�
kAk� þ

1

2
kPðaaðtþ1ÞÞ �Ak2F

¼ D g
2�
ðPðaaðtþ1ÞÞÞ;

(19)

where the operator P is for rearranging the vector aaðtþ1Þ to a
matrix according to Eq. (7).3

2. This is because the nuclear norm ball fX : kXk� � 1g is the convex
hull of the set of rank-one matrices with spectral norm bounded by one.

3. Note kaaðtþ1Þ � IT1AI2eek2 ¼ kPðaaðtþ1ÞÞ �Ak2F because the elements
in aaðtþ1Þ correspond one to one with the elements in A.

1188 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 6, JUNE 2019

Authorized licensed use limited to: Renmin University. Downloaded on October 03,2021 at 15:22:35 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 2. Regularized Ranking SVM

Input: training data fyi; qi; xxigNi¼1, the parameters C, g, �, h, T ,
and T 0

Output:model parameters ww

1: P  S jQj
q¼1Pq ¼

S jQj
q¼1fði; jÞjqi ¼ qj ¼ q; yi � yjg, where Q

is the set of training queries inD.
2: aað0Þ  random values in ½0; C�
3: Að0Þ  Pðaað0ÞÞ {rearrange aa to A}
4: for t ¼ 1 to T do
5: for t ¼ 1 to T 0 do
6: aaðtÞ  PC aaðt�1Þ þ h @g

@aa

	 

{Eq. (18)}

7: end for
8: AðtÞ  D g

2�
ðPðaaðtÞÞÞ {Update A, Eq. (19)}

9: end for
10: return ww ¼P

ði;jÞ2P a
ðT Þ
ij ðxxi � xxjÞ

Algorithm 2 shows the optimization procedure of the
Regularized Ranking SVM algorithm.

5.3 Discussions

Factorized Ranking SVM and Regularized Ranking SVM
model the parameter interactions in the original Ranking
SVM from different aspects, which makes them perform dif-
ferently in real world tasks.

Factorized Ranking SVM makes use of a factorization-
based method for approximating the parameter matrix.
Similar methods have been widely used in many real appli-
cations, mainly due to its computational convenience and
promising performances. One main limitation of Factorized
Ranking SVM is that the underlying rankK needs to be pre-
defined. It is challenging for users to estimate an optimal
rank value in advance, especially in noisy cases. Moreover,
in real learning to rank tasks, different queries could
retrieve very different number of documents for labeling.
Also, the different label distributions will generate different
number of preference pairs. Ideally, we need to set different
rank values for different training queries (correspond to dif-
ferent diagonal matrices). However, this is obviously
unpractical in real learning to rank tasks. From this view-
point, it seems very difficult for us to find an optimal global
K for all training queries.

Regularized Ranking SVM makes use of nuclear norm
for controlling the rank of the parameter matrix, which is a
‘softer’ approach than the factorization based methods. In
experiments, we also observed that Regularized Ranking
SVM will approximate the diagonal matrices Al’s with dif-
ferent ranks. The diagonal matrices with more dimensions
(more preference pairs for the query) tend to be approxi-
mated with higher ranks.

Theoretically, it has been proved that the nuclear norm is
a tight convex upper bound over the rank operator [40].
Thus, the loss function of Regularized Ranking SVM is con-
vex and has global optimality, which makes Regularized
Ranking SVM generally converging fast and achieving sta-
ble performances. In our experiments, we also found that
Regularized Ranking SVM often converges to its optimal
solution in a few iterations. One limitation of Regularized
Ranking SVM is the requirement of repeated SVD computa-
tion, which is time consuming and unaffordable in large-
scale tasks. Though many efforts have been made towards
accelerating SVD computation, the computational efficiency
is still a big issue for the real application of Regularized
Ranking SVM.

The parameter interaction is a common phenomenon in
pairwise learning to rank. In this paper we use the widely
used Ranking SVM algorithm as an example and showed
two approaches to modeling the parameter interactions.
The techniques is not limited to Ranking SVM. They can be
easily adapted and applied to model the parameter interac-
tions in other pairwise learning to rank algorithms.

6 EXPERIMENTS

6.1 Experiment Settings

We conducted experiments to test the performances of the
proposed Factorized Ranking SVM and Regularized Rank-
ing SVM based on LETOR benchmark datasets [37] and the
Microsoft Learning to Rank dataset, including OHSUMED,
MQ2007, MQ2008, and MSLR-WEB10K. Each dataset con-
sists of queries, corresponding retrieved documents, and
human judged labels. Statistics on the datasets are given in
Table 1. The number of preference pairs for each dataset is
also shown in the table.

Following the configuration of these datasets [41], we con-
ducted 5-fold cross-validation experiments for choosing the
hyper parameters. That is, each dataset was randomly spit
into five even subsets, denoted as S1, S2, S3, S4, and S5. At
each trail of the cross-validation, three subsets (e.g., S1, S2,
and S3) were combined and used for training the standard
model, one subset (e.g., S4) was used for validation, and one
subset (e.g., S5) was used for testing. The process was
repeated 5 times and the results reported were the average
over the five folds. In all of the experiments, the standard fea-
tures provided by LETOR andMSLR-WEB10Kwere used. As
for evaluation measures, mean average precision (MAP) and
normalized discounted cumulative gain (NDCG) [42] at posi-
tion of 1, 3, and 5were used in our experiments.

We compared the proposed Factorized Ranking SVM
(Fac-RSVM) and Regularized Ranking SVM (Reg-RSVM)
with several state-of-the-art baseline methods, including the

TABLE 1
Statistics on OHSUMED, MQ2007, MQ2008, and MLSR-WEB10K

Data Set #labeled docs #queries #preference pairs # average shared docs among
preference pairs per query

OHSUMED 16,140 106 582,588 30.6
MQ2007 69,623 1692 404,467 5.75
MQ2008 15,211 784 80,925 2.45
MLSR-WEB10K 1,200,192 10,000 52,639,827 32.18
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conventional Ranking SVM (RSVM) [3], [4], RankNet [5],
ListNet [15], LambdaMART [17], and XGBoost [18]. For
Ranking SVM, we used the implementation released
in [43]4 in all of the experiments. For RankNet, ListNet, and
LambdaMART, we used the implementations in RankLib.5

For XGBoost, we used the public available package.6

Factorized Ranking SVM and Regularized Ranking SVM
have some parameters to tune, e.g., the number of hidden
dimensionsK, the tradeoff parameters C, g, and �, the num-
ber of iterations T , and the learning rate parameter h. A grid
search strategy combined with manual search [44] is per-
formed for optimizing the parameters. The parameters were
respectively tuned in ranges of K 2 ½1; 20�; C 2 ½0:1; 10�; g 2
½0:1; 50�; � 2 ½0:1; 10�; h 2 ½0:001; 0:1�; and T 2 ½100; 5000�.

6.2 Experimental Results

The experimental results on OHSUMED, MQ2007, MQ2008,
and MSLR-WEB10K are reported in Tables 2, 3, 4, and 5,
respectively. Boldface indicates the highest score among all
runs. For Fac-RSVM and Reg-RSVM, the standard devia-
tions are reported.

From the results, we can see that both Fac-RSVM and
Reg-RSVM can outperform the linear baselines, including
RankNet, ListNet and RSVM, in all of the datasets in terms of
all of the evaluation measures (except Reg-RSVM onMQ2007
in terms of NDCG, and Reg-RSVM on MQ2008 in terms
of NDCG@5). The results indicate that Fac-RSVM and
Reg-RSVM can improve the learning to rank baselines

through modeling the parameter interactions. For the
non-linear baseline, including LambaMART and XGBoost,
our model gained a better performance on the OHSUMED
dataset achieved comparable results over the MQ2007 and
MQ2008 dataset.

We also noticed that the improvements on OHSUMED
are more significant than that of on MQ2007 and MQ2008.
We analyzed the reasons through comparing the number of
preference per query in these datasets. From the statistics
shown in Table 1, we can see that compared with MQ2007
and MQ2008, the OHSUMED has much more labeled docu-
ments per query. On average one OHSUMED query has
152.3 (16,140 labeled documents for 106 queries) while one
MQ2007 query and one MQ2008 query have only 41.2 and
19.4 labeled documents, respectively. The small number of
labeled documents per query leads small number of prefer-
ence pairs per query (the 3rd column in Table 1), which fur-
ther results in a very small number of shared documents
among the preference pairs (the 4th column in Table 1).
Since the phenomenon of parameters interaction occurs
only when one document is shared in different preference
pairs, we can know that the parameter interaction in the
Ranking SVMmodels trained on OHSUMED is much stron-
ger than the models trained on MQ2007 and MQ2008. The
analysis show that Fac-RSVM and Reg-RSVM can effec-
tively improve the RSVM on the ranking tasks that each of
the training query has a large number of labeled documents.

Table 5 reported experimental results on a larger dataset
MSLR-WEB10K, which including 10,000 queries, 1,200,192
labeled documents and 52,639,827 preference pairs. The
results of Ranking SVM is not available due to the large num-
ber of training queries. From the results, we can see that our

TABLE 2
Ranking Accuracies on Dataset OHSUMED

Method MAP NDCG@1 NDCG@3 NDCG@5

RankNet 0.404 0.4007 0.3616 0.3388
ListNet 0.4443 0.5134 0.4664 0.4530
RSVM 0.4427 0.5289 0.4553 0.4392

LambdaMART 0.4096 0.5166 0.4443 0.4366
XGBoost 0.4301 0.5325 0.4758 0.4485

Fac-RSVM 0:45180:4518�y 0:56710:5671�y 0:51130:5113�y 0:48890:4889�y

(�std) (�0.057) (�0.100) (�0.087) (�0.045)
Reg-RSVM 0.4480�y 0.5553�y 0.4946�y 0.4723�y
(�std) (�0.063) (�0.063) (�0.089) (�0.072)

TABLE 3
Ranking Accuracies on Dataset MQ2007

Method MAP NDCG@1 NDCG@3 NDCG@5

RankNet 0.4184 0.3527 0.3599 0.3660
ListNet 0.4466 0.3897 0.3897 0.3956
RSVM 0.4442 0.3821 0.3796 0.3890

LambdaMART 0:46800:4680 0:41340:4134 0:42010:4201 0.4201
XGBoost 0.4678 0.4097 0.4191 0:42370:4237

Fac-RSVM 0:4645�y 0:4098�y 0:4103�y 0:4179�y
(�std) (�0.017) (�0.028) (�0.036) (�0.029)
Reg-RSVM 0.4500�y 0.3728y 0.3871y 0.3947y
(�std) (�0.015) (�0.023) (�0.026) (�0.024)

TABLE 4
Ranking Accuracies on Dataset MQ2008

Method MAP NDCG@1 NDCG@3 NDCG@5

RankNet 0.4522 0.3410 0.3991 0.4500
ListNet 0.4415 0.3244 0.3916 0.4396
RSVM 0.4713 0.3686 0.4277 0.4730

LambdaMART 0.4731 0.3622 0.4299 0.4714
XGBoost 0:47900:4790 0:38390:3839 0.4293 0:47640:4764

Fac-RSVM 0.4723y 0.3690y 0:43610:4361�y 0:47640:4764y
(�std) (�0.043) (�0.050) (�0.046) (�0.048)
Reg-RSVM 0:4755�y 0:3690y 0.4315�y 0.4719y
(�std) (�0.039) (�0.034) (�0.034) (�0.060)

TABLE 5
Ranking Accuracies on Dataset MSLR-WEB10K

Method MAP NDCG@1 NDCG@3 NDCG@5

RankNet 0.5739 0.2540 0.2755 0.2890
ListNet 0.5698 0.3047 0.3224 0.3348
RSVM N/A N/A N/A N/A

LambdaMART 0.6153 0.3623 0.3773 0.3889
XGBoost 0:62490:6249 0:42020:4202 0:42300:4230 0:43090:4309

Fac-RSVM 0.5875y 0.2891y 0.3205y 0.3219y
(�std) (�0.003) (�0.006) (�0.003) (�0.003)
Reg-RSVM 0.5819y 0.2651y 0.2932y 0.3051y
(�std) (�0.002) (�0.005) (�0.004) (�0.006)

4. http://svmlight.joachims.org
5. http://pepple.cs.umass.edu/
vdang/ranklib.html
6. https://github.com/dmlc/XGBoost
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methods, both Fac-RSVMandReg-RSVM, can outperform the
pair-wise linear model RankNet, but are weaker than
XGBoost and LambdaMART. The results indicate that Lamb-
daMART takes the ranking evaluation measures into consid-
eration (e.g., the calculation of � in LambdaMART), which
helps to boost the ranking performances. Another reason
could be that LambdaMART and XGBoost used nonlinear
ranking models (boosted trees), which enables them to cap-
ture complex ranking patterns, especially when training data
is large.

We conducted t-tests on the improvements of Reg-RSVM
and Fac-RSVM over the baselines. The results indicated that
some of the improvements are significant (p-value < 0:05).
As shown in Tables 2, 3, 4, and 5, ‘�’ and ‘y’ respectively
indicate the improvements over RSVM and RankNet are
significant. The improvements over LambdaMART and
XGBoost are not significant in the experiments.

6.3 Comparison of Fac-RSVM and Reg-RSVM

From the results reported in Tables 2, 3, 4, and 5 we can see
that in general Fac-RSVM performed better than Reg-RSVM
(except on MQ2008 in terms of MAP). The results indicate
that the matrix factorization approach is more effective than
the nuclear norm approach to modeling the low rank struc-
ture in the parameter matrix, though the matrix factoriza-
tion approach has the limitation of assigning a common K
to all of the sub-matrices.

For further analyzing Factorized Ranking SVM and Reg-
ularized Ranking SVM algorithms, we conducted more
experiments to compare their performances, using the
results on OHSUMED as examples.

6.3.1 Controlling the Ranks

As have discussed in Section 5.3, Regularized Ranking SVM
adopts a “softer” approach to controlling the ranks of each
parameter matrix Al than the Factorized Ranking SVM.
Table 6 shows the ranks of three sampled Al’s in the Factor-
ized Ranking SVMmodel, Regularized Ranking SVMmodel,7

and the original Ranking SVMmodel. All of these models are
trained on the first fold of the OHSUMED dataset. The num-
ber of the labeled documents as well as generated preference
pairs are also shown. From the results, we can see that Regu-
larized Ranking SVM assigned more rank to the queries that
generated more preference pairs. The results indicate that
Regularized Ranking SVM is suitable for the ranking tasks in
which the training queries have very different number of
labeled documents or preference pairs.

6.3.2 Convergency

We also compared the convergency of the proposed Factor-
ized Ranking SVM and Regularized Ranking SVM. Specifi-
cally, we recorded the values of the loss functions of these two
algorithms at each of the training iteration. Fig. 4a plots the
learning curves of Factorized Ranking SVM and Regularized
Ranking SVM w.r.t. the iteration number. The experiments
were also conducted on the first fold of the OHSUMED data-
set. We can see that Regularized Ranking SVM converged
after about 60 iterations while the Factorized Ranking SVM
used more than 100 iterations before convergence. Note that
in the figure we re-scaled the values of the two loss functions
for fitting the two curves in the same figure. In Section 5.3, we
discussed that the loss function of Regularized Ranking SVM
is convex and has global optimality, whichmakes it converges
fast in terms of the number of iterations. The experimental
results verified the analysis.

One disadvantage of the Regularized Ranking SVM is the
requirement of repeated SVD operations onAl’s at each itera-
tion, which is time consuming. Fig. 4b showed the learning
curve of these two algorithms w.r.t. the training time. The
experiments were conducted in the same Linux server for

TABLE 6
Ranks of Sampled Al’s in Fac-RSVM, Reg-RSVM, and RSVM

Models, Each Corresponds to a Query

QID #labeled docs/
#pairs

Rank
(Fac-RSVM)

Rank
(Reg-RSVM)

Rank
(RSVM)

49 109/420 5 5 8
45 205/7482 5 6 92
35 320/27153 5 15 234

Fig. 4. Learning curves of factorized ranking SVM and regularized rank-
ing SVM.

7. The ranks are calculated based on the results of singular value
shrinkage operator at the final iteration (Line 9 of Algorithm 2).

XU ETAL.: MODELING THE PARAMETER INTERACTIONS IN RANKING SVMWITH LOW-RANK APPROXIMATION 1191

Authorized licensed use limited to: Renmin University. Downloaded on October 03,2021 at 15:22:35 UTC from IEEE Xplore.  Restrictions apply. 



making a fair comparison. From the results we can see that
compared with Regularized Ranking SVM, Factorized Rank-
ing SVM need less time to learn a ranking model, though it
neededmore iterations to converge.

6.3.3 Sensitivity of Hyper Parameters

We conducted experiments to analyze the sensitivity of the
hyper parameters. The experiments were conducted based
on the fold 1 of OHSUMED dataset. The key parameter K
in Fac-RSVM, and � and g in Reg-RSVMwere tuned.

The parameterK in Fac-RSVM determines the number of
hidden dimensions. In the experiments, we set the parame-
ter K with the values of K 2 f1; 3; 5; 10; 20g. From the
results reported in Table 7, we can see that the performances
are stable. We can conclude that Fac-RSVM is robust to
parameterK.

The parameters � and g in Reg-RSVM control the rank of
the reshapedmatrixA. We set these two parameters with the
values of � 2 f0:1; 0:5; 1; 5; 10g and g 2 f0:1; 0:5; 1; 5; 10; 50g,
respectively. From the results shown in Table 8, we can see
the best setting appear around at � ¼ 0:1 and g ¼ 10. Note
that Reg-RSVM is robust to the parameter g.

7 CONCLUSION

In this paper we investigated the phenomenon of parameter
interactions in the pairwise learning to rank algorithm of
Ranking SVM. We empirically found that there exists a low-
rank structure among the Lagrange multipliers of the trained
Ranking SVMmodels. Based on the discovery, we proposed to
directly apply the low-rank constraint to the Lagrange multi-
pliers of the Ranking SVM model, achieving two novel pair-
wise learning to rank algorithms, called Factorized Ranking
SVMandRegularized Ranking SVM. Factorized Ranking SVM
decomposes each Lagrange multiplier as a dot product of two
low-dimensional vectors. Regularized Ranking SVM models
the low ranking structure through adding a nuclear norm
defined over the rearranged Lagrange multipliers. Efficient
algorithms were developed to conduct the optimization prob-
lems. Experimental results based on publicly available bench-
mark datasets show that both Factorized Ranking SVM and
Regularized Ranking SVM can outperform the state-of-the-art
methods includingRanking SVM, RankNet, and ListNet.
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