
Foundations and Trends R⃝ in Information Retrieval
Vol. 7, No. 5 (2013) 343–469
c⃝ 2014 H. Li and J. Xu

DOI: 10.1561/1500000035

Semantic Matching in Search

Hang Li
Huawei Technologies, Hong Kong

hangli.hl@huawei.com

Jun Xu
Huawei Technologies, Hong Kong

nkxujun@gmail.com

Contents

1 Introduction 3
1.1 Query Document Mismatch 3
1.2 Semantic Matching in Search 5
1.3 Matching and Ranking 9
1.4 Semantic Matching in Other Tasks 10
1.5 Machine Learning for Semantic Matching in Search 11
1.6 About This Survey . 14

2 Semantic Matching in Search 16
2.1 Mathematical View . 16
2.2 System View . 19

3 Matching by Query Reformulation 23
3.1 Query Reformulation . 24
3.2 Methods of Query Reformulation 25
3.3 Methods of Similar Query Mining 32
3.4 Methods of Search Result Blending 38
3.5 Methods of Query Expansion 41
3.6 Experimental Results . 44

4 Matching with Term Dependency Model 45
4.1 Term Dependency . 45

ii

iii

4.2 Methods of Matching with Term Dependency 47
4.3 Experimental Results . 53

5 Matching with Translation Model 54
5.1 Statistical Machine Translation 54
5.2 Search as Translation . 56
5.3 Methods of Matching with Translation 59
5.4 Experimental Results . 61

6 Matching with Topic Model 63
6.1 Topic Models . 64
6.2 Methods of Matching with Topic Model 70
6.3 Experimental Results . 74

7 Matching with Latent Space Model 75
7.1 General Framework of Matching 76
7.2 Latent Space Models . 79
7.3 Experimental Results . 85

8 Learning to Match 88
8.1 General Formulation . 88
8.2 Methods of Collaborative Filtering 89
8.3 Methods of Paraphrasing & Textual Entailment 91
8.4 Potential Applications to Search 96

9 Conclusion and Open Problems 98
9.1 Summary of Survey . 98
9.2 Comparison between Approaches 99
9.3 Other Approaches . 100
9.4 Open Problems and Future Directions 102

Acknowledgements 104

References 105

Abstract

Relevance is the most important factor to assure users’ satisfaction
in search and the success of a search engine heavily depends on its
performance on relevance. It has been observed that most of the
dissatisfaction cases in relevance are due to term mismatch between
queries and documents (e.g., query “ny times” does not match well
with a document only containing “New York Times”), because term
matching, i.e., the bag-of-words approach, still functions as the main
mechanism of modern search engines. It is not exaggerated to say,
therefore, that mismatch between query and document poses the
most critical challenge in search. Ideally, one would like to see query
and document match with each other, if they are topically relevant.
Recently, researchers have expended significant effort to address the
problem. The major approach is to conduct semantic matching, i.e.,
to perform more query and document understanding to represent the
meanings of them, and perform better matching between the enriched
query and document representations. With the availability of large
amounts of log data and advanced machine learning techniques, this
becomes more feasible and significant progress has been made recently.
This survey gives a systematic and detailed introduction to newly
developed machine learning technologies for query document matching
(semantic matching) in search, particularly web search. It focuses on
the fundamental problems, as well as the state-of-the-art solutions of
query document matching on form aspect, phrase aspect, word sense
aspect, topic aspect, and structure aspect. The ideas and solutions
explained may motivate industrial practitioners to turn the research
results into products. The methods introduced and the discussions
made may also stimulate academic researchers to find new research
directions and approaches. Matching between query and document is
not limited to search and similar problems can be found in question
answering, online advertising, cross-language information retrieval,
machine translation, recommender systems, link prediction, image
annotation, drug design, and other applications, as the general task of
matching between objects from two different spaces. The technologies

2

introduced can be generalized into more general machine learning
techniques, which is referred to as learning to match in this survey.

H. Li and J. Xu. Semantic Matching in Search. Foundations and Trends R⃝ in
Information Retrieval, vol. 7, no. 5, pp. 343–469, 2013.
DOI: 10.1561/1500000035.

1
Introduction

1.1 Query Document Mismatch

A successful search engine must be good at relevance, coverage, fresh-
ness, response time, and user interface. Among them, relevance [156,
171, 157] is the most important factor, which is also the focus of this
survey.

This survey mainly takes general web search as example. The issues
discussed are not limited to web search, however; they exist in all the
other searches such as enterprise search, desktop search, as well as
question answering.

Search still heavily relies on the bag-of-words approach or term
based approach. That is, queries and documents are represented as bags
of words (terms), documents are indexed based on document terms,
‘relevant’ documents are retrieved based on query terms, the relevance
scores between queries and retrieved documents are calculated on the
basis of matching degrees between query terms and document terms,
and finally the retrieved documents are ranked based on the relevance
scores. This simple approach works quite well in practice and it still
forms the foundation of modern search systems [131, 52, 6].

3

4 Introduction

Table 1.1: Examples of query document mismatch.

query document term
match

semantic
match

seattle best hotel seattle best hotels partial yes
pool schedule swimming pool schedule partial yes
natural logarithm trans-
form

logarithm transform partial yes

china kong china hong kong partial no
why are windows so ex-
pensive

why are macs so expen-
sive

partial no

The bag-of-words approach also has limitations, however. It some-
times suffers from the query document mismatch drawback. For the
majority of the cases of dissatisfaction reported at a commercial web
search engine, in which users complain they cannot find information
while the information does exist in the system, the reasons are due to
mismatch between queries and documents. Similar trends are observed
in other studies (cf., [206, 207])

A high matching degree at term level does not necessarily mean
high relevance, and vice versa. For example, if the query is “ny times”
and the document only contains “New York Times”, then the matching
degree of the query and the document at term level is low, although
they are relevant. More examples of query document mismatch are
given in Table 1.1.1

Query document mismatch occurs, when the searcher and author
use different terms (representations) to describe the same concept, and
this phenomenon is prevalent due to the nature of human language, i.e.,
the same meaning can be represented by different expressions and the
same expression can represent different meanings. According to Furnas
et al., on average 80-90% of the times, two people will name the same
concept with different representations [67].

1China Kong is an American actor.

1.2. Semantic Matching in Search 5

Table 1.2: Queries about “distance between sun and earth”.

“how far” earth sun average distance from the earth to the sun
“how far” sun how far away is the sun from earth
average distance earth sun average distance from earth to sun
how far from earth to sun distance from earth to the sun
distance from sun to earth distance between earth and the sun
distance between earth & sun distance between earth and sun
how far earth is from the sun distance from the earth to the sun
distance between earth sun distance from the sun to the earth
distance of earth from sun distance from the sun to earth
“how far” sun earth how far away is the sun from the earth
how far earth from sun distance between sun and earth
how far from earth is the sun how far from the earth to the sun
distance from sun to the earth

Table 1.2 shows example queries representing the same search need
“distance between sun and earth” and Table 1.3 shows example queries
representing the same search need “Youtube”, collected from the search
log of a commercial search engine [117]. Ideally, we would like to see
the search system return the same results for the different variants of
the queries. Web search engines, however, still cannot effectively satisfy
the requirement. This is another side of the mismatch problem.

In web search, query document mismatch more easily occurs on
tail pages and tail queries. This is because for head pages and head
queries, usually there is more information attached to them. A head
page may have a large number of anchor texts and associated queries
in search log and they provide with the page different representations.
The matching degree will be high, if the query matches with any
of the representations. This seldom happens to a tail page, however.
Mismatch, thus, is a typical example of the long tail challenge in search.

1.2 Semantic Matching in Search

The fundamental reason for mismatch is that no language analysis is
conducted in search. Language understanding by computer is hard,

6 Introduction

Table 1.3: Queries about “Youtube”.

yutube yuotube yuo tube
ytube youtubr yu tube
youtubo youtuber youtubecom
youtube om youtube music videos youtube videos
youtube youtube com youtube co
youtub com you tube music videos yout tube
youtub you tube com yourtube your tube
you tube you tub you tube video clips
you tube videos www you tube com wwww youtube com
www youtube www youtube com www youtube co
yotube www you tube www utube com
ww youtube com www utube www u tube
utube videos utube com utube
u tube com utub u tube videos
u tube my tube toutube
outube our tube toutube

however, if not impossible. A more realistic approach beyond bag-of-
words, referred to as semantic matching in this survey, would be to
conduct more query analysis and document analysis to represent the
meanings of the query and the document with richer representations
and then perform query document matching with the representations.
The analysis may include term normalization, phrase analysis, word
sense analysis, topic analysis, and structure analysis, and the matching
may be performed on form aspect, phrase aspect, word sense aspect,
topic aspect, and structure aspect, as shown in Figure 1.1. Intuitively,
if the meanings of the query and the document represented by the
aspects are the same, then they should match each other well and
thus be regarded relevant. In practice, the more aspects of the query
and document can match, the more likely the query and document
are relevant. With semantic matching, we can expect that the query
document mismatch challenge can be successfully conquered.

1.2. Semantic Matching in Search 7

Term normalization, including word segmentation for Asian lan-
guages, compounding for European languages, spelling error correction
for European languages, should usually be carried out before query
document matching. We refer to term normalization as matching on
the form aspect. Query document matching on the phrase aspect means
that the two should match at phrase level, not word level. For example,
if the query is “hot dog”, then it should be recognized as a phrase
and match the exactly same phrase in the document, but should not
separately match words “hot” and “dog” in the document. Matching on
the word sense aspect is to have phrases in the query and the document
having the same sense match each other. For example, “ny” should
match “New York”. If the query and the document have the same
topics, then they should match on the topic aspect. For example, if the
query is “microsoft office” and the document is about Microsoft Word,
PowerPoint, and Excel, then the two should match in terms of topic.
Query and document can also match on the structure aspect, where
structure means linguistic structure. For example, the query “distance
between sun and earth” matches with the document title “how far
is sun from earth” (note that the two expressions have very different
linguistic structures).

We can also consider query document matching on other aspects,
for example, semantic class and named entity. We will discuss this in
Section 9 on conclusion and open problems.

Semantic matching is also a term used in other fields in computer
science, which represents a notion different from this survey. Given two
graph-like structures, e.g., two database schemas, semantic matching
is defined as an operator that identifies the nodes in the two structures
which semantically correspond to each other [73].

Semantic matching also differs from the so-called semantic search,
which has different definitions by different researchers. One of them
is aimed at enriching search results of a conventional search system,
by using information from semantic web (e.g., [77]). For example,
the search result of query “yo-yo ma” is augmented by the cellist’s
image, concert schedule, music albums, etc. in the semantic search.
The semantic search by Bast et al. asks the user to formulate a

8 Introduction

Semantic Matching

Form Phrase Sense Topic Structure

Term Matching

Figure 1.1: Semantic matching: if the meanings of the query and document
represented in the aspects of form, phrase, sense, topic, and structure are the same,
then they should match each other and be regarded relevant.

query with operators describing relations between entities, combines
the information found from both documents and ontology, and returns
to the user. Special search needs such as “finding plants with edible
leaves and native to Europe” are supported [11]. In contrast, the
semantic matching which we are concerned with here is carried out
inside the search engine and users do not need to do anything different
from conventional search.

Figure 1.2 illustrates the difference between semantic matching
and semantic search. Semantic matching is concerned with search of
documents by query, where both documents and query are unstructured
data. Semantic search is usually concerned with search of documents
and knowledge base by query, where documents and query are
unstructured data, but knowledge base is structured data.

Query document mismatch has been studied in the long history of
information retrieval (IR). In traditional IR, methods such as query
expansion, pseudo-relevance feedback, and latent semantic indexing
(LSI) have been intensively investigated and widely utilized. Nowadays
large amounts of log data have been collected in web search and
advanced machine learning techniques have been developed. We can
really leverage big data and machine learning to more effectively

1.3. Matching and Ranking 9

Query: unstructured data

Knowledge base:

structured data

Semantic Search

Documents:

unstructured data

Semantic Matching

Query: unstructured data Documents:

unstructured data

Figure 1.2: Semantic matching versus semantic search.

address the challenge of query document mismatch, as explained in
this survey.

1.3 Matching and Ranking

In traditional IR, the distinction between ranking and matching in
search is not made clear. Given a query, documents are retrieved from
the index and matching between the query and each of the documents
is carried out. The relevance of the document with respect to the query
is represented as the matching degree between the two, calculated using
an IR model (matching model) such as BM25 or language models for
information retrieval (LM4IR). After that, the documents are ranked
(sorted) based on their matching scores. In such a framework, matching
scores and ranking scores are equivalent. 2

Things have changed in web search. Importance of documents (web
pages) is found useful for relevance ranking, and importance scores of

2We note that in modern web search not only relevance but also freshness,
diversity, and other factors are considered. We restrict ourselves to relevance in
this survey.

10 Introduction

web pages calculated by models such as PageRank need to be incor-
porated into the ranking mechanism. Besides, many signals indicating
the relevance (matching) degrees between queries and documents are
also available and matching scores representing the signals can be
calculated. How to combine the matching scores and importance scores
then becomes a critical question. A simple approach is to linearly
combine the scores and manually tune the weights. More sophisticated
machine learning techniques for automatically constructing the ranking
model using training data can also be considered. In fact, machine
learning techniques for the purpose, referred to as learning to rank, have
been intensively studied and widely applied in web search [128, 115].
Thus, in web search, the processes of matching and ranking are logically
separated (first matching and then ranking).

As explained below, machine learning techniques for learning
matching degrees between queries and documents (in general, heteroge-
neous objects), which are referred to as learning to match in this paper,
have been developed. Learning to match is in fact feature learning for
learning to rank, from the viewpoint of machine learning.

1.4 Semantic Matching in Other Tasks

Other tasks in information retrieval and natural language processing
also rely on semantic matching, such as paraphrasing & textual
entailment [62, 54], question answering [21], cross-language information
retrieval (CLIR) [141, 140], online advertising [31], similar document
detection [32, 33], and short text conversation [176, 130]. Table 1.4
summarizes the characteristics of the tasks.

For instance, CLIR is a subfield of information retrieval concerning
with the problem of receiving queries in one language while retrieving
documents in another language. Translation of either query or docu-
ment from one language to another is naturally required in the task.
Mismatch between query and document in two languages poses an even
greater challenge to CLIR and matching on form aspect (compounding,
word segmentation, spelling error correction), sense aspect (selection

1.5. Machine Learning for Semantic Matching in Search 11

of translation), and topic aspect has also been tried and verified to be
helpful [141, 140].

For another instance, online advertising makes use of web to deliver
marketing messages and attract consumers. It usually involves publish-
ers, who display advertisements at their web sites, and advertisers, who
provide advertisements. Given some advertisements, it is necessary to
find appropriate web sites for displaying them, i.e. conduct effective
matching between publishers’ content and advertisers’ advertisements.
Mismatch is also inevitable here. Methods have been proposed for
addressing the mismatch challenge at form aspect, sense aspect, and
topic aspect [31].

Short text conversation is a research problem proposed re-
cently [176, 130]. It consists of one round of conversation between
human and computer, with the former being a message from human and
the latter being a comment on the message from the computer. Short
text conversation constitutes one step of natural language conversation,
and it also subsumes question answering as special case. Semantic
matching between messages and comments needs also be considered, in
a retrieval based approach in which a large collection of message and
comment pairs is indexed, and given a message the most appropriate
comment is retrieved, selected, and returned. Methods have been
proposed to address the mismatch problem in the task as well [176, 130].

1.5 Machine Learning for Semantic Matching in Search

A natural question arises whether it is possible to use machine learning
techniques to automatically learn the models for semantic matching in
search. This is exactly the problem we address in this survey.

The task can be formalized as learning of matching model f(q, d)
or conditional probability model P (r|q, d) using supervised learning
techniques or learning of conditional probability model P (q|d) using
unsupervised learning techniques, where q denotes query, d denotes
document, and r denotes relevance level. Note that here query and
document are regarded as different (heterogeneous) objects.

12 Introduction

Table 1.4: Characteristics of tasks that need semantic matching. Two natural
language texts (A and B) are involved in the tasks.

task types of texts relation between
texts

search A=query,
B=document

relevance

question answering A=question,
B=answer

answer to ques-
tion

cross-language IR A=query,
B=document

relevance

(in diff. lang.)
short text conversation A=text, B=text message and com-

ment
similar document detection A=text, B=text similarity
online advertising A=query, B=ads. relevance as ads.
paraphrasing A=sentence,

B=sentence
equivalence

textual entailment A=sentence,
B=sentence

entailment

Different models can be defined, explicitly or implicitly representing
semantic matching, i.e., matching on different aspects such as form
aspect, phrase aspect, sense aspect, topic aspect, and structure aspect.
Since query document mismatch is a long tail phenomenon, it is
necessary to assume that no single signal is enough and construct
matching models on different aspects and combine the uses of them
in relevance ranking.

The following are some well-studied approaches, including matching
by query reformulation, matching with term dependency model,
matching with translation model, matching with topic model, and
matching with latent space model. This survey will explain the
approaches in detail.

Matching by query reformulation aims at reformulating the query
so that it can have a better match with the semantically equivalent
expressions in the documents. Reformulation of query includes spelling

1.5. Machine Learning for Semantic Matching in Search 13

error correction, word splitting, word merging, and so on. The major
issues with regard to query reformulation include re-writing of the
original query, blending of the search results by the original query
and reformulated queries, mining of similar queries, as well as query
expansion.

A straightforward extension of the bag-of-words approach would
be to perform matching based on multiple words in the query and
document. This is exactly the process depicted in the term dependency
models. One can represent different matching relations between the
query terms and the document terms with the models, for example,
co-occurrence of terms in both the query and document. Intuitively, if
several terms co-occur within both the query and document, then they
may represent the same concept and indicate stronger relevance.

Matching between the query and a part of the document, for
example, the title, can be modeled as paraphrasing or translation
in which a language expression is transformed into another language
expression. Taking matching as a statistical translation task has been
proposed previously and the approach has made significant progress in
web search recently, in part because a large amount of click-through
data becomes available and can be utilized as training data.

Given a collection of documents, topic modeling techniques can help
find the topics of the documents, in which each topic is represented by
a number of words. Probabilistic and non-probabilistic models have
been proposed. In search, the topics of the query and the topics of
the documents can be detected, and matching between the query and
documents can be carried out with the topics.

We can represent queries and documents in two different vector
spaces, map them into a hidden semantic space with lower dimension-
ality on the basis of query document associations in click-through data,
and conduct matching between queries and documents in the latent
semantic space. This is the basic idea of the approach of matching
with latent space models. Many traditional IR models such as vector
space model (VSM), BM25, and LM4IR can be interpreted as special
cases of the latent space models, and thus the latent space models are
quite fundamental for IR.

14 Introduction

Matching between two heterogenous objects is not limited to
search. It exists in many other applications, including paraphrasing
& textual entailment, question answering, online advertising, cross-
language information retrieval, similar document detection, short text
conversation, machine translation, recommender systems (collaborative
filtering), link prediction, image annotation, and drug design. It is
necessary and important to generalize the techniques developed in
different applications to a more general machine learning methodology
in order to study the techniques more deeply and broadly. We refer to
it as learning to match in this survey.

1.6 About This Survey

This survey focuses on the fundamental problems, as well as the state-
of-the-art solutions of query document matching in search. The ideas
and solutions explained may motivate industrial practitioners to turn
the research results into products. The methods introduced and the
discussions made may also stimulate academic researchers to find new
research directions and approaches.

Section 2 gives a formulation of machine learning for query
document matching in search and shows an implementation of it
in web search. Sections 3-7 describe the five groups of learning
techniques for query document matching, namely matching by query
reformulation, matching with term dependency model, matching with
translation model, matching with topic model, and matching with
latent space model. Section 8 describes generalization of the techniques,
learning to match, and introduce methods for collaborative filtering and
paraphrasing & textual entailment. Section 9 summarizes the survey
and discusses open problems. Sections 2-8 are self-contained, and thus
the reader can choose sections to read on the basis of their interest and
need.

This survey focuses more on machine learning and semantic
matching. Several survey papers or books cover some related topics,
such as LM4IR [204], query expansion [40], search and browse log

1.6. About This Survey 15

mining [163, 94], and feature centric view on IR [135]. The reader is
also encouraged to refer to the materials.

We assume that the reader has certain knowledge on machine
learning and information retrieval. Those who want to know more about
the fundamentals of the areas should refer to related books and papers.
The machine learning techniques concerned with in this survey include
statistical language model [204], statistical machine translation [99],
learning to rank [128, 115, 116], graphical model [24], topic model [25],
matrix factorization [103], kernel methods [158], sparse methods 3, and
deep learning 4. Explanations on the basic techniques in information
retrieval can be found in the text books on IR [131, 52, 6].

3A tutorial on sparse methods by Bach can be found at www.di.ens.fr/̃fbach/.
4Tutorials on deep learning can be found at www.deeplearning.net/tutorial/.

2
Semantic Matching in Search

This section gives a mathematical view on machine learning for query
document matching, i.e., semantic matching. It also gives a system view
on semantic matching.

2.1 Mathematical View

Learning for query document matching can be performed in both
supervised learning setting and unsupervised learning setting. Here,
supervised learning means that the responses (matching degrees)
of query document pairs are given in the learning phase, while
unsupervised setting means that they are not.

2.1.1 Supervised Learning

Suppose that training data (q1, d1, r1), (q2, d2, r2), · · · , (qN , dN , rN)
is given. Each sample is a triple representing query q, document
d, and response r. The response represents the matching degree
(relevance) between the query and the document. Query q is generated
according to probability distribution P (q), document d is generated
according to conditional probability distribution P (d|q), and response r

16

2.1. Mathematical View 17

is generated according to conditional probability distribution P (r|q, d).
This corresponds to the following fact. Queries are submitted to
the search system independently, documents are retrieved with the
query words given a query, and the relevance can be approximately
determined given a pair of query and document. Click through data
collected at a search engine can be used as the training data.1

The goal of learning to match is to automatically learn a model
represented either as function f(q, d) or as conditional probability
distribution P (r|q, d). (Note that f(q, d) is a more general definition,
because one can define f(q, d) = P (r|q, d). Also note that the use of
P (r|q, d) in relevance ranking has been studied in IR from many years
ago [152].)

The matching problem is similar to conventional classification and
regression problems. There is also dissimilarity, however. Classification
and regression are about learning of a one-input function (i.e., a
function of one feature vector) and matching is about learning of a
two-input function (i.e., a function of two feature vectors). The relations
between the inputs can be and should be leveraged in the matching
task.

The learning problem can be formalized as minimization of the
following regularized empirical loss function

minf

N∑
i=1

L(ri, f(qi, di)) + Ω(f),

where L(r, f(q, d)) denotes a loss and Ω(f) denotes a regularization.
As explained, semantic matching between queries and documents

can be conducted on word sense, topic, and structure aspects. That
means different matching functions can be learned within the above
learning framework.

Here are two example formulations. (1) ID matching: q and d are
just represented as IDs. Matching between queries and documents can
be formalized as matrix factorization, under a strong assumption that
the queries and documents are fixed. (2) Feature matching: q and

1Click-through data is noisy. One common method for data cleaning is threshold
cut-off [94]. More research on the problem is surely necessary.

18 Semantic Matching in Search

d are represented as feature vectors. Matching between queries and
documents can be formalized, for instance, as feature-based matrix
factorization. In fact, the latent space models described in Section 7
are specific instances of (2).

The challenges of the learning task include the large scale of problem
and the sparseness of training data.

2.1.2 Unsupervised Learning

The matching degree between query q and document d can be
represented by the conditional probability P (q|d).

One view on matching and ranking with this approach is as follows.
Given a query, we retrieve documents and calculate the conditional
probabilities (matching scores) of documents with respect to the query,
represented as P (d|q), and then rank the documents according to the
conditional probabilities P (d|q). By Bayes’ rule we have

P (d|q) ∝ P (d)P (q|d),

where P (d) denotes the prior probability (importance score) of docu-
ment d.2 P (d) can be calculated, for example, using PageRank [143].
The question then is how to calculate P (q|d).

In the language model approach, query q and document d are
usually viewed as bags of words (unigrams). We refer the reader to [204]
for detailed explanation of LM4IR. Suppose that documents d1, d2, · · · ,
dN are given. Each document di is represented as wi

1, wi
2, · · · , wi

|d|. The
conditional probability P (q|di) is calculated based on the data of q and
the distribution of P (w|di), where w denotes a word in the vocabulary.
That is the likelihood of query q’s being generated from document di.

The estimation of P (w|di) can be performed by maximum likelihood
estimation (MLE). (For simplicity, we do not consider smoothing of the
probabilities. See [204] for various smoothing techniques.) We have

P (w|di) = f(w, di)
|di|

,

2The probability P (d|q) can also be calculated by a learning to rank model, where
the probabilities P (q|d) and P (d) are utilized as features of the model [115].

2.2. System View 19

where f(w, di) denotes the frequency of word w occurring in document
di and |di| denotes the length of document di. Hence, the conditional
probability P (q|di) can be calculated as follows.

P (q|di) =
|q|∏

k=1
P (wq

k|di),

where P (wq
k|di) denotes the probability that query word wq

k is generated
from document di.

Although it is effective, the bag-of-words approach suffers from
the mismatch problem. Several approaches can be considered to deal
with the challenge. In the topic modeling approach, for example, it is
assumed that the words are generated from a topic model

P (w|di) =
∑

z

P (z|di)P (w|z),

as described in Section 6, where z denotes a topic, P (z|di) the
probability of topic z given document di, and P (w|z) the probability
of word w being generated from topic z. Through topics, the matching
between query and document can be based on meaning rather than
word.

The challenges for this learning task also lie in the large scale of
problem and the sparseness of training data.

2.2 System View

We next describe how to perform semantic matching in web search.
Figure 2.1 shows a web search system that conducts semantic matching.
It includes crawling, document understanding, indexing, query under-
standing, retrieving, query document matching, and ranking modules,
as well as index and user interface. Figures 2.2, 2.3, and 2.4 further show
the processing in the query understanding, document understanding,
and (semantic) matching modules. See [131, 52, 6] for introduction to
the fundamentals of web search system.

Query understanding consists of spelling error correction, phrase
identification, similar query finding, topic identification, and structure

20 Semantic Matching in Search

Ranking Index

User InterfaceUser

Query

Document

Matching

Query

Understanding
Retrieving

Document

Understanding
IndexingWeb Crawling

Figure 2.1: Architecture of web search engine.

Structure IdentificationStructure Identification

Topic IdentificationTopic Identification

Similar Query FindingSimilar Query Finding

Phrase IdentificationPhrase Identification

Sense

phrase: michael jordan

similar query: michael i. jordan

main phrase: michael jordan

Phrase

Structure

topic: machine learning, berkeley

Topic

phrase: berkeleyPhrase IdentificationPhrase Identification

Spelling Error CorrectionSpelling Error Correction

michael jordan berkele

query form: michael jordan berkeley

Phrase

Term

phrase: berkeley

Figure 2.2: Query understanding.

identification. Document understanding consists of phrase identifica-
tion, key phrase identification, topic identification, and structure identi-
fication. Matching between richer query and document representations
is then performed, which realizes semantic matching between query and
document. The matching employs the models learned in advance, on
the aspects of form, phrase, sense, topic, and structure.

2.2. System View 21

Title Structure
Identification

Topic Identification

Key Phrase
Identification

Phrase Identification

Topic

key phrase: michael jordan, professor,

electrical engineering
Key Phrase

topic: machine learning, berkeley

main phrase in title: michael jordan

phrase: michael jordan, professor,

Structure

Phrase Identification
Term

Homepage of Michael Jordan

Michael Jordan is Professor in the

Department of Electrical Engineering

……

phrase: michael jordan, professor,

department, electrical engineering]

Phrase

Figure 2.3: Document understanding.

Query

Representation

Query

Representation

Document

Representation

Document

Representation
Query Document

Matching

Relevance Ranking

Query form: michael jordan berkeley

Similar query: michael i jordan

Main phrase: michael jordan

Phrase: michael jordan, berkeley

Document: michael jordan homepage

Main phrase in title: michael jordan

Key phrase: michael jordan, berkeley

Phrase: michael jordan, professor,

department of electrical engineering
Phrase: michael jordan, berkeley

Topic : machine learning department of electrical engineering

Topic : machine learning, berkeley

Figure 2.4: Query document matching.

Figure 2.2 shows an example of query understanding. Suppose that
the input is “michael jordan berkele”, which contains a typo. Spelling
error correction is first made on the query. Phrases in the query are
then identified as “michael jordan” and “berkeley”. Next, similar queries
such as “michael i jordan” are retrieved. Topics of the query such as
“machine learning” are also identified. Finally, the structure of the
query is analyzed with “michael jordan” identified as key phrase. Note

22 Semantic Matching in Search

that the first step is typically performed first, but the other steps can
be performed independently. We put them into a pipeline only for ease
of explanation.

Figure 2.3 shows an example of document understanding. Suppose
that the homepage of Michael Jordan at Berkeley is given. First,
phrases such as “Michael Jordan” and “professor” are identified. Next,
the key phrases are selected. Topics of the page such as “Berkeley”,
“machine learning” are also identified. Finally, the structure of the page,
including the structure of the title is recognized. Again, the steps can
be executed independently.

Figure 2.4 shows an example of query document matching. The
enriched query and document representations are matched to determine
the relevance of the document (webpage) with respect to the query.

3
Matching by Query Reformulation

When mismatch between query and document occurs, a straightfor-
ward way to tackle the problem would be to transform the query to
another query which can better represent the search need and can make
better match with relevant documents. This is exactly the proposition
behind the approach of matching by query reformulation, which in some
sense has the longest history as a method of dealing with mismatch in
IR. Query reformulation includes spelling error correction, stemming,
query segmentation, query expansion, and query deduction. (For Asian
languages, it is usually assumed that word segmentation has been
conducted on query and document before the process.) This section
first gives an overview of query reformulation, and then describes
four issues with regard to query reformulation, including methods of
query reformulation, similar query mining, search result blending, and
query expansion. It also shows some experimental results. Similar query
mining is about automatic discovery of similar queries from search log
and web data, which are then utilized in query reformulation. Search
result blending is concerned with fusion of search results retrieved by
both the original query and reformulated queries. Query expansion is

23

24 Matching by Query Reformulation

Table 3.1: Types of query reformulation.

type example
spelling error correction mlss singapore → miss singapore
merging face book → facebook
splitting dataset → data set
stemming seattle best hotel → seattle best hotels
synonym ny times → new york times
segmentation new work times square → “new york”

“times square”
query expansion www → www conference
query deduction natural logarithm transformation →

logarithm transformation
stopword removal\preservation the new year → “the new year” 1

paraphrasing how far is sun from earth →
distance between sun and earth

related to adding new terms to the original query (expanding the query)
and retrieving with the expanded query.

3.1 Query Reformulation

Query reformulation, also referred to as query re-writing, query
transformation, query refinement, and query alteration, is to transform
the original query to queries (representations) that can better match
with documents, in the sense of relevance [51]. Suppose that the
query is “ny times” and the document contains “New York Times”.
If we reformulate the query into “new york times”, then we will be
able to match the (reformulated) query to the document and solve
the mismatch problem. Table 3.1 gives the major types of query
reformulation.

The main challenge to query reformation is topic drift. It is hard to
ensure that a reformulated query represents the same search need as the

1“The new year” is the title of an American movie, and thus the word “the”
should not be removed here, although it is usually treated as stopword.

3.2. Methods of Query Reformulation 25

original query. In the worst case, reformulation will result in creating
a query with a very different meaning. For example, with stemming,
“arms reduction” could be transformed to “arm reduction” and the use
of the reformulated query could hurt relevance.

Another challenge is that there is no guarantee that search relevance
can be improved by query reformulation. It is a task also depending
on the content of the document collection. For example, if the query is
“seattle best hotel” and the documents do not contain “Seattle best
hotels”, then transforming the former to the latter would not help
enhance relevance. At the query understanding phase, it is usually
impossible to judge whether a particular query reformulation would
help. It is only after matching the fact becomes evident.

Nonetheless, it has been observed that spelling error correction,
definite splitting (e.g., “united states”), and definite merging (e.g.,
“facebook”) can help improve relevance [79]. Furthermore, query
expansion by pseudo-relevance feedback can achieve state-of-the-art
performances on conventional IR datasets [40].

3.2 Methods of Query Reformulation

3.2.1 Spelling Error Correction

Usually about 10-15% of English queries contain spelling errors, which
becomes one of the major issues preventing users from finding infor-
mation (e.g., [53]). It is critically important, therefore, to transform
misspelled queries into well-formed queries and help users to quickly
find the information they look for.

For simplicity let us first consider correction of individual misspelled
words (e.g., “elefnat” to “elephant”). One simple approach to spelling
error correction is to calculate the edit distance between the query
word and each of the dictionary words. Dictionary words within a fixed
range of edit distance or a variable range of edit distance depending on
word length are selected as candidates for correction. There are at least
two drawbacks for this approach, however. First, probabilities of word
usages as well as word misspellings are not considered in the model. For
example, people rarely mistype “antler” as “entler”, but often mistype

26 Matching by Query Reformulation

“reluctant” as “reluctent”. Second, context information of correction is
not taken into consideration. For example, people tend to misspell “c”
to “s” or “k” depending on contexts. The use of edit distance cannot
deal with the problems.

To address the issues, probabilistic approaches, both generative
approach and discriminative approach, have been proposed. Suppose
that the query word is represented as q and a correction is represented
as c. We want to find the correction ĉ having the largest conditional
probability P (c|q). Different ways of defining the model lead to different
methods.

By Bayes’ rule, we can consider finding the correction ĉ having the
largest product of probability P (c) and conditional probability P (q|c)

ĉ = arg max
c
P (c|q) = arg max

c
P (c)P (q|c).

This is the basic idea behind the generative approach. The former is
called source model and the latter channel model. An interpretation of
using the models is that the intended query word has been distorted
through transmission of it via a noisy channel and we want to recover
the intended query word from the observed distorted (misspelled)
query word. One advantage of the generative approach is that we can
separately train the source and channel models. Different generative
methods in fact employ different formulations of the source model and
channel model.

The source model can be trained by using the document collection
and/or search log. (Due to the wide variety of searches it is better to
find the legitimate words from data.) A straightforward way would be
to estimate the probabilities of words based on their occurrences in the
dataset with a smoothing technique applied.

The channel model can be defined based on weighted edit distance,
where the model is usually trained by using data consisting of pairs of
correct word and misspelled word (cf., [151, 3]). We next describe two
methods for constructing the channel model.

Brill and Moore [29] have developed a method for building a source
channel model for spelling error correction. The major characteristics
of their method is to use contextual substitution (transformation)
rules, in other words, to perform substitutions of substrings on the

3.2. Methods of Query Reformulation 27

ca t u a l

ka s u a lg

a → a c → k ε→ g t→ s u→ u a→ a l→ l

c → k

ac → ak

c → kg

ac → akg

ct → kgs

alignment

substitutions

contextual substitution rules

ct → kgs

…

…

Figure 3.1: Examples of contextual substitution rules.

basis of contexts. Given pairs of misspelled word and correct word as
training data, their method first finds the ‘best’ alignment of segments
between the two words in each pair on the basis of edit distance, derives
substitution rules from the alignments, and heuristically estimates the
probabilities of the substitution rules. Figure 3.1 shows an example of
substitution rule derivation. In spelling error correction, they utilize
a trie to store the dictionary and another trie to store the rule set
to efficiently find the corrections with the largest total probabilities.
Toutanova and Moore [172] have further improved the model by
adding pronunciation factors into it, and Cucerzan and Brill [53] have
developed a method for iteratively training the model using query log.

Duan and Hsu’s method [63] takes the query word and the
correction as a sequence of ‘transfemes’, and defines the channel model
based on the sequence, where a transfeme denotes a transformation
of one substring to another substring between the query word and
the correction. Figure 3.2 shows an example of sequence of transfemes.
Given a specific segmentation of query and correction, an n-gram model
on the sequence of transfemes can be defined. The channel model is

28 Matching by Query Reformulation

e le f na t

e le ph an t

one transfeme

sequence of transfemes

elefnat → elephant

one possible segmentation

Figure 3.2: Example of sequence of transfemes.

defined as a probability model over all the possible segmentations.

P (q|c) =
∑

s∈S(c→q)

l(s)∏
i

P (ti|ti−n+1, · · · , ti−1),

where c denotes a correct word, q a misspelled word, S(c → q) the set
of segmentations for c and q, s a segmentation, l(s) the length of s, t
a transfeme, and n the number of transfemes. The segmentations are
not observable in the training data, however. Their method employs the
expectation maximization (EM) algorithm to estimate the probabilities
of the channel model. In online prediction, the method utilizes a trie
for indexing of the dictionary and uses the A* algorithm for efficient
retrieval of correction candidates.

Wang et al. [183] propose a discriminative method for spelling error
correction, which can be viewed as a counterpart of Brill and Moor’s
generative method. Their method utilizes the conditional probability
model P (c,R|q), which is defined as a conditional probability distribu-
tion of a corrected word c and a rule set for the correction R conditioned
on the misspelled word q. The model is specified as log linear model
with substitution rules as features

P (c,R(c, q)|q) =
exp{

∑
r∈R(c,q) λr}∑

c′ exp{
∑

r′∈R(c′,q) λr′}
,

where c denotes a correct word, q a misspelled word, R(c, q) the set of
rules of transforming c to q, r a substitution rule, and λr the weight of

3.2. Methods of Query Reformulation 29

rule r. In learning, contextual substitution rules are first derived from
training data as in Figure 3.1, and then the parameters of the model
are learned with a quasi-Newton method. In prediction, given a query
word, the top k candidate corrections with respect to the model are
guaranteed to be found, using a trie for storing the dictionary and a
tire for storing the rule set, as well as an algorithm based on dynamic
programming.

So far we have been considering correction of individual misspelled
words. The accuracy of correction can be further improved by
considering the surrounding words (context words). For example, one
can decide whether to correct “officier” as “officer” or “official” by
looking at the context words. If the next word is “website”, then the
correct word is more likely to be “official”. Methods of using context
words for spelling error correction have also been proposed [74, 118].
In spelling error correction, it is necessary that the right corrections of
misspelled words are among the candidates. Methods for automatically
collecting and utilizing such data from search results as well as web
n-grams have also been proposed [43, 92].

3.2.2 Query Segmentation

Query segmentation is to separate the input query into multiple
segments, roughly corresponding to natural language phrases, for
improving search relevance. For example, if the query is “new york
times square”, then it may be divided into two phrases “(new
york)(times square)”, and the relevance may be enhanced by the
segmentation. Both supervised and unsupervised learning methods
have been proposed for query segmentation.

Bergsma and Wang [23], for example, propose a supervised method,
which exploits a classifier and features such as position, part-of-speech
tag, phrase frequency, and frequency of adjacent words. A segmentation
of query q = q1q2 · · · qn of length n can be represented as b =
b1b2 · · · b(n−1), where bi ∈ {1, 0}, i = 1, · · · , n − 1 denotes a break
decision between query words qi and qi+1, 1 stands for making a break,
and 0 stands for not making a break. There are n−1 break decisions for

30 Matching by Query Reformulation

the query. Their classifier is a binary classification model that makes
break/not-break judgments at the n− 1 positions.

Bendersky et al. [16] suggest jointly performing query segmentation,
capitalization, and POS tagging on query using conditional random
fields (CRF). The approach takes advantage of the fact that the
annotations of query segmentation, capitalization, POS tagging are
interdependent of one another. For example, if a query word is likely
to be a preposition, then it is not likely to be capitalized. The method
first conducts the annotations independently, and then takes the initial
annotations as input and makes prediction on the final annotations
using the CRF model.

Hagen et al. and Tan & Peng propose unsupervised methods [168,
81, 80] for query segmentation, which make use of heuristic functions,
wikipedia titles, and web n-grams. (See also [121]). The method in [80],
referred to as Wekipedia-based Normalization (WBN), assigns a weight
to each segment and sums up all the weights as the score of the entire
segmentation. It then chooses the segmentations with the highest k
scores. The score of segmentation S is defined as follow

score(S) =

∑

s∈S,|s|≥2
weight(s) if weight(s) > 0 for

all s ∈ S and |s| ≥ 2

−1 else

where s is a segment and segments with length one are ignored. The
weight of segment s is defined as follow

weight(s) =

|s|2 + |s| · max

t∈s,|t|=2
freq(t)

if s is Wikipedia
title

|s| · freq(s) else

where t denotes a substring of s and freq denotes the frequency of
string in the corpus.

Recently, Wu et al. [186] employ a re-ranking approach for query
segmentation, which is a technique widely utilized for structure
prediction in natural language processing. In the first stage, they adopt
the method of WBN [80] to find the top k candidates. In the second

3.2. Methods of Query Reformulation 31

oi-1 oi oi+1

yi-1 yi yi+1

xi-1 xi xi+1

Figure 3.3: Conditional random fields for query reformulation.

stage, they create a feature vector for each candidate, employ SVM to
re-rank the candidates, and then find the best segmentation as output.
Features of the SVM model include mutual information between words
in the segmentation, similarity between the current segmentation
and the top ranked segmentation, and so on. The advantage of the
re-ranking approach is that it can leverage the strengths of both the
generative approach and the discriminative approach, i.e., to quickly
identify a set of reasonably good candidates and to accurately select
the best candidate using as much information as possible.

Other types of query reformulation have also been investigated. For
example, query reduction has been studied in [10] and query stemming
has been studied in [146].

3.2.3 General Query Reformulation

Here we consider methods that can address different types of query
reformulation in a unified framework.

A discriminative method for general query reformulation has been
developed by Guo et al. using conditional random fields (CRFs) [79].
The basic idea is as follows. We could in principle view query
reformulation as a mapping from the space of original queries X to
the space of reformulated queries Y . Obviously, directly exploiting
the model P (y|x) would be intractable, because both X and Y are
extremely large, where y and x are random variables taking values
from Y and X. Guo et al. propose adding another random variable o
and employ the model P (y, o|x) to solve the problem, where o takes
values from a set of operation sequences. An operation can be insertion,

32 Matching by Query Reformulation

deletion, or substitution of letter in a word, splitting of a word into
multiple words, merging of multiple words into a single word, word
stemming, etc. The number of mappings from x to y under o will
be drastically reduced. They define P (y, o|x) as CRFs on query word
sequences (Figure 3.3)

P (y, o|x) = 1
Z

n∏
i=1

ϕ(yi−1, yi)ϕ(yi, oi, x),

where x denotes a sequence of query words, y a sequence of refined
query words, o a sequence of operations, and ϕ a feature function.
Features ϕ(yi, oi, x) can be those indicating word yi is obtained from
word xi by operation oi, where oi is insertion, deletion, or replacement
of a letter, and features ϕ(yi−1, yi) can be those indicating whether
word yi−1 and word yi co-occur in a corpus. Note that the model can be
extended to handle multiple steps of query reformulation. They derive
methods for learning the model and making prediction using dynamic
programming. One advantage of this approach is that different types
of query reformulation can be performed in the same framework and
thus the accuracy of the task can be enhanced, because reformulations
can be interdependent.

Li et al. [120] propose a generative approach to the task. A
generalized hidden Markov model is employed, which can handle
both in-word spelling errors (insertion, deletion, substitution, and
misuse) and cross-word errors (splitting and concatenation) in a unified
framework. In the model, the hidden states represent the correct
forms of words associated with error types and the observations
are (potentially) misspelled words. A Perceptron-based discriminative
training method is used to train the parameters of the model.

3.3 Methods of Similar Query Mining

We describe methods of automatically mining similar queries or similar
query patterns from search log data, including click-through data and
session data, as well as web data (text data). (For a survey on search
log mining, see [163, 94].) The mined similar queries or similar query
patterns can be used in candidate generation of query reformulation.

3.3. Methods of Similar Query Mining 33

q1

q2

qm

…
..

d1

d2

dn

…
..

-- q1
-- q1’

-- qn
-- qn’

…
…

Click-through data Search session data

Similar queries can be found

by co-click

Similar queries can be found

from users’ query reformulations

Figure 3.4: Search log data.

The challenge here is how to deal with noise in the data. We also
introduce methods for automatically learning query similarities. A
public dataset of similar queries is also introduced.

3.3.1 Using Click-through Data

Click-through data records the queries submitted at the search engine
and the URLs clicked by the users at the search engine. Click-through
data can be represented by a weighted bipartite graph, as shown in
Figure 3.4, in which one set of nodes represent queries, the other set
of nodes represent URLs, edges represent clicks between queries and
URLs, and weights on the edges represent numbers of clicks.

In a click-through bipartite graph, if two queries have similar sets
of URLs associated, then the queries tend to have similar meanings
(represent similar search needs). One can find similar queries from a
click-through bipartite graph on the basis of URLs associated with
them.

One simple method is to use statistical measures such as Pearson
correlation coefficient to characterize the similarities between two

34 Matching by Query Reformulation

queries 2.

r(q, p) =
∑n

i=1(qi − q̄)(pi − p̄)√∑n
i=1(qi − q̄)2

√∑n
i=1(pi − p̄)2 ,

where q and p denote query vectors, qi and pi denote the i-th elements
of the vectors representing click frequencies, and q̄ and p̄ denote average
frequencies. Intuitively, if two queries have many shared clicked URLs,
then the coefficient score between the two queries will be large. Xu and
Xu [191] find that when Pearson coefficient is larger than 0.8, more
than 82.1% of query pairs may be viewed as similar query pairs.

Another approach to finding similar queries is to cluster queries on
the basis of their clicked URLs on a click-through graph. For example,
Beeferman et al. [12] propose employing an agglomerative clustering
algorithm for performing the task. Their method represents queries
with vectors of their clicked URLs, and iteratively merges the two
queries or query clusters into a new cluster, if their similarity is the
largest. Although the algorithm is simple, it can discover high quality
clusters of similar queries. Other algorithms are also applied to query
clustering, such as K-means [5] and DBSCAN [185].

One issue with the clustering approach is to scale up to large
datasets. Cao et al. propose an efficient agglomerative clustering al-
gorithm to achieve the goal, by leveraging the fact that a click-through
graph is usually sparse (each node has a small number of edges
associated) [39, 123]. The algorithm only scans the data once (with
linear order time complexity) and incrementally creates clusters. More
specifically, the algorithm creates and maintains an inverted index
about all the non-zero elements of the query vectors in the existing
clusters. Once a new query vector comes, it only takes its non-zero
elements, looks up the index, and makes similarity comparison with
the clusters that also have non-zero elements at the same positions.

Another state-of-the-art method for finding similar queries from a
click-through graph is to perform random walk on the graph, proposed
by Craswell and Szummer [50]. Their method takes the click-through
bipartite graph as a directed graph and defines a random walk model

2Interestingly, Pearson correlation coefficient is also widely utilized in collabora-
tive filtering as similarity measure between items.

3.3. Methods of Similar Query Mining 35

on the graph. First, the transition probability matrix A[i, j] = P (i|j)
is defined as follows,

P (i|j) =

 (1 − s) · f(i,j)∑
k

f(i,k) , if i ̸= j

s, if i = j
,

where i and j denote nodes i and j on the graph, f(i, j) denotes the
frequency of edge between nodes i and j, and s is the self-transition
probability. Then, random walk (both forward and backward) can
be performed on the graph. Given a test node k (say, representing
a query), the input vector is constructed v(0) = ek, where ek is a
unit probability vector with the k-th element being 1 and the other
elements being 0. The backward random walk, for example, is realized
by computing v(n) = A ·v(n−1) where n denotes number of iterations.
After several rounds of iterations, the nodes of similar queries will
have higher weights. Their model is actually a model of similarity
weight propagation on the click-through bipartite graph. The use of
self-transition probability s is to ensure the propagation also goes to
the node itself and does not go to the other nodes too much. Another
method of finding similar queries is to calculate the hitting time of
queries on the click-through graph, proposed by Mei et al. [133].

3.3.2 Using Session Data

Each instance of session data records the queries submitted and URLs
clicked by the user in a search session (cf., Figure 3.4). How to segment
log data into sessions is still an active research topic and one simple yet
effective method is the so-called 30-minute rule, which regards any time
interval longer than 30 minutes as a session boundary [41]. For the task
of similar query mining, we usually only utilize the query sequences in
the segmented sessions.

Users sometimes issue multiple similar queries in the same search
sessions, and they can be synonymous, more general, or more specific
expressions. We can also mine frequent successive query sequences from
search sessions and take them as similar queries (cf.,[27]).

Jones et al. [96] propose finding frequent query pairs from search
sessions by statistical hypothesis testing. Given two queries, they

36 Matching by Query Reformulation

calculate the likelihood ratio between them and perform likelihood
ratio testing to see whether their co-occurrence in a search session is
statistically significant. More specifically, suppose that the two queries
are q1 and q2. We calculate the likelihood that q2 occurs after q1
does not occur as L(q2|¬q1) and the likelihood that q2 occurs after
q1 occurs as L(q2|q1), where q1 and q2 are assumed to be generated
according to binominal distributions. We then calculate the ratio
−2 logL(q2|¬q1)/L(q2|q1). If it is larger than a threshold, then we judge
that the occurrence of q2 is statistically dependent on the occurrence of
q1, i.e., we view q1 and q2 as similar queries. Other measures including
cosine similarity and Jacaard similarity can also be used [89].

Xue et al. [197] propose mining question reformulation patterns
(similar question patterns) from session data. They employ sequence
pattern mining techniques to automatically mine 5w1h (who, what,
where, when, why, and how) question reformulation patterns, which
represent alternative expressions for 5w1h questions. For example, users
may ask similar questions “how far is it from X to Y” and “distance
from X to Y” in search sessions, where X and Y represent location
names. They show that one can really mine high-quality reformulation
patterns from a large amount of session data with this mining method.
See also [182], for a method of mining and utilizing term association
patterns in query log.

3.3.3 Using Document Collection

An alternative approach is to mine synonyms and synonymous patterns
from large amounts of text data. For example, Turney [173] presents a
method for mining synonyms from a large document collection based
on the assumption that a word is characterized by the contexts it has.
Given a word and candidates of its synonym, his method leverages a
search engine to collect co-occurrence information, calculates mutual
information between the word and each of the candidates, and selects
as synonym the candidate having the largest mutual information. Lin
and Pantel [125] propose a method of extracting synonymous patterns
such as “X is author of Y” is equivalent to “X wrote Y”, by parsing
a large number of texts and mining similar paths of parsed trees in

3.3. Methods of Similar Query Mining 37

Table 3.2: Similar queries to original TREC topic “Obama family tree”.

barack obama family obama family
obama s family barack obama family tree
the obama family barack obama s family
obamas obama genealogy
barack obama s family tree barack obama ancestry
president obama s family obamas family
obama family history obama s family tree
barack obama genealogy barack obama family history
barack obama geneology president obama and family
obama s ancestry barak obama family tree
barak obama family obama family tre
obama and family tree

similar contexts. How useful such mined synonyms and synonymous
patterns are needs more investigation.

3.3.4 Learning Query Similarity

Bona et al. [57] have developed a method for learning and predicting
query similarity. The basic idea is to use click-through data and a
learning to rank method to automatically train a model which can rank
queries based on their similarity to a given query. Pairwise training
data is derived from click-through log under the assumption that two
queries are more similar if they are more frequently associated with
the same documents. The features of the ranking model include mutual
information between queries as in [96], edit distance between queries,
and an extended edit distance between queries which takes semantic
similarity into consideration. See also [191] for a method of learning
query similarity in a metric space with similar query pairs as training
data.

38 Matching by Query Reformulation

3.3.5 Public Dataset

Finally, we introduce a public dataset for research on query reformu-
lation, called QRU-1 3. The QRU-1 dataset includes the topics in the
TREC Web Track as original queries. It further contains approximately
twenty queries similar to each of the original queries [117]. Table 3.2
gives an example. We can see that the similar queries really represent
the same search need as the original query, but in different forms, such
as synonyms, stemming variations, spelling errors, and abbreviations.
The similar queries are automatically generated from a model [183]
trained from search log data with the TREC topics as input. In
addition, manual cleaning of the generated queries is performed to
ensure only ‘true’ similar queries are retained in the dataset.

Li et al. [117] have conducted an experiment on relevance ranking
using the QRU-1 dataset. They find that for a large number of queries
there exists at least one reformulated query which can give better
performance in relevance ranking. It is usually not clear, however, which
one is the query. This poses an interesting question for future research.

3.4 Methods of Search Result Blending

We next describe methods of search result blending. Suppose that the
original query is reformulated into similar queries. Then documents can
be retrieved with the original query and similar queries. (To improve
efficiency, we can have the search system support the mechanism that
the queries are combined into one query representation and documents
are retrieved at the same time with the query representation (multiple
queries).) Relevance scores are calculated for and assigned to the
documents with respect to each of the queries. The question then is
how to ‘blend’ the search results of the queries. Note that the relevance
scores of documents are not comparable across queries.

A simple method of blending is to employ a linear combination
(cf.,[66, 112, 197]) with query similarities as weights. The final relevance

3The data is available at
http://research.microsoft.com/en-us/downloads/d6e8c8f2-721f-4222-81fa-
4251b6c33752/

3.4. Methods of Search Result Blending 39

score f(q, d) of document d with respect to query q is calculated as

f(q, d) = fB(q, d) +
∑

i

k(q, qi)fB(qi, d),

where fB(q, d) and fB(qi, d) denote the relevance scores of document
d with respect to queries q and qi calculated by the basic model, for
example, BM25, and k(q, qi) denotes the similarity between query q

and query qi.
Learning to rank techniques can also be employed in search result

blending. LambdaMerge is an algorithm designed for learning the
matching and ranking models at the same time [160]. It employs
LambdaRank as the learning algorithm and utilizes as the features
query document matching scores, quality scores of query reformations,
and quality scores of search results. The model of LambdaMerge is
defined as follows.

f(q, d) =
∑

i

w(qi)fB(qi, d),

where f(q, d) denotes the final relevance score of document d with
respect to query q, fB(qi, d) denotes the relevance score of document
d with respect to query qi by the basic model, and w(qi) denotes the
weight with respect to query qi. Note that queries qi include the similar
queries as well as the original query. Furthermore, the basic model
fB(qi, d) is calculated as

fB(qi, d) = fN (xi;α),

where fN (·; ·) is a two layer neural network, xi denotes the feature
vector of query qi and document d, and α denotes parameters. The
weight w(qi) is calculated as

w(qi) = fG(zi;β),

where fG(·; ·) is the softmax function, zi denotes the feature vector
with respect to query qi, and β denotes parameters. The features in zi

represent the quality score of qi and the quality score of search result
with respect to qi. Figure 3.5 depicts the LambdaMerge model.

40 Matching by Query Reformulation

dx1 x2

z1 z2

fN fN

fG fG

+

q1 q2

Figure 3.5: LambdaMerge model.

Another theoretically sound approach is to employ a kernel method,
developed by Wu et al. [189, 194]. The blending model is defined as

f(q, d) = fB(q, d) ×
∑

i

αikQ(q, qi)kD(d, di)fB(qi, di),

where kQ(q, qi) denotes the similarity between original query q and
similar query qi, kD(d, di) denotes the similarity between original
document d and similar document di, αi denotes the weight of query
document pair (qi, di), and fB(q, d) and fB(qi, di) are basic relevance
functions. Here, it is assumed that 0 ≤ kD(·, ·) ≤ 1, 0 ≤ kQ(·, ·) ≤ 1,
and fB(·, ·) > 0 4. The weights can be automatically learned from
click-through data by the kernel approach, such as Ranking SVM [86].
Note that multiplication instead of addition is used in the model in
order to make the problem solvable by a kernel method. Wu et al.
shows that if the basic model is BM25, then a more reliable and robust
model can be learned by the method, which they call Robust BM25.

Figure 3.6 gives an intuitive explanation on why the use of the
model can effectively deal with query document mismatch. Suppose
that there exists a query space Q and similarity function kQ is defined
on it. Given query q, one can find its similar queries qi in Q on the
basis of kQ(q, qi). Similarly, there exists a document space D and
similarity function kD is defined on it. Given document d, one can

4We can always add a small value ϵ to make fB(·, ·) > 0.

3.5. Methods of Query Expansion 41

query space document space

q d

fB(q, d)

fB(qi, di)
qi di

kQ(q, qi) kD(d, di)

Figure 3.6: Kernel method for search result blending.

find its similar documents di in D on the basis of kD(d, di). The basic
relevance model (matching model) fB(q, d) is defined between query q
and document d over the two spaces. Query document mismatch occurs,
when fB(q, d) cannot be reliably calculated. We can deal with the
problem by employing the k-nearest neighbor method over the query
and document spaces. More specifically, we smooth the basic relevance
score of query q and document d by using the relevance scores of their
similar queries qi and similar documents di.

3.5 Methods of Query Expansion

Query expansion is a technique studied intensively and widely in IR.
The basic idea is to enrich the query with additional terms (words or
phrases) and to use the expanded query to conduct search in order
to circumvent the query-document mismatch challenge. There are two
major characteristics for the existing methods of query expansion.
Namely, extra terms are added to the query and traditional IR models
are utilized. More specifically, a traditional IR model can be written as

f(q, d) =
∑

t∈q∩d

wq,t · wd,t,

where q denotes a query, d denotes a document, t denotes a term, wq,t

denotes the weight of term t in query q, and wd,t denotes the weight of
term t in document d (see Section 7.1.2 for related discussions). The

42 Matching by Query Reformulation

model based on query expansion is written as

f(q′, d) =
∑

t∈q′∩d

w′
q′,t · wd,t,

where q′ denotes an expanded query and w′ denotes a new weight.
One representative method of query expansion is pseudo-relevance

feedback [147, 174, 192, 38]. It first conducts search with the original
query, then automatically selects some terms from the returned
documents, and finally performs another search with the expanded
query (original query plus additional terms). The returned documents
in the first search are assumed to be ‘pseudo’-relevance feedback from
the user.

We refer to the reader to the survey paper on query expansion by
Carpineto and Romano [40]. Here, we introduce several recent works
which attempt to perform query expansion by leveraging external
resources. The approach is promising, because a large amount of
knowledge and information is now available outside of the document
collection.

In the work on blog search by Arguello et al. [4], query expansion
is also carried out for solving the mismatch problem. The anchor texts
within Wikipedia articles are used as resources for query expansion.
Given a query, their method first retrieves Wikipedia articles with a
conventional retrieval model. The method then adds an anchor text to
the candidate set, if it appears in the topW retrieved Wikipedia articles
and points to the top R retrieved Wikipedia articles (R ≤ W). It then
ranks the anchor texts in the candidate set with a heuristic function
and selects the top 20 anchor texts for expanding the original query. Li
et al. [122] also make use of Wikipedia articles for query expansion, in
which terms are selected from the top ranked articles.

Kotov and Zhai [104] conduct query expansion with
ConceptNet 5 [127], a graph-based knowledge base of common
sense. In their method, given a query, the concept nodes on the graph
matching the query terms and their neighbors are used to form a
sub-graph. Heuristic methods as well as a learning-based method

5http://conceptnet5.media.mit.edu/

3.6. Experimental Results 43

Table 3.3: Performances of query reformulation in search.

MAP NDCG@1 NDCG@2 NDCG@5
web BM25 0.0908 0.1728 0.2019 0.2180
search query expansion 0.0963 0.1797 0.2061 0.2237

Robust BM25 0.1192 0.2480 0.2587 0.2716
enterprise BM25 0.2745 0.4246 0.4531 0.4741
search query expansion 0.2755 0.4076 0.4712 0.4958

Robust BM25 0.3122 0.4780 0.5065 0.5295

(linear regression) are then employed to select the best concept nodes
in the sub-graph. The selected concepts are used for expanding the
query. Experimental results show that the learning-based method
achieves the best performance.

Diaz and Metzler [60] present a formal method for query expansion
with external corpora. The relevance model in [109] is generalized to
combine evidence from both the document collection and external
collections. They first conduct retrieval with the original query on
each collection and build a relevance model with the top ranked
documents. They then create a linear combination of the models on
all the collections, as shown below.

P (w|θq) =
∑
c∈C

P (c)P (w|θq, c),

where C is a set of collections and P (w|θq, c) is the relevance model
of collection c. Their experimental results show that expansion on a
suitable external collection is more effective than expansion on the
original collection. Bendersky et al. [18] propose a unified framework
for automatically optimizing the combination of multiple information
sources for query reformulation. The framework supports arbitrary
query fragments (e.g., unigrams, bigrams, expanded terms), weighting
of query fragments, and automatic tuning of the model.

44 Matching by Query Reformulation

3.6 Experimental Results

We present the experimental results of improving search relevance by
query reformulation, reported in [189]. In the experiment, a dataset
of web search and a dataset of enterprise search are utilized, and
mean average precision (MAP) and normalized discounted cumulative
gain (NDCG) [93] are adopted as evaluation measures. The results
in Table 3.3 indicate that query reformulation with suitable blending
and mining (the Robust BM25 method) can significantly outperform
the baselines of BM25 and query expansion. All the improvements of
Robust BM25 over the baselines are significant (t-test, p < 0.05).

4
Matching with Term Dependency Model

We can address the mismatch challenge by exploiting a model based on
multiple terms (phrases, n-grams, etc.), referred to as term dependency
model (or dependency model). This is because concepts (word senses)
are often represented by multiple words in English, such as “United
States”, and the relevance between query and document can be better
characterized by matching based on multiple terms. In this section,
we first give an overview on using term dependency in search and
then describe several methods of leveraging term dependency, including
Markov random fields (MRF) model, extended IR model, and features
of learning to rank. We also give experimental results to demonstrate
how well term dependency models can perform favorably against the
traditional model of BM25.

4.1 Term Dependency

Search is basically performed by matching between query and
document, without ‘understanding’ of the meaning of them. Within this
matching framework, one rule of thumb is that matching of consecutive
terms between the query and document indicates stronger relevance.

45

46 Matching with Term Dependency Model

Figure 4.1: Three factors of term dependency.

For example, if terms “hot” and “dog” occur together in the query,
then the document in which the two terms also occur together is more
relevant than the document in which it is not the case. Another rule
is that the order of terms in a query is quite free, but not completely
free, and matching of ordered terms between the query and document
indicates stronger relevance. For example, “hot dog recipe” represents
the same search need as “recipe hot dog”, but not as “hot recipe dog”.
Therefore, we need to consider the proximity as well as the order of
terms in both query and document, when conducting matching between
query and document in search.

Proximity and order can be realized by using n-grams of terms,
in other words, term dependency or term collocation, which represent
soft segmentation of query and document. There are several factors on
which we can characterize n-grams of terms.

1. Number of terms: the number of terms in n-gram

2. Order: the order of terms is free or not

3. Skip: the maximum number of terms skipped within n-gram

Different choices of the factors lead to different types of term
dependencies, as shown in Figure 4.1. For example, bigram means two
consecutive words without skipping a word between them.

4.2. Methods of Matching with Term Dependency 47

For example, when the query is “hot dog recipe”, the bigrams of
the query become “# hot”, “hot dog”, “dog recipe”, where # denotes
the start symbol. Bigrams in the document can be defined similarly.
Matching between the n-grams in the query and document can be
conducted, and relevance between the query and document can be
calculated.

There are two approaches to using term dependencies. One
approach is to combine all the matching scores of n-grams in a single
model. The other approach is to take the matching scores of n-grams as
features in the ranking model and employ learning to rank techniques
to train the ranking model. The MRF model and extended IR model
belong to the first approach.

4.2 Methods of Matching with Term Dependency

4.2.1 MRF Model

The MRF models can be categorized into two groups based on
two types of dependency: explicit term dependency and latent term
dependency. MRF models of the former group directly leverage the
dependencies of terms in the query and document in matching. MRF
models of the latter group make use of the dependencies of terms not
only in the query and document, but also in other resources such as
expanded query and Wikipedia.

MRF is a joint probability distribution represented by an undirected
graph in which a node denotes a random variable and an edge denotes
probabilistic dependency. Figure 4.2 shows an MRF with five nodes
and five edges.

The joint probability of MRF can be factorized into the product of
potential functions defined on the cliques of the graph.

P (x1, · · · , xN) = 1
Z

∏
c∈clique(G)

ψ(c),

where c denotes a clique of graph, ψ denotes a potential function defined
on a clique, and Z denotes the normalization function. A clique is a
maximal complete subgraph.

48 Matching with Term Dependency Model

A

D

C

B

E

Figure 4.2: Example of Markov random fields.

Metzler and Croft [136] propose an MRF model for combining
matching scores (relevance scores) of dependent terms. In MRF, the
document is represented as a node and each term in the query is also
represented as a node. The document node is connected to all the query
term nodes, while the edges represent the matching relations between
the query terms and the document. Dependent terms are also connected
with each other, while the edges represent the dependencies between
the query terms. The term dependencies are determined in advance,
on the basis of certain assumptions such as bigram assumption and
name-entity assumption.

Figure 4.3 shows three types of dependency. The left figure shows
full term independency which means that the query terms are mutually
independent given the document, i.e., P (qi, qj |d) = P (qi|d)P (qj |d).
Conventional models such as VSM, BM25, and LM4IR make the
assumption. The middle figure shows sequential term dependency
which means the adjacent query terms are mutually dependent, i.e.,
P (q1, · · · , qn|d) =

∏n
i=1 P (qi|qi−1, d). The right figure shows full term

dependency which means all query terms are dependent with each
other.

In MRF, the joint probability of query q and document d can be
formally represented as

P (q, d) = 1
Z

∏
c∈clique(G)

exp(λcf(c)),

4.2. Methods of Matching with Term Dependency 49

d

q1 q2 q3

d

q1 q2 q3

d

q1 q2 q3

Figure 4.3: Three types of dependency.

where c denotes a clique, f(c) denotes a feature function, and λc denotes
a weight. We consider using the following matching function, which is
rank equivalent to the joint probability function

F (q, d) =
∑

c∈clique(G)
λcf(c). (4.1)

Here, rank equivalence means that the ranking lists created based on
the scores from the two functions are exactly the same.

In [136], three types of feature functions are defined to capture
the three types of term dependency. The first type of feature function
corresponds to full term independency, defined as

f1(qi, d) = log
[
(1 − α) tf(qi, d)

|d|
+ α

cf(qi)
|C|

]
,

where α is a smoothing factor, tf(qi, d) is the frequency of qi in d,
cf(qi) is the frequency of qi in the whole collection C, and | · | is the
length of document or collection. The second type of feature function
corresponds to sequential term dependency, defined as

f2(qi, · · ·, qi+k, d)=log
[
(1− α) tf(qi, · · · , qi+k, d)

|d|
+ α

cf(qi, · · · , qi+k)
|C|

]
,

where tf(qi, · · · , qi+k, d) denotes the number of times the ordered terms
(qi, · · · , qi+k) occur in document d, cf(qi, · · · , qi+k) denotes the number
of times the ordered terms occur in the whole collection. The third type
of feature function corresponds to full term dependency, defined as

f3(qi, · · · , qj , d) = log
[
(1 − α) tf(qi, · · · , qj , d)

|d|
+ α

cf(qi, · · · , qj)
|C|

]
,

50 Matching with Term Dependency Model

where tf(qi, · · · , qj , d) denotes the number of times the unordered terms
(qi, · · · , qj) appear within a window of N terms in document d, and
cf(qi, · · · , qj) denotes the number of times the ordered terms appear
in the whole collection.

Metzler and Croft also propose a heuristic method to tune the
parameters of the model (4.1) by directly maximizing the mean average
precision (MAP) of the training data.

One extension to the basic MRF model is to include query
expansion, called latent concept expansion [137]. In the model, the
term nodes represent not only terms in the original query, but also
terms from query expansion. In the original MRF model, all terms
have an equal weight. Bendersky et al. [17] propose assigning different
weights to different terms. The parameters in the weighted dependence
model is then trained using learning to rank techniques. Lang et
al. [108] identify hierarchical structures of documents and incorporate
the hierarchical structures into term dependencies. Lease [110] proposes
an improved MRF model for supporting verbose queries. In [15],
Bendersky and Croft suggest using a hypergraph to represent higher
order dependencies, i.e., dependencies between query concepts rather
than query terms. See also [162, 132].

MRF models need to use the statistics of dependent terms. Thus,
substantial time or space overhead will occur, when the conventional
inverted index is used. Huston et al. [91] have developed a new type
of index structure for efficient calculation of term dependency models.
The key ingredient of the index is to exploit data stream sketching
techniques to estimate n-gram statistics, which can minimize space
usage and retain high accuracy of estimation.

4.2.2 Extended IR Model

There is a heuristic way of defining term dependency models, by
extending BM25 and LM4IR defined on terms (unigrams) to models
based on n-grams. Xu et al. [193] have investigated the approach and
refer to the extended models as asymmetric kernels. For example, the

4.2. Methods of Matching with Term Dependency 51

BM25 kernel is defined as follows.

BM25-Kernel(q, d) =
∑

t

BM25-Kernelt(q, d),

where BM25-Kernelt(q, d) denotes the BM25 kernel of type t.

BM25-Kernelt(q, d) =
∑

x

IDFt(x) × (k3 + 1) × ft(x, q)
k3 + ft(x, q)

× (k1 + 1) × ft(x, d)
k1
(
1 − b+ b ft(d)

avgft

)
+ ft(x, d)

,

where x denotes an n-gram of type t and t can be bigram, trigram, etc.
Although it is simple, the approach works quite well. The extended IR
models can always beat their counterparts, i.e., the basic IR models.

Gao et al. [70] propose incorporating dependency structure into
LM4IR, called dependency language model. It is assumed that term
dependencies in a query are represented by a linkage l: an acyclic,
planar, and undirected graph where a node denotes a query term
and an edge denotes the dependency between query terms. Query q

is generated from document d through linkage l in two steps.

1. Linkage l is first generated according to conditional probability
distribution P (l|d).

2. Query q is then generated according to conditional probability
distribution P (q|l, d).

The conditional probability P (q|d) is calculated over all possible
linkages

P (q|d) =
∑

l

P (q, l|d) =
∑

l

P (l|d)P (q|l, d).

The authors exploit a heuristic method to estimate the parameters of
the model.

Park et al. [145] have developed a term dependency model based on
the quasi-synchronous stochastic process developed in natural language
processing. A synchronous model generates the parsing tree of a target
sentence by recursively matching the child nodes of a parent node of
the parse tree of a source sentence. Four types of relations in a parse

52 Matching with Term Dependency Model

tree are considered, such as, parent-child and ancestor-descendent. The
model also adopts the framework of LM4IR and defines the conditional
probability of generating a query from a document as the conditional
probability of the parse tree of query Tq given the parse tree of
document Td through alignment A:

P (q|d) ≈ P (Tq, A|Td) = P (A|Td)P (Tq|A, Td).

Here alignment A denotes the set of possible matches between
fragments of the syntactic trees of query and document. The authors
also propose a method of estimating the parameters of the model.

4.2.3 Features of Learning to Rank

One can also define n-gram based features and proximity features,
incorporate them into the ranking model, and employ learning to rank
techniques to automatically train the weights of the features.

Tao and Zhai [170] have studied the effectiveness of a number of
proximity features in relevance ranking. The proximity features include
span, min coverage, minimum pair distance, average pair distance, and
maximum pair distance, which measure how the n-grams in query
match the document. For example, span is defined as the length of
the shortest segment that covers all query term occurrences in the
document. See also [166].

Svore et al. [167] have conducted comprehensive experiments to
test the effectiveness of proximity features in the learning to rank
framework. They have found that span-based features are particularly
powerful for enhancing the performance of relevance ranking for
different types of queries (long vs. short, head vs. tail).

Wang et al. [175] propose extracting key n-grams from web
pages and making use of the extracted key n-grams to enrich the
representations of the web pages. Specifically, ‘search-focused’ key
n-grams are extracted, in the sense that they can compose ‘good
queries’ for searching the pages. The extracted key n-grams are then
used to define features in the learning to rank model, such as n-gram
BM25. The key n-grams can capture the dependency information in

4.3. Experimental Results 53

Table 4.1: Performances of term dependency models in search.

fully independent sequentially dependent fully dependent
MAP P@10 MAP P@10 MAP P@10

AP 0.1775 0.2912 0.1867* 0.2980 0.1866* 0.3068*
WSJ 0.2592 0.4327 0.2776* 0.4427 0.2738* 0.4413
WT10g 0.2032 0.2866 0.2167* 0.2948 0.2231* 0.3031
GOV2 0.2502 0.4837 0.2832* 0.5714* 0.2844* 0.5837*

queries and web pages well and thus help significantly improve relevance
ranking, particularly for tail pages.

4.3 Experimental Results

We present the experimental results on using term dependency models
for improving search relevance, reported in [136]. In the experiment,
TREC collections (WSJ, AP, WT10g, and GOV2) and topic titles are
used as documents and queries respectively. The evaluation measures
are MAP and Precision at 10 (P@10). The results in Table 4.1 indicate
that the sequentially dependent model and fully dependent model
can outperform the baseline of fully independent model in terms of
all measures. Some of the improvements are statistically significant,
marked with ‘*’.

5
Matching with Translation Model

Statistical machine translation (SMT) refers to statistical learning
techniques for translating natural language texts from one language
to another language. Queries can be viewed as texts in one language
and documents as texts in another language, and SMT technologies
can be leveraged to deal with query document mismatch in search.
More specifically, “ny” can match “New York” with a high degree of
confidence, because the probability of translating the former to the
latter is high. Matching by translation model in principle needs to
learn the model from queries and associated documents, which can be
obtained from click-through log, and thus belongs to the supervised
learning approach to matching. This section first gives an introduction
to SMT. It then describes how to perform matching using translation
models in search. It also shows some experimental results obtained in
previous work.

5.1 Statistical Machine Translation

SMT can be depicted with the source channel model. Given a sentence
in the source language (e.g., in Chinese) C = c1c2 · · · cJ , we want to

54

5.1. Statistical Machine Translation 55

find the best translation, the most suitable translated sentence in the
target language (e.g., in English), E = e1e2 · · · eI ,

E∗ = arg max
E

P (E|C),

where arg max stands for an algorithm to find the target sentence with
the highest probability among all possible ones. Applying Bayes’ rule
and discarding the constant denominator, we obtain

E∗ = arg max
E

P (C|E)P (E)
P (C)

= arg max
E

P (C|E)P (E),

where P (E) denotes the language model for calculating the generation
probability of E and P (C|E) denotes the translation model for
calculating the transformation probability from E to C.

Given an input sentence unseen in training data, an SMT system
performs translation as follows. First, the input sentence is broken into
small units; then, each unit is translated from source language to target
language; finally the translated units are combined to form an output
sentence. Different translation models differ in how the translation units
are defined, translated, and combined. Existing translation models fall
into three categories: word-based model [34], phrase-based model [142,
100, 46], and syntax-based model [198]. Word-based models are more
frequently used for addressing the term mismatch problem in search.

Word-based models make use of words as basic translation units.
In [34], a series of word-based translation models with increasing
complexities have been proposed, called the IBM Models. IBM Model
One is one of the most widely used word-based models. The target
sentence E = e1e2 · · · eI is assumed to be generated from the source
sentence C = c1c2 · · · cJ by the translation model in the following way.

1. Choose the length of target sentence I, according to distribution
P (I|C)

2. For each position i(i = 1, 2, · · · , I)

(a) Choose position j in the source sentence C according to
P (j|C)

56 Matching with Translation Model

(b) Generate target word ei according to P (ei|cj)

Therefore, the probability of target sentence E given source
sentence C is calculated as follows.

P (E|C) =
∑

a

P (E, a|C)

=
J∑

a(1)=0
· · ·

J∑
a(I)=0

P (E, a|C)

=
J∑

a(1)=0
· · ·

J∑
a(I)=0

P (I|C)
(J + 1)I

I∏
i=1

P (ei|ca(i))

= P (I|C)
(J + 1)I

J∑
a(1)=0

· · ·
J∑

a(I)=0

I∏
i=1

P (ei|ca(i))

= ϵ

(J + 1)I

I∏
i=1

J∑
j=0

P (ei|cj),

where a is an alignment between words in the source and target
sentences and p(ei|cj) is the probability of translating word cj to word
ei. In the model it is assumed that the choice of length I is independent
of C and P (I|C) = ϵ, a small constant. It is further assumed that all
positions in the source sentence, including position zero for the null
word, are equally likely to be chosen, yielding P (j|C) = 1

J+1 . Refer to
Section 4.2.3 of [99] for the derivation of the last equation.

Figure 5.1 shows an example of translating a Chinese sentence to an
English sentence. In the figure only the best alignment is shown. Given
a training corpus {(C(k), E(k))}N

k=1, the parameters of the translation
model can be estimated with the expectation maximization (EM)
algorithm. More detailed explanations on SMT can be found in [99].

5.2 Search as Translation

5.2.1 Basic Model

Berger and Lafferty [22] propose formulating search as SMT problem, in
which query q is translated into document d with the largest conditional

5.2. Search as Translation 57

C: <NULL> 这 房子 很 小

E: the house is very small

P(the|这)

Figure 5.1: Translating Chinese sentence into English. Only one alignment is
shown.

probability P (d|q). One advantage of the approach is that it can deal
with the query document mismatch problem. The model is written as

P (d|q) ∝ P (q|d)P (d),

where P (q|d) denotes a translation model translating d to q and
P (d) denotes a language model giving rise to d. Suppose that a
query contains term “airplane” while the document only contains term
“aircraft”. There exists mismatch between the query and document.
With the translation approach, however, it is very likely that the
document term “aircraft” can be translated to the query term
“airplane” with high probability and the term mismatch problem can
be effectively solved. The translation model P (q|d) can be estimated
with queries and their associated documents (e.g., titles of documents)
in click-through log, and the language model P (d) can be estimated
with documents 1.

Several issues need to be addressed, when applying SMT to search,
including self-translation and training data.

5.2.2 Self-translation

One important difference between conventional machine translation
and machine translation for search is that both queries (target
language) and documents (source language) are in the same language.
The probability of translating a word to itself should be quite high
P (w|w) > 0, which corresponds to term matching in search. How to
accurately calculate self-translation probabilities becomes an important

1The language model can also be learned with a different scheme, for example,
BM25, as in cross-language information retrieval (CLIR) [177].

58 Matching with Translation Model

issue, therefore. If the self-translation probabilities are too large, then
it will make the other translation probabilities small and decrease the
effect of using translation. On the other hand, if the self-translation
probabilities are too small, then it will make direct matching less
effective and hurt the performance of matching.

A number of methods have been proposed to help estimate self-
translation probabilities. All these methods assume that self-translation
probabilities estimated directly from data are not optimal for the search
task, and the authors have demonstrated that significant improvements
can be achieved by adjusting the probabilities [68, 98]. One popular
method is to linearly interpolate the probability of generating a query
word from the document with the probability of translating the query
word from the document, as explained below.

5.2.3 Training Data

The performance of statistical translation heavily relies on the data
used for training. One of the key challenges in employing translation
model in search is collection of high quality data. Ideally we would
expect to use relevant query-document pairs (judged by human
annotators) as training data. However, it is not practical to create
sufficient amount of such data.

A number of methods have been developed for creating relevant
query-document pairs. In [22], as the first study of using transla-
tion model for search, synthetic queries are generated to learn the
translation probabilities. It is also observed that title-body pairs
extracted from web pages can be taken as approximation of relevant
query-document pairs. A large number of title-body pairs are utilized
for estimating translation probabilities in the work by Jin et al. [95],
referred to as title language model. In [98] Karimzadehgan and Zhai
estimate translation probabilities in an unsupervised manner, based on
normalized mutual information between words.

Click-through data in search naturally provides relevant query-
document pairs. Figure 5.2 gives an example of URL (as well as its
title) and its associated queries extracted from click-through data. Gao

5.3. Methods of Matching with Translation 59

Query URL

msn web

webmensseger

msn online

Windows web messanger

talking to friends on msn

http://webmessenger.msn.com

(title: “msn web messenger”)

Figure 5.2: An example of URL and its associated queries extracted from click-
through data.

et al. show that translation models learned from click-through log data
can improve relevance ranking of web search [68].

Web pages have a number of fields (e.g., title, anchor, body,
and query-click) and large differences exist among these fields in
their nature. Analysis has been conducted to investigate which fields
are suitable for being used as training data of translation model.
Studies have demonstrated that translation models trained with
title and query-click fields are very effective for improving relevance
performance [68]. Click through data is not always available, however.
Our experiences have shown that the use of title and anchor fields as
training data is also an effective solution 2.

5.3 Methods of Matching with Translation

Berger and Lafferty [22] exploit word-based translation model for
addressing the term mismatch problem. Given query q and document d,
the word-based translation model calculates the translation probability

2Our unpublished work.

60 Matching with Translation Model

P (q|d) in the following way.

P (q|d) = P (m|d)
(n+ 1)m

m∏
j=1

n∑
i=0

P (qj |di)

= P (m|d)
m∏

j=1

n∑
i=0

1
n+ 1

P (qj |di)

= P (m|d)
m∏

j=1

(
n

n+ 1

n∑
i=1

1
n
P (qj |di) + 1

n+ 1
P (qj |d0)

)

= P (m|d)
m∏

j=1

(
n

n+ 1
P (qj |d) + 1

n+ 1
P (qj |⟨null⟩)

)
,

where di is the i-th word of document d, m is the length of query
q, n is the length of document d, P (qj |d) =

∑n
i=1

1
nP (qj |di) is the

probability of word qj being translated from document d, ⟨null⟩ =
d0 is the null word introduced in position zero of the document, and
P (qj |⟨null⟩) is the probability of word qj being translated from the null
word. P (qj |⟨null⟩) plays the role of smoothing to avoid zero probability.

P (qj |d) can be further written as

P (qj |d) =
∑
w∈d

P (qj |w)Q(w|d), (5.1)

where Q(w|d) is the un-smoothed probability of w being generated
from document d by the document language model and P (qj |w) is the
probability of word w being translated to word qj by the translation
model.

Gao et al. [68] show that the model still does not perform well in
practical experiments due to low self-translation probabilities. Linear
interpolation with language model is effective for coping with the
problem. More specifically, the probability P (qj |d) in Equation (5.1)
is adjusted as P ′(qj |d)

P ′(qj |d) = βQ(qj |d) + (1 − β)
∑
w∈d

P (qj |w)Q(w|d),

where Q(qj |d) is the un-smoothed probability by the document
language model and β is the interpolation parameter.

5.4. Experimental Results 61

Table 5.1: Performances of word-based translation models in search.

NDCG@1 NDCG@3 NDCG@10
BM25 (baseline) 0.3181 0.3413 0.4045
WTM (without self-translation) 0.3210 0.3512 0.4211
WTM (with self-translation) 0.3310 0.3566 0.4232

Gao et al. [68] also propose using phrase-based translation model.
The model represents the translation probability of a phrase in
the query given a phrase in the title of a document. Phrase-based
translation model is more powerful than word-based model because
dependencies between words are considered in the model.

Statistical translation models have also been applied to query
expansion. For example, Riezler et al. [150] suggest utilizing word-based
translation model for query expansion. The model is trained with
click-through data consisting of queries and snippets of clicked web
pages. Gao and Nie [69] generalize word-based translation model to
concept-based model and employ the model in query expansion. A
concept can be an individual term, a contiguous phrase, or a pair
of terms in proximity. The model is trained with click-through data
containing queries and the titles of clicked web pages.

Statistical translation models have been applied to other tasks
as well. Hillard et al. [87] addresses the term mismatch problem in
sponsored search by using word-based translation model. Berger et
al. [21] apply machine translation model to the task of finding answers
to questions in question answering.

5.4 Experimental Results

We introduce the results on using translation models for improving
search relevance, reported in [68]. The dataset contains 12,071 queries.
Each query-document pair is assigned a relevance label at five
level scale. Only the title fields of documents are used for training
and evaluation. The evaluation measures are normalized discounted
cumulative gain (NDCG) at the positions of 1, 3, and 10. The results

62 Matching with Translation Model

in Table 5.1 indicate that the word-based translation model (WTM)
can outperform the baseline method of BM25 in terms of all measures.
The performance of word-based translation model can be further
improved by adding self-translation. All the improvements of WTM
(with self-translation) and WTM (without self-translation) over BM25
are significant. WTM (with self-translation) significantly outperforms
WTM (without self-translation) in terms of NDCG@1 and NDCG@3.

6
Matching with Topic Model

Query and document that are concerned with the same topics are
likely to be relevant. For example, query “apple computer” shares
the same topics with a document about “iPhone”, but not with
a document about “fruit”. Therefore, it is likely that the query is
relevant to the former document, not the latter document. If we can
identify the topics of query and document and check whether they
match each other, then we will be able to make reasonable judgment
on the relevance between them. In this section, we first introduce
topic modeling techniques, including probabilistic and non-probabilistic
approaches. The models of probabilistic latent semantic indexing
(PLSI), latent Dirichlet allocation (LDA), latent semantic indexing
(LSI), non-negative matrix factorization (NMF), and regularized latent
semantic indexing (RLSI) are explained in detail. We next describe
how to use topic modeling techniques to deal with query document
mismatch in search, including topic matching and smoothing. Finally,
we introduce some experimental results reported in previous work.

Matching with topic model belongs to the unsupervised learning
approach in the sense that the topic model is learned only from the

63

64 Matching with Topic Model

word 1

word 2

word 3

word M

…

topic 1

topic 2

topic K

…

doc 1

doc 2

doc 3

doc N

…

Figure 6.1: Topic model reveals relations between words and documents in a large
document collection.

document collection. Query is regarded as a pseudo-document and
query-document matching is carried out on topic aspect.

6.1 Topic Models

Given a collection of documents, topic modeling techniques aim to
discover the topics in the collection as well as the topic representations
of the documents. Basically, a topic model represents the relationship
between the words and documents on the basis of latent topics, as
shown in Figure 6.1. A topic is defined as a probability distribution
over terms or a cluster of weighted terms. A document is defined as
a set of words generated from a mixture of latent topics. Intuitively,
words associated with a topic would more frequently appear together
in documents, and thus they would be clustered into the topic. A
document would talk more about certain topics, and thus the document
would be mainly represented by the topics.

Various topic modeling methods, such as PLSI [88], LDA [26],
LSI [58], NMF [111], and RLSI [180] have been proposed and
successfully applied to different applications. In general, there exist
two approaches to topic modeling: probabilistic approach and non-
probabilistic approach.

6.1. Topic Models 65

6.1.1 Probabilistic Topic Models

Probabilistic topic models are usually generative models that can
give rise to the documents in the collection. Suppose that D =
{d1, d2, · · · , dN } is a set of documents with size N and V is a set
of terms or words with size M , i.e., the vocabulary. A document
d ∈ D consists of |d| words from the vocabulary, denoted as d =
(w1, w2, · · · , w|d|). Suppose that there are K topics in the document
collection. In a probabilistic topic model, each topic is defined as a
probabilistic distribution over terms in the vocabulary. Each document
in the collection is defined as a probabilistic distribution over the topics.

PLSI [88] is one of the widely used probabilistic topic models. One
can generate the documents in the collection in the following way.

1. select a document d from the collection with probability P (d)

2. for each document d in the collection

(a) select a latent topic z with probability P (z|d)

(b) generate a word w with probability P (w|z)

Here z ∈ {z1, · · · , zK} is a latent variable representing a topic.
Figure 6.2 shows the graphical representation of the PLSI model.

The parameters of P (d), P (w|z), and P (z|d) can be estimated by
maximizing the log-likelihood function with the expectation maximiza-
tion (EM) algorithm.

L =
N∑

n=1

M∑
m=1

f(dn, wm) logP (dn, wm),

where f(dn, wm) is the frequency of wm in dn. The joint probability of
document-word pair P (d,w) is calculated as

P (d,w) = P (d)P (w|d) = P (d)
∑

z

P (w|z)P (z|d).

LDA [26] is another well-known probabilistic model. The main
characteristics of it is that the topic distribution is assumed to have
a Dirichlet prior, which will yield smoother estimates of probabilities.
The generation procedure of LDA is as follows.

66 Matching with Topic Model

N

|d|
d z w

Figure 6.2: Graphical representation of probabilistic latent semantic indexing.

N

|d|
θ z wα βϕ

K

Figure 6.3: Graphical representation of latent Dirichlet allocation.

1. for each topic k = 1, · · · ,K

(a) draw word distribution ϕk according to ϕk|β ∼ Dir(β)

2. for each document d in the collection

(a) draw topic distribution θ according to θ|α ∼ Dir(α)

(b) for each word w in the document d

i. draw a topic z according to z|θ ∼ Mult(θ)
ii. draw a word w according to w|z, ϕ1:K ∼ Mult(ϕz)

The graphical representation of LDA is shown in Figure 6.3. The total
probability of the model is

P (w, z, ϕ, θ;α, β) =
K∏

k=1
P (ϕk;β)

N∏
n=1

P (θn;α)
∏

w∈dn

P (z|θn)P (w|ϕz).

Gibbs sampling and variational EM can be employed for the parameter
estimation and inference in LDA.

Probabilistic topic models have been employed in a number of
text processing tasks. For example, Brants et al. [28] apply PLSI
to document segmentation, i.e., identifying boundaries between parts

6.1. Topic Models 67

of document that have different topic distributions. Haghighi and
Vanderwende [82] apply topic modeling techniques to multi-document
summarization in which the topic model is utilized for representing the
content of a set of documents. Krestel et al. [105] try to annotate tags
to images using LDA. Specifically, they first identify topics of images
from their associated tags with LDA and then assign the major tags of
the topics to new images.

6.1.2 Non-probabilistic Topic Models

Non-probabilistic topic models are usually obtained by matrix
factorization. Suppose that D is a set of documents with size N and V
is a set of terms or words, i.e., a vocabulary with size M . A document
is represented as an M -dimensional vector d with the m-th entry being
the weight of the m-th term (e.g., tf-idf). The document collection D
is represented as an M × N term-document matrix D = [d1, · · · , dN],
where the m-th row corresponds to the m-th term and the n-th column
corresponds to the n-th document. A topic is also represented as an
M -dimensional vector u, where them-th entry denotes the weight of the
m-th term in the topic. Terms having larger values are more indicative
of the topic. Suppose that there are K topics. The K topics amount to
an M × K term-topic matrix U = [u1, · · · , uK], where the m-th row
corresponds to the m-th term and the k-th column corresponds to the
k-th topic.

Topic modeling here means discovering the latent topics in the
document collection as well as representing the documents as mixtures
of topics. More specifically, document dn is succinctly represented
as dn ≈

∑K
k=1 vknuk = Uvn, where vkn denotes the weight of the

k-th topic uk in the document. The larger value weight vkn has, the
more important role topic uk plays in the document. The document
representations amount to topic-document matrix V = [v1, · · · , vN],
where column vn stands for the representation of document dn in the
latent topic space. That is to say, term-document matrix D is factorized
by term-topic matrix U and topic-document matrix V:

D ≈ UVT .

68 Matching with Topic Model

D U Ʃ
VT

≈≈≈≈

DDDDM×N UUUUM×R Ʃ R×R VT
R×N

K K

K

Figure 6.4: In latent semantic indexing, matrices U and V are orthonormal.

Different topic modeling techniques choose different strategies to
conduct the matrix factorization. LSI [58] assumes that the K columns
of matrix U as well as the K columns of matrix V are orthonormal.
LSI amounts to minimizing the following objective function with the
orthonormality constraints.

min
U,V

∥D − UΣVT ∥F

s.t. UT × U = I,V × VT = I, and Σ is diagonal.

Singular value decomposition (SVD) can be employed to solve the
optimization problem, as shown in Figure 6.4.

NMF [111] is also a popular technique for topic modeling. NMF
assumes that all the elements in term-document matrix D as well as
the elements in term-topic matrix U and topic-document matrix V are
nonnegative, as shown in Figure 6.5. Thus, the objective function of
NMF is as follows.

min
U,V

∥D − UVT ∥F

s.t. uik ≥ 0, vjk ≥ 0.

The optimization can be solved by an iterative algorithm [111].
Another natural assumption in topic modeling is that the topics

are sparse. RLSI [180, 179] exactly takes the assumption, as shown in
Figure 6.5. Specifically, the objective function of RLSI is defined as

min
U,V

∥D − UVT ∥F + λ1

K∑
k=1

∥uk∥1 + λ2

N∑
n=1

∥vn∥2
2,

6.1. Topic Models 69

D
U

VT

≈≈≈≈

DDDDM×N UUUUM×K VT K×N

Figure 6.5: In non-negative matrix factorization, all elements in D, U, and V are
nonnegative. In regularized latent semantic indexing, matrix U is assumed to be
sparse.

where the ℓ1 norm on U makes the topics sparse and the ℓ2 norm on V
makes the topic representations of documents smooth. The problem can
also be solved by an iterative algorithm [180, 179]. One advantage of
RLSI is that the optimization can be easily decomposed and performed
in parallel, and thus is more scalable and efficient, when compared to
LSI.

Non-probabilistic topic models have also been employed in a
number of text processing tasks. For example, Xu et al. [195] propose
conducting document clustering using NMF. Their method takes a
topic discovered by NMF as a cluster, and assigns a document to
the cluster (topic) for which the document has the largest projection
value. Choi et al. [47] apply LSI to text segmentation. In their method
they leverage LSI to estimate the inter-sentence similarity. Landauer et
al. [107] propose a method of visualizing text information on the basis
of LSI. They represent a document with topics obtained from LSI in a
high dimensional dynamic viewer.

6.1.3 Probabilistic Interpretation

LSI, NMF, and RLSI can be interpreted within a probabilistic
framework, as shown in Figure 6.6. In the framework, the columns
of term-topic matrix uk are assumed to be independent from each
other and the columns of topic-document matrix vn are regarded
as latent variables. Each document dn is assumed to be generated
according to a Gaussian distribution conditioned on U and vn, that

70 Matching with Topic Model

N

v
n

d
n

u
k

K

Figure 6.6: Graphical representation of non-probabilistic topic models.

Table 6.1: Prior/constraints in different non-probabilistic models.

method prior/constraint on uk prior/constraints on vn

LSI orthonormality orthonormality
NMF umk ≥ 0 vkn ≥ 0
RLSI P (uk) ∝ exp(−λ1∥uk∥1) P (vn) ∝ exp(−λ2∥vn∥2

2)

is, P (dn|U, vn) ∝ exp(−∥dn − Uvn∥2
2). Furthermore, all pairs (dn, vn)

are conditionally independent given U.
Different techniques in fact use different priors or constraints on

uk’s and vn’s. Table 6.1 lists the priors or constraints used in LSI,
NMF, and RLSI, respectively. It can be shown that LSI, NMF, and
RLSI can be obtained with maximum a posteriori (MAP) estimation
in the framework.

6.2 Methods of Matching with Topic Model

Topic models can help deal with term mismatch in search. If the
query contains the term “college” and the document contains the
term “school”, then there is a mismatch between the two terms, and
the document may not be regarded relevant to the query. It is very
likely that the two terms are included in the same topic, however, and
the query and document can match in the topic space, as shown in
Table 6.2. Previous work shows that the uses of topic models can indeed
improve search relevance [58, 184, 200, 180, 179].

6.2.1 Linear Combination with Term Model

In practice, it is beneficial to combine topic matching scores with
term matching scores to leverage the broadness of topic matching and

6.2. Methods of Matching with Topic Model 71

Table 6.2: Example topics (only top 5 words are shown for each topic).

topic 1 topic 2 topic 3 topic 4 topic 5 topic 6
OPEC Africa contra school Noriega firefight
oil South Sandinista student Panama ACR
cent African rebel teacher Panamanian forest
barrel Angola Nicaragua education Delval park
price apartheid Nicaraguan college canal blaze

specificity of term matching. A simple and effective approach is to use
a linear combination of term matching score and topic matching score,
as proposed in [88]. The final relevance score s(q, d) is calculated as
follows.

s(q, d) = αstopic(q, d) + (1 − α)sterm(q, d),

where α ∈ [0, 1] is a coefficient, sterm(q, d) is the term matching score,
and stopic(q, d) is the topic matching score. Term matching scores can
be calculated with term-based models such as VSM and BM25. There
are several ways to calculate topic matching scores. We classify existing
methods into two categories: topic matching and smoothing.

6.2.2 Topic Matching

The topic matching score stopic(q, d) can be calculated in the following
way. Given a query and a document, we first represent them in the
topic space with a topic model. For example, in RLSI, query q can be
represented in the topic space as

vq = arg min
v

∥q − Uv∥2
2 + λ2∥v∥2

2,

where q is the representation of the query in the word space (e.g.,
tf-idf). The solution to the optimization is

vq =
(
UT U + λ2I

)−1
q.

Note that
(
UT U + λ2I

)−1
can be calculated in advance off-line and

thus the online inference can be made very fast.

72 Matching with Topic Model

q

d

vq vd

term space

topic space

Figure 6.7: Topic matching.

Similarly, document d can be represented in the topic space as

vd =
(
UT U + λ2I

)−1
d.

The topic matching score between the query and the document in
the topic space may be calculated as

stopic(q, d) = ⟨vq, vd⟩
∥vq∥2∥vd∥2

.

Figure 6.7 illustrates mapping a query and a document into the
topic space for calculating the matching score.

In LDA, given query q, its topic representation is inferred as vq,
and given document d, its topic representation is inferred as vd. Here
both vq and vd are probabilistic distributions over topics. The topic
matching score between the query and the document may be calculated
as, for example, one minus the symmetric Kullback-Leibler divergence
(abbreviated as KL divergence) between their topic distributions [88].

stopic(q, d) = 1 − 1
2

(KL(vq∥vd) + KL(vd∥vq))

= 1 − 1
2

K∑
k=1

(
(vk

q − vk
d) log

vk
q

vk
d

)
,

where vk
q and vk

d are the k-th elements of vq and vd, respectively.

6.2. Methods of Matching with Topic Model 73

6.2.3 Smoothing

Probabilistic topic models can be utilized to smooth document
language models (or query language models). A document language
model can be used to represent the matching score between query and
document

P (q|d) =
∏
w∈q

P (w|d),

where P (w|d) is the probability of word w given document d.
Smoothing is necessary for LM4IR, because queries and documents are
sparse, and thus many probabilities will be zero if maximum likelihood
estimation (MLE) is employed.

Probability PLM (w|d) (the probability estimated with the language
model) can be smoothed with a topic model [106, 59, 184, 200].

P (w|d) = αPLM (w|d) + (1 − α)PT M (w|d),

where α ∈ [0, 1] is a coefficient and PT M (w|d) is the probability
estimated with the topic model. PT M (w|z) can be defined as

PT M (w|d) =
∑

z

P (w|z)P (z|d),

where z denotes a topic, P (w|z) is the probability of word w in topic
z, and P (z|d) is the probability of topic z in document d. The final
matching score between query q and document d becomes

P (q|d) =
∏
w∈q

P (w|d)

=
∏
w∈q

(
αPLM (w|d) + (1 − α)

(
K∑

z=1
P (w|z)P (z|d)

))
.

The technique can also be applied to a query model [200]. Given
query q, the query language model is smoothed with topic model

PT M (w|q) =
∑

z

P (w|z)P (z|q),

where P (w|z) is the probability of word w in topic z and P (z|q) is
the probability of topic z in query q. The use of PT M (w|q) can be
interpreted as a type of query expansion.

74 Matching with Topic Model

Table 6.3: Performances of topic models in search.

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10
BM25 0.3918 0.4400 0.4268 0.4298 0.4257
BM25+LSI 0.3952 0.4720 0.4410 0.4360 0.4365
BM25+NMF 0.3985* 0.4600 0.4445* 0.4408* 0.4347*
BM25+PLSI 0.3928 0.4680 0.4383 0.4351 0.4291
BM25+LDA 0.3952 0.4760* 0.4478* 0.4332 0.4292
BM25+RLSI 0.3998* 0.4800* 0.4461* 0.4498* 0.4420*

6.3 Experimental Results

We introduce some experimental results on using topic models for
improving search relevance, reported in [181]. The experiment is
conducted on TREC AP data, consisting of Associated Press articles.
TREC topics 51∼300 are used as queries and relevance judgments are
given at two levels: relevant or irrelevant. The parameter K (number of
topics) is tuned on a validation set and the best performing parameter is
selected for each model. Mean average precision (MAP) and normalized
discounted cumulative gain (NDCG) at the positions of 1, 3, 5, and 10
are utilized as evaluation measures. Table 6.3 shows the performances
achieved by combining BM25 and different topic models. Asterisks
indicate significant improvements on the baseline of BM25 (t-test,
p < 0.05). The results show that all topic models can improve the
baseline. Among the topic models, RLSI, NMF, and LDA perform
slightly better than the others.

7
Matching with Latent Space Model

In this section, we first introduce a general framework for matching
between queries and documents in search. In the framework, queries in
the query space and documents in the document space are mapped into
a latent space. The matching function between query and document is
then defined as the inner product between the images of query and
document in the latent space. The framework is quite general and it
contains traditional IR models as special cases. When the latent space
has lower dimensionality than the original query space and document
space, it will become capable to cope with query document mismatch.
We next introduce five supervised learning methods for learning latent
space models, in which the training data is derived from click-through
data. The methods include partial least square (PLS), regularized
mapping to latent space (RMLS), supervised semantic indexing (SSI),
bilingual topic model (BLTM), and deep structured semantic model
(DSSM). We also give some experimental results reported in previous
works.

The major difference between the methods in Section 6 and
the methods in this section is that the former are unsupervised
learning algorithms and the latter are supervised learning algorithms.

75

76 Matching with Latent Space Model

Furthermore, the dimensions of the latent space in Section 6 usually
represent topics, while the dimensions of the latent space in this section
do not necessarily represent topics.

7.1 General Framework of Matching

We consider a general framework for matching queries and documents
in search.

7.1.1 Latent Space

Suppose that there are two heterogenous spaces, query space and
document space. The query space contains queries as objects and the
document space contains documents as objects.1 The dimensions of
the query space and document space usually correspond to terms,
more generally, n-grams of terms, or even other types of features [187].
Similarity measures are defined in the query space and document space,
respectively. Without loss of generality, we assume that the measures
are inner product. Suppose that there is a new space referred to as
latent space. A similarity measure is also defined in the latent space,
for example, inner product. We map the queries in the query space and
documents in the document space into the latent space. We then utilize
the similarity function in the new space to represent the matching
degrees between queries and documents. In other words, matching
between query and document is conducted in the latent space after
mapping. Figure 7.1 illustrates the relations.

The latent space is specified by the two mapping functions. We can
consider different types of mapping functions such as linear and non-
linear mapping functions, as well as dimension-reduced and dimension-
preserving mapping functions. The uses of different types of mapping
functions lead to different types of matching models.

Next, we give a more formal definition of the framework. Here,
Q denotes the query space and D denotes the document space.

1Query space and document space can be defined as the same space. It is more
natural, however, to consider them as two different spaces, because queries and
documents differ in nature.

7.1. General Framework of Matching 77

q1

q
q2

d1

d2

q1
d2

qm

dn

d1

q2 Latent Space

qL
dL

qm
q2

dn

Query Space Document Space

Figure 7.1: Matching in latent space.

Furthermore, q and d are query and document in Q and D, respectively.
H denotes the latent space. The mapping function from the query space
to the latent space is represented as ϕ : Q 7→ H, where ϕ(q) stands for
the mapped vector of q in H. Similarly, the mapping function from the
document space to the latent space is represented as ϕ′ : D 7→ H, where
ϕ′(d) stands for the mapped vector of d in H. The matching function
between q and d is defined as the inner product between ϕ(q) and ϕ′(d)

k(q, d) = ⟨ϕ(q), ϕ′(d)⟩.

We refer to the matching function as latent space model in this survey.

7.1.2 Relation with Traditional IR Models

Traditionally, query document matching is represented in the IR models
such as VSM [155], BM25 [153], and LM4IR [204]. VSM is a non-
probabilistic model and BM25 and LM4IR are probabilistic models. All
the models can be interpreted within the above matching framework.

If the latent space has the same dimensionality as the query and
document spaces, and the two mappings are represented as diagonal
matrices, then we obtain the VSM, BM25, and LM4IR models.

78 Matching with Latent Space Model

The VSM model is the simplest matching model within the
framework. When the query space and document space are identical
term spaces, and the two mapping functions are represented as two
identity matrices, we obtain the VSM model

fVSM(q, d) = ⟨ϕVSM(q), ϕ′
VSM(d)⟩ = ⟨q, d⟩.

The BM25 model between query q and document d can be
interpreted as the following matching function [193].

fBM25(q, d) = ⟨ϕBM25(q), ϕ′
BM25(d)⟩,

where ϕBM25(q) and ϕ′
BM25(d) are two vectors in the latent space mapped

from q and d. Each dimension of the vector corresponds to term x.

ϕBM25(q)x = (k3 + 1) · f(x, q)
k3 + f(x, q)

and
ϕ′

BM25(d)x = IDF(x) · (k1 + 1) · f(x, d)
k1
(
1 − b+ b f(d)

avgf

)
+ f(x, d)

,

where k1, k3, and b are parameters, f(x, q) and f(x, d) are the
frequencies of term x in q and d, respectively, f(d) is the total number
of terms in document d, and avgf is the average number of terms
ft(d) per document. IDF(x) = log df−df(x)+0.5

df(x)+0.5 is the inverse document
frequency of term x, where df(x) is the number of documents in which
term x occurs and df is the total number of documents. BM25 thus is

fBM25(q, d) =
∑

x

IDF(x) × (k3 + 1) × f(x, q)
k3 + f(x, q)

× (k1 + 1) × f(x, d)
k1
(
1 − b+ b f(d)

avgf

)
+ f(x, d)

.

LM4IR can also be interpreted in a similar way [193]. The
traditional IR models are models representable by diagonal matrices,
which means that the mappings preserve the dimensions of the original
query and document spaces. As a result, terms can only match with
themselves and cannot match with other terms in the same sense or
topic. That is reason that the models suffer from term mismatch.

7.2. Latent Space Models 79

On the other hand, when the latent space has lower dimensionality
than the original query space and document space and each dimension
of the latent space represents a topic, the latent space model would
have the capability of dealing with term mismatch. The question is
how to learn the model (i.e., the two mapping functions).

7.2 Latent Space Models

We introduce five supervised learning methods for constructing latent
space models: partial least square (PLS), regularized mapping to latent
space (RMLS), supervised semantic indexing (SSI), bilingual topic
model (BLTM) and deep structured semantic model (DSSM). The first
four are linear models and the fifth is a non-linear model.

To learn a latent space model, we need training data indicating
the matching relations between queries and documents across the
two spaces. That is to say, this is a supervised learning problem.
Fortunately, click-through data is accumulated in web search, and
it can be naturally used as training data of the learning task,
because it exactly gives the matching information. The training data is
represented as (q1, d1, c1), (q2, d2, c2), · · · , (qN , dN , cN). Each instance is
a triple representing query, document, and click-number (or logarithm
of click-number).2.

With sufficient amount of training data and sophisticated machine
learning techniques, we can really learn latent space models that are
able to more accurately represent the matching relations between
queries and documents and to deal with the mismatch problem. The
dimensions of the latent space correspond to latent topics, if the
dimensions of the query and document spaces correspond to terms.
Intuitively, queries and documents strongly associated with a topic
should have higher weights on the topic, and therefore they tend to
match better in the latent space. The latent models are learned not
only based on the information from the original query and document

2Click data is usually noisy. We follow the common practice and assume that we
simply use the click numbers as training data (e.g., [71, 187, 90]) Certainly, how to
improve the quality of the training data is an important research topic.

80 Matching with Latent Space Model

spaces, but also based on the information from the click-through data,
and thus they can better represent the relevance relations in search.

The latent space models thus are learnable, more general, and more
robust models, when compared with the traditional IR models.

7.2.1 Partial Least Square

PLS stands for partial least square, which is a technique originally
proposed for regression in statistics. Another related technique is
CCA (canonical correspondence analysis). For an introduction to PLS,
see [154] and introduction to CCA, see [84].

PLS can be directly employed in learning of latent space model as
shown in [187]. In PLS, the learning task is formalized as learning of two
linear projection functions, i.e., two mapping functions which can be
represented as orthonormal matrices. The matching function becomes

f(q, d) = ⟨Lq · q, Ld · d⟩. (7.1)

The learning problem becomes an optimization problem as follows.

arg max
Lq ,Ld

=
∑

(qi,di)
cif(qi, di),

LqL
T
q = I, LdL

T
d = I

where (qi, di) is a pair of query and document, ci is the click number of
the pair, Lq and Ld are projection functions (orthonormal matrices).

This is a non-convex optimization problem. It can be shown,
however, that the global optimum exists and one can employ singular
value decomposition (SVD) to solve the problem [187, 188].

PLS can also be viewed as learning of matching model from a click-
through bipartite graph with feature vectors attached on the nodes or
from a click-through matrix with feature vectors associated with the
rows and columns.

The task can also be degenerated into learning of matching model
solely from a click-through graph or a click-through matrix. The
matching function can then be learned by directly applying SVD on
the matrix (this is similar to latent semantic indexing (LSI)).

7.2. Latent Space Models 81

7.2.2 Regularized Mapping to Latent Space

It is hard to learn PLS when the data size is large, because we need to
solve SVD, which is of high time complexity. Wu et al. [188] propose
a new method called regularized mapping to latent space (RMLS)
to address the issue. Specifically, they replace the orthonormality
assumption in the formulation of PLS with a sparsity assumption to
make RMLS. In this way, one can conduct the optimization in parallel
and thus make the learning algorithm scalable. In [202, 71], Yih et al.
and Gao et al. propose a similar model called discriminative projection
model (DPM), where the learning is conducted based on Siamese neural
network.

The optimization problem of RMLS is defined as follows.
arg max

Lq ,Ld

=
∑

(qi,di)
cif(qi, di), (7.2)

|lq| ≤ θq, |ld| ≤ θd, ∥lq∥ ≤ τq, ∥ld∥ ≤ τd (7.3)
where (qi, di) is a pair of query and document, ci is the click number
of the pair, Lq and Ld are linear mapping functions, lq and ld are row
vectors of Lq and Ld, and θq, θd, τq and τd are thresholds. | · | and ∥ · ∥
denote ℓ1 and ℓ2 norms. Note that the regularizations are defined on
the row vectors, not column vectors. The use of ℓ2 norm is to avoid a
trivial solution.

There is no guarantee that there exists a global optimal solution
for RMLS. One can employ a greedy algorithm to conduct the
optimization. That is to first fix Lq and optimize Ld, and then to fix
Ld and optimize Lq, and to repeat the process until convergence. From
the formalization, one can verify that the optimization can be easily
decomposed and performed row by row and column by column of the
matrices. That is why the algorithm can be easily parallelized.

7.2.3 Supervised Semantic Indexing

Supervised semantic indexing (SSI), developed by Bai et al. [7, 8], takes
the same view on the problem. First, the latent space model in (7.1) is
rewritten as

f(q, d) = (Lqq)T (Ldd) = qT (LT
q Ld)d.

82 Matching with Latent Space Model

Let W = LT
q Ld, then we have

f(q, d) = qTWd.

SSI tries to factorize W as follows

W = UTV + I,

where I denotes the identity matrix. If W = I, then the model
degenerates to VSM. If W = UTV , then the model is equivalent to
the model of PLS and RMLS.

SSI takes preference pairs derived from click-through log as training
data, and utilizes hinge loss function as loss and gradient descent
as optimization algorithm. No regularization is imposed on the loss
function like that in RMLS.

7.2.4 Bilingual Topic Model

Bilingual topic model (BLTM) is a probabilistic model proposed by Gao
et al. [71], which gives rise to the query-document pairs in click-through
data, where documents are represented by their titles. The basic
assumption of BLTM is that each query document pair is generated
from the same distribution of topics. Figure 7.2 gives the graphical
representation of the model.

The generative process of the model is as follows.

1. Each topic z is represented by a distribution of query words ϕq

and a distribution of document words ϕd. The distributions are
selected with Dirichlet priors with parameters βq and βd. There
are K topics.

2. For each query-document pair q and d, a distribution of topics θ
is selected with Dirichlet prior with parameter α. There are N
query-document pairs.

3. In generation of each query, topic z is first selected according to
distribution θ, and then query word wq is selected according to
distribution ϕq of topic z. There are |q| query words.

7.2. Latent Space Models 83

z

z

qw

dw

|| q

|| d

θ

N

α

qφ

dφ

K

qβ

dβ

Figure 7.2: Graphical representation of bilingual topic model.

4. In generation of each document, topic z is first selected according
to distribution θ, and then document word wd is selected
according to distribution ϕd of topic z. There are |d| document
words.

The expectation maximization (EM) algorithm can be employed to
estimate the parameters of the model. The topic distributions of query
words and document words form the ‘latent space’.

The major difference between BLTM and the topic models of
probabilistic latent semantic indexing (PLSI) and latent Dirichlet
allocation (LDA) is that the former is a model of generating pairs of
documents, while the latter are models of generating single documents.
In fact, BLTM is a natural extension of LDA.

7.2.5 Deep Structured Semantic Model

Semantic matching between query and document may be better
represented by non-linear models than linear models, because the
semantic relations between query and document should be quite
complex. Recently, Huang et al. propose performing semantic matching
with deep learning techniques, and a model referred to as deep
structured semantic model (DSSM) has been developed [90].

DSSM represents query q and its associated documents d’s as
vectors of terms and takes the vectors as input. It maps the input
vectors into output vectors of lower dimensions through a multi-layer
neural network, where the output vectors represent vectors of hidden
topics. It then takes the cosine similarities between the output vector

84 Matching with Latent Space Model

300 300 300 300

128 128 128 128

),(1dqf),(2dqf),(ndqf

)|(1 qdP)|(2 qdP)|(qdP n

......

),(44 bW

),(33 bW

hidden layers

conditional probabilities

matching scores

topic vectors

500k 500k 500k 500k

30k 30k 30k 30k

300 300 300 300

q
1d 2d nd

),(12 bW

)(1W

term vectors

word hashing

Figure 7.3: Deep Structured Semantic Model.

of query and output vectors of documents as matching scores between
query and documents f(q, d). Conditional probabilities P (d|q) are
calculated based on the matching scores f(q, d) and click-through data
is taken as observations of the conditional probabilities. Figure 7.3
shows the architecture of the deep network model.

The size of term vectors is very large in web search, DSSM
employs a technique called word hashing to map term vectors to letter
n-gram vectors to solve the problem, which corresponds to a fixed
linear transformation. For example, word “good” is mapped into letter
trigrams: (#go, goo, ood, od#), where # denotes starting and ending
marks. In this way, the dimension of the vectors can be reduced from
500k to 30k, because the number of letter n-grams in English is limited.

Suppose that x denotes an input vector of terms, either representing
a query or a document, and y denotes an output vector, representing
a number of topics. Suppose that i = 1, · · · , k denote the intermediate
layers, Wi denotes the i-th weight matrix and bi denotes the i-th bias.

7.3. Experimental Results 85

Then, the deep neural network model is defined as

l1 = W1x

li = h(Wili−1 + bi), i = 2, · · · , k − 1
y = h(Wnlk−1 + bk),

where h is the activation function defined as tanh function,

h(x) = 1 − exp{−2x}
1 + exp{−2x}

.

The matching score between query q and document d is defined as

f(q, d) = cos(yq, yd),

where yq and yd are output vectors of query q and document d. The
conditional probability of document d given query q is defined as

P (d|q) = exp{λf(q, d)}∑
d∈D exp{λf(q, d)}

,

where D denotes a set of documents associated and λ is a parameter.
In learning, the model parameters are estimated by maximum

likelihood estimation (MLE), with queries and their associated clicked
documents as training data. Specifically the negative log likelihood
function is minimized

L = − log
∏

(q,d)∈(Q,D)
P (d|q),

where (Q,D) denotes a set of queries and their associated documents
(clicked documents and some randomly selected unclicked documents).
A gradient based optimization technique is employed to conduct the
minimization.

7.3 Experimental Results

We first introduce the experimental results in [188] in which the
performances of different linear latent models are compared, including
PLS, RMLS, BLTM, SSI, and SVDFeature. Here, SVDFeature [45] is

86 Matching with Latent Space Model

Table 7.1: Performances of latent space models in search.

NDCG@1 NDCG@3 NDCG@5
BM25 (baseline) 0.637 0.690 0.690
SSI 0.538 0.621 0.629
SVDFeature 0.663 0.720 0.727
BLTM 0.657 0.702 0.701
PLS 0.676 0.728 0.736
RMLS 0.686 0.732 0.729

Table 7.2: Performances of latent space models in search.

NDCG@1 NDCG@3 NDCG@10
BM25 (baseline) 0.308 0.373 0.455
WTM 0.332 0.400 0.478
LSI 0.298 0.372 0.455
PLSI 0.295 0.371 0.456
BLTM 0.337 0.403 0.480
DSSM (linear) 0.357 0.422 0.495
DSSM (non-linear) 0.362 0.425 0.498

similar to RMLS but for collaborative filtering and with a different
loss function. There are 94,022 queries and 111,631 documents. Click
through data associated with the queries and documents at a search
engine is also used. Relevance judgments are made at five levels, and
normalized discounted cumulative gain (NDCG) scores at the positions
of 1, 3, and 5 are utilized as evaluation measures.

From Table 7.1, one can see that most of the latent models, trained
from click-through data, work better than the baseline of BM25.
Among them, RMLS and PLS perform the best. RMLS and PLS are
comparable. Both of them significantly outperform the other methods
(t-test, p < 0.05).

We next introduce the experimental results reported in [90], on
comparison between different models including translation, topic, and
latent space models. There are 16,510 queries and each query is on
average associated with 15 web pages. Only the title fields of documents

7.3. Experimental Results 87

are used for training and evaluation. Click-through data is randomly
sampled for the high frequency query-document pairs for training, and
evaluation is conducted on the low frequency query-document pairs in
terms of NDCG.

The results in Table 7.2 show that DSSM works better than its
linear version, as well as BLTM. The latent space models outperform
the topic models of LSI and PLSI, as well as the translation model of
WTM. 3

3Significance testing results are not reported.

8
Learning to Match

So far we have seen many machine learning methods for matching
queries and documents in search. They can be generalized as a
more general machine learning problem, which we call ‘learning to
match’. Learning to match is applicable in many applications such as
collaborative filtering (recommender systems), paraphrasing & textual
entailment, as well as search. This section first gives a formal definition
of learning to match. It then introduces methods of learning to
match developed for collaborative filtering and paraphrasing & textual
entailment. Finally, it makes discussions on potential applications of
the techniques to search.

8.1 General Formulation

We give a formal definition of the learning to match problem as follows.
Suppose that there are two spaces X and Y . Objects x and y

belong to the two spaces X and Y , respectively. A class of functions
F = {f(x, y)} is defined, referred to as class of matching functions.
Training data {(x1, y1, r1), · · · , (xN , yN , rN)} is given, where each
instance consists of objects x and y as well as their matching degree

88

8.2. Methods of Collaborative Filtering 89

r. The data is assumed to be generated according to the distributions
x ∼ P (X), y ∼ P (Y |X), r ∼ P (R|X,Y). The goal of the learning task
is to select a matching function f(x, y) from the class on the basis of
the training data. The matching function can be used in classification,
regression, or ranking. The learning task, then, becomes the following
optimization problem.

arg minf∈F

N∑
i=1

L(ri, f(xi, yi)) + Ω(f),

where L(r, f(x, y)) denotes a loss function and Ω denotes a regulariza-
tion.

What makes the task of learning to match unique is that it is to
learn a two-input function f(x, y), in contrast to learning of a one-input
function. There usually exist relations between the two inputs x and y,
and we can and should leverage the relations to enhance the accuracy
of learning.

Many problems can be regarded as special applications of learning
to match. These include collaborative filtering [101, 1, 2, 102, 45,
149, 9, 44], image annotation [83, 76, 159], paraphrasing and textual
entailment [62, 54, 139, 203, 55, 85, 165, 35], question answering [37,
126, 21, 205, 178, 130], cross-language information retrieval [64, 141,
140], short text conversation [176, 130], similar document detection [32,
33, 42, 56, 199], online advertising [31, 30, 87], link prediction [124, 134],
and drug design (matching between and receptor and ligand) [61].1 A
general model of matching is also proposed [75].

8.2 Methods of Collaborative Filtering

In recommendation, matching between users and products is per-
formed. The so-called collaborative filtering approach is popular, which
leverages the relations among users and the relations among products.
This is a problem similar to query document matching in search.

1Similar relation between matching and ranking also exists in recommendation.
For example, [9] proposes conducting matching first and then ranking in recommen-
dation.

90 Learning to Match

Latent factor models are state-of-the-art methods for collaborative
filtering [1, 2]. They are basically models for performing matching
between users and items (products) in latent spaces.

Koren proposes factorized neighborhood model (FNM) for collabo-
rative filtering, which enhances the traditional neighborhood model by
factorizing the user-user and item-item similarities in the model [101,
102]. Specifically, the unseen rating r̂ui of item i by user u is defined as

r̂ui = b0 + bu + bi + 1
|R(u)|

1
2

∑
j∈R(u)

(ruj − buj)qT
i xj

+ 1
|R(i)|

1
2

∑
v∈R(i)

(rvi − bvi)pT
u yv,

where R(u) denotes the set of items rated by user u, R(i) denotes the
set of users giving rate to item i, b0, bu, bi are biases, ruj and rvi denote
the rates of item j by user u and item i by user v respectively, buj and bvi

are biases of item j by user u and item i by user v respectively, qT
i xj and

pT
u yv are factorized similarities for items i-j and users u-v respectively.

Intuitively, the fourth term represents the average of weighted ratings
of the other items by the user with factorized item-item similarities as
weights, and the fifth term represents the average of weighed ratings
of the item by the other users with factorized user-user similarities
as weights. Given training data, their method utilizes squared loss as
loss function with ℓ2 regularization, and employs gradient descent as
learning algorithm to learn the biases and factors.

Chen et al. [45] have developed a feature-based matrix factorization
method for collaborative filtering, called SVDFeature. Although simple,
the method is quite powerful; the system based on it performed the best
among the systems at the KDD Cup 2011 competition. In SVDFeature,
the rating r(u, i) of item i by user u is defined as follows,

r̂ui = ⟨lg, g⟩ + ⟨lu, u⟩ + ⟨li, i⟩ + ⟨Lu · u, Li · i⟩,

where u denotes the user feature vector, lu denotes the weight vector
of user, i denotes the item feature vector, li denotes the weight vector
of item, g denotes a global feature vector, lg denotes a global weight
vector, Lu denotes a user factorization matrix, and Li denotes an item

8.3. Methods of Paraphrasing & Textual Entailment 91

factorization matrix. In learning of the model, squared loss is utilized as
loss function, ℓ2 norm is utilized for regularization, and gradient descent
is employed for optimization. The method is very similar to regularized
mapping to latent space (RMLS) for search (cf., (7.2)-(7.3)), while the
major difference lies in the loss functions.

Rendle proposes factorization machines (FM) [148, 149], a model for
collaborative filtering, with certain relations to support vector machines
(SVM) with polynomial kernel. Like polynomial SVM, FM models
the interactions between all the variables in the input; but unlike
polynomial SVM, FM uses factorized parameterization to deal with
data sparseness. First, user u and item i are combined into one input
vector x. Then the problem becomes to make classification, regression,
or ranking prediction on vector x with the FM model f(x).

f(x) = w0 +
n∑

i=1
wixi +

n∑
i=1

n∑
j=i+1

⟨vi, vj⟩xixj , (8.1)

where x is the input vector derived from a pair of user and item, n is
the dimension of x, xi and xj are variables in the input, w0 is a bias,
wi is the weight of variable xi, and ⟨vi, vj⟩ is the weight of variables xi

and xj , which can be factorized as

⟨vi, vj⟩ =
k∑

l=1
vi,l · vl,j ,

where k denotes the number of factors. The model can be further
extended from two-way interactions to d-way interactions, which
corresponds to polynomial kernel K(x, x′) = (⟨x, x′⟩ + 1)d. Rendle
shows that the FM model (8.1) can be computed efficiently with time
complexity of O(kn). FM generalizes polynomial SVM and can also
mimic several existing models [148].

8.3 Methods of Paraphrasing & Textual Entailment

The issues of paraphrase detection and textual entailment detection can
be formalized as matching between two strings, i.e., matching between
two structured objects. In the former task, given two sentences one

92 Learning to Match

wants to decide whether they are paraphrases of each other. In the
latter task, given two sentences, one attempts to judge whether the
first sentence implies the second sentence (e.g., “John goes to school
every day” entails “John is a student”). We introduce three learning
methods for matching of strings here.

Bu et al. [35, 36] introduce a class of string kernels for paraphrasing
and textual entailment, which they call string rewriting kernel. With
the use of the kernel function, existing kernel methods such as SVM can
be directly employed for the task of string matching. String rewriting
kernel measures the similarity between rewriting of string s1 to t1 and
rewriting of string s2 and t2 with respect to all possible rewriting rules,

K((s1, t1), (s2, t2)) = ⟨Φ(s1, t1),Φ(s2, t2)⟩,

where s1, t1, s2, and t2 are strings, and Φ(s, t) denotes a feature vector
representing scores for rewriting of s to t. Each element of feature vector
ϕr(s, t) represents the score for rewriting of string s to string t with a
rewriting rule r,

Φ(s, t) = (ϕr(s, t))r∈R, ϕr(s, t) = nλi, λ ∈ (0, 1],

where R denotes the set of rewriting rules, n the number of times
rule r can be applied, i the number of wildcards in rule r, and λ

a parameter. Figure 8.1 shows three examples of rewritings and one
example of rewriting rule. The rewriting rule can be applied to the two
rewritings on the top, but not the rewriting on the bottom. In principle,
the string rewriting kernel measures how similar two rewritings are by
applying all the possible rewriting rules (the number can be infinite).

Obviously, computation of the general kernel function is intractable.
Bu et al. further propose a specific class of string rewriting kernels,
referred to as kb-SRK, which can be computed efficiently. In kb-SRK,
the rewriting rules are restricted to rewriting of k-grams and the
wildcard alignments on the two strings are bijective (on the characters).
They show that by using kb-SRK one can achieve the best performances
on the benchmark datasets of paraphrasing and textual entailment.

Moschitti and Zanzotto [138, 139, 203] define a class of syntactic
tree kernels, referred to as tree rewriting kernel in this survey, for
paraphrasing and textual entailment, in contrast with conventional

8.3. Methods of Paraphrasing & Textual Entailment 93

Shakespeare wrote Hamlet in 16 century

Hamlet was written by Shakespeare

Cao Xueqin wrote Dream of the Red Chamber

Dream of the Red Camber was written by Cao Xueqin

* wrote *

* was written by *

Re-writing Rule

Cao Xueqin wrote Dream of the Red Chamber

Hamlet was written by Shakespeare

Figure 8.1: Examples of string rewriting and string rewriting rules.

tree kernels for tagging and parsing [49]. One can employ kernel
methods such as SVM as well as the tree re-writing kernel to conduct
the paraphrasing and textual entailment tasks. Given the syntactic
trees of two pairs of sentences (Tα

1 , T
α
2) and (T β

1 , T
β
2), a tree rewriting

kernel measures the similarity between two pairs of sentences as the
similarity between the rewritings of the syntactic trees of the two pairs,
specifically, the rewriting from tree Tα

1 to tree Tα
2 and the rewriting

from tree T β
1 to tree T β

2 . Figure 8.2 shows two rewritings of syntactic
trees in textual entailment. First, placeholders are identified on the
syntactic trees of each sentence pair to indicate the relations between
the constituents in the rewriting; identical or synonymous constitutes
(e.g., NP and VP) can be placeholders. For example, 1, 2, and 3 are
placeholders on (Tα

1 , T
α
2), and a, b, and c are placeholders on (T β

1 , T
β
2).

Next, correspondences between the two rewritings are identified. For
example, one correspondence is as follows. 1, 2, and 3 correspond
to a, b, and c respectively. Then, the similarity between the two
rewrittings is defined based on the similarity between trees Tα

1 and
T β

1 and the similarity between trees Tα
2 and T β

2 with respect to all
possible correspondences of placeholders.

94 Learning to Match

All Fortune 50 companies file

annual reports

CD NNS VBP

NP

JJ NNS

NP

VP

S

DT NNP 3

3

2

2

1

1

All companies file

annual reports

DT NNS VBP

NP

JJ NNS

NP

VP

S

1

1

2

2 3

3

α
1T

α
2T

S β
1T

S β
2T

all leavesIn

IN NP DT

PP

NNS

NP

S

a

b

b

1T

NN

autumn

VP

VBP

fall

c

c

a
a

all maple leavesIn

IN NP DT

PP

NNS

NP

S

a

b

b

2T

NN

autumn

VP

VBP

fall

c

c

NN

Figure 8.2: Examples of tree rewriting.

More formally, the kernel function is defined as

KΛ
(
(Tα

1 , T
α
2), (T β

1 , T
β
2)
)

= Λr∈R

(
KT

(
t(Tα

1 , r), t(T
β
1 , r)

)
+KT

(
t(Tα

2 , r), t(T
β
2 , r)

))
,

where KT (·, ·) denotes a tree kernel on two trees, t(T, r) denotes a
transformation of tree T with correspondence r on the placeholders of
the tree, R denotes the set of all possible correspondences, and Λ stands
for a function over R, e.g., sum or max. One possible correspondence
is r = {(b, 1), (c, 2)} in the figure. With this correspondence, the
transformed trees t(Tα

1 , r) and t(T β
1 , r) can match and so can the

transformed trees t(Tα
2 , r) and t(T β

2 , r).
Moschitti and Zanzotto propose an algorithm to efficiently compute

a tree rewriting kernel. Their experimental results show that their

8.3. Methods of Paraphrasing & Textual Entailment 95

1 2 3 4 5 6 7

1
2

3
4

5

n

variable sized

similarity matrix

fixed sized

similarity matrix

softmax

classifier

1/0

dynamic

pooling

The cats catch mice

1 2 3 4

5

7

6

Cats eat mice

1 2 3

4

5

recursive

autoencoder

Figure 8.3: Paraphrase detection using unfolding recursive autoencoder and
dynamic pooling.

method can obtain state-of-the-art accuracies in textual entailment and
question answering.

Socher et al. [165] introduce a method for paraphrase detection
using deep learning techniques. The basic idea is to parse the given two
sentences and employ a neural network which can detect paraphrase
relation by measuring the word-wise and phrase-wise similarities
between the two sentences. The neural network is created by using
two techniques, namely unfolding recursive autoencoders (URAE) and
dynamic pooling. Figure 8.3 illustrates the process of creating the
model.

First, the two sentences are parsed and represented as syntactic
trees. Then, each word in the sentences is assigned a vector computed
in advance by using neural language modeling. In neural language
modeling [19] we jointly learn an embedding of words into a low-
dimensional vector space and utilize the vectors to predict how likely a
word occurs given a context. The vector of a word thus represents the
‘semantics’ of the word with its context.

96 Learning to Match

Next, the vectors of the phrases (internal nodes) of each of the
syntactic trees are constructed by an unfolding recursive autoencoder.
Specifically, given a syntactic tree, the vector of each internal node in
the tree is recursively computed by using the vectors of its child node
as in a neural network. To assess how well the learned vectors of parent
nodes represent their subtrees, the vectors are utilized to reconstruct
the vectors of their subtrees and the reconstructed leaf vectors are
compared with the original input vectors, and reconstruction errors in
terms of Euclidean distance are calculated. The objective of the learning
process is to minimize the reconstruction errors over all training data,
and the parameters of the model (autoencoder), including the vectors
of phrases, are learned by the minimization (cf., the lower part of
Figure 8.3).

Finally, the Euclidean distances between all word and phrase
vectors of the two sentences are computed, yielding a similarity matrix
between the two sentences, where the rows and columns correspond
to the nodes (word vectors and phrase vectors) in the two trees
respectively, placed in pre-defined orders. If similar words align well
in the two sentences, then the elements close to the diagonal of the
matrix will tend to be zero. Because different sentence pairs have
different sizes of similarity matrices, they cannot be directly fed it into
a neural network model and normalization of the matrices needs to be
performed. This is exactly what dynamic pooling does. The pooling
method partitions the rows and columns of the similarity matrix into
roughly equal parts and creates a grid covering the entire matrix. It
then takes the minimum value of each cell and forms a new matrix
consisting of all the minimum values within the grid. The obtained
fixed-sized matrix is then used in one layer of the neural network for
classification, i.e., detection (cf., the upper part of Figure 8.3).

8.4 Potential Applications to Search

The methods described above can be potentially applied to search,
although they are originally developed for collaborative filtering and
paraphrasing & textual entailment.

8.4. Potential Applications to Search 97

Collaborative filtering and search are similar in the sense that both
are based on matching between heterogenous objects, while in the
former task the objects are users and items and in the latter task the
objects are queries and documents. Therefore, in principle technologies
developed for collaborative filtering can be applied to search, and
vice versa. For example, the method of SVDFeature developed for
collaborative filtering is very similar to the method of RMLS developed
for search. The only difference lies in the loss functions utilized by
the two methods. More research can be conducted to investigate the
relations between methods for the two applications.

Queries in web search are usually short. For example, about 90%
of the queries are of length not exceeding five and about 10% of
the queries are of length between five and twelve, in one search log
dataset [14]. Furthermore, about 7% of the long queries are natural
language questions. We may enhance the relevance ranking of natural
language questions by employing the techniques for paraphrasing &
textual entailment. More specifically, we extract the titles and key
sentences of documents and store them in index in advance. When a
query is submitted, we identify whether the query is a natural language
question using a parser. If it is, then we conduct matching between the
question and the titles and key sentences of documents, and use the
matching results as features of the ranking model, where the matching
is carried out using paraphrasing & textual entailment techniques. That
is to say, matching between query and document on structure aspect
is performed (e.g., “how far is sun from earth” and “distance between
sun and earth”).

9
Conclusion and Open Problems

9.1 Summary of Survey

Query document mismatch is one of the biggest challenges in search.
The major reason is that the searchers and authors of documents
may use different expressions to represent the same meaning. Due
to the richness and flexibility of language this phenomenon can
regularly happen in search. On the other hand, the main mechanism of
search is still based on term level matching, without genuine language
understanding. This results in most of the dissatisfactions in search in
which information exists in the system but users cannot find it.

One effective approach to dealing with the challenge is to conduct
more query understanding and more document understanding, and
conduct matching between richer query representation and richer
document representation which can better characterize the meanings of
query and document, referred to as semantic matching in this survey.
Queries and documents can be represented on form, phrase, sense,
topic, and structure aspects, and so can matching be performed.

In this survey, we have introduced machine learning approaches to
dealing with query document mismatch, particularly recent advances
along this direction. Methods for matching by query reformulation,

98

9.2. Comparison between Approaches 99

matching with term dependency model, matching with translation
model, matching with topic model, and matching with latent space
model have been explained. One can see that machine learning for
matching between query and document in search has made and is
making significant progress. The problem of mismatch is far from being
solved, however. More and more research on the issue is definitely
needed in the future.

Matching between heterogenous objects from two spaces can be
found in many applications, for example, collaborative filtering and
paraphrasing & textual entailment. Machine learning techniques for
matching, referred to as learning to match, need also be extensively and
deeply studied. Learning to match methods for collaborative filtering
and paraphrasing & textual entailment have been described in this
survey, which are potentially applicable to search as well.

9.2 Comparison between Approaches

We next make comparisons between the five approaches described in
Sections 3-7, namely, matching by query reformulation, matching with
term dependency model, matching with translation model, matching
with topic model, and matching with latent space model.

We must note that previous work on the approaches was done
on different datasets with different properties, and there was no
direct comparison between the approaches using a single dataset. This
appears to be an important research topic in the future. We have
observed in our own studies, however, that the approaches described
in this survey tend to be complementary and thus it is usually
advantageous to combine the uses of all the approaches.

Table 9.1 lists up the major characteristics of the five approaches,
denoted as Query, Dependency, Translation, Topic, and Latent. The
approaches are compared in terms of type of model, type of training
data, computation complexity of learning. In practice one can choose
approaches that are suitable to their problem settings.

In Section 2, we have given a system view of semantic matching.
We next explain how the five approaches can be integrated into the

100 Conclusion and Open Problems

Table 9.1: Characteristics of approaches.

model training data complexity of
learning

Query query search log small
Dependency query-document relevance small
Translation query-document click-through small
Topic document document high
Latent query-document click-through high

system. In query understanding, spelling errors in the query can
be corrected using the query reformulation techniques described in
Section 3.2, similar queries can be found by using the similar query
finding techniques described in Section 3.3, topics of the query can be
identified using the topic modeling techniques described in Section 6.2.
In document understanding, topics of the document can be identified
by using the topic modeling techniques as well. In query document
matching, the different fields of query (the enriched representation of
query) and different fields of document (the enriched document) can be
matched, where matching can be carried out by the term dependency
model in Section 4, the translation model in Section 5, and the latent
space model in Section 7.

Matching results based on the term dependency model, translation
model, topic model, and latent space model can be used as features
of the ranking model, and learning to rank techniques can be used to
train the ranking model.

9.3 Other Approaches

Query reformulation has been intensively studied so far. Similarly,
‘document reformulation’ might also be considered (i.e., to create
additional representation for the document to make it have better
matching with relevant queries). Document reformulation includes key
phrase extraction [144, 175], key word or phrase annotation [196,
72, 201], document expansion [164, 114, 169]. For example, Xue et
al. [196] conduct key word or phrase annotation to documents for

9.3. Other Approaches 101

search using a click-through bipartite graph. The assumption is that
two documents should be similar and assigned to similar queries if
they have many co-clicks. An iterative algorithm has been developed
in which the document similarities and query similarities are jointly
calculated through propagation of similarity scores on the graph. The
document similarities are further utilized for annotating key words and
phrases to webpages and enhancing search relevance.

Query classification [97, 113, 13, 161, 119] and document classifica-
tion should be helpful for addressing query document mismatch. For
example, Bennett et al. [20] presents a classification method for web
search. Their method categorizes web pages into semantic classes in
advance. In search, given a query, the method derives the distribution of
classes of the query using the search result as well as click-through data,
and then takes the matching degrees between the class distributions of
query and the class distributions of web pages as features of the ranking
model. Experimental results show that the method can enhance the
performance of search relevance. The advantage of the classification
approach is that it is based on supervised learning approach and the
classes can be more accurately learned, while the disadvantage is that
the classes are predefined and cannot be dynamically adapted to data.

Named entity recognition in query [78, 190], in parallel, and
named entity recognition in document should be helpful as well.
For instance, Lu et al. [129] propose a method of enhancing search
relevance by leveraging named entity recognition in query. Their
method first makes use of a number of entity recognizers to identify
different types of named entities in the query. It then utilizes the
categories of identified named entities and the categories of sections
of document to derive a number of semantic matching features. The
matching features are incorporated into the ranking model which is
trained with learning to rank techniques. For the query “san francisco
college”, the categories assigned to the query phrases can be “san
francisco[city-name] college[business]”. The authors observe that for
long queries containing several named entities significant gain can be
obtained in relevance ranking by employing their method.

102 Conclusion and Open Problems

Another approach is to enrich query and document representations
with human knowledge such as Wikipedia and conduct semantic
matching with the representations [65]. The approach is gaining
attention recently, because more and more knowledge bases become
available.

9.4 Open Problems and Future Directions

There are many open questions with regard to machine learning for
semantic matching in search. Here, we only list some of them.

• Topic drift can easily occur in learning-based semantic matching,
because language is by nature synonymous and polysemous. How
to deal with the challenge is the key question for the machine
learning paradigm. More powerful techniques surely need to be
developed.

• Scalability is another important issue which needs to be
considered. For example, learning of topic model and latent
space model needs a large scale computing environment. This
is particularly critical in the era of big data.

• Missing information in training data is a common issue. For rare
queries and documents, it is difficult to collect sufficient training
data. This in fact belongs to the long tail challenge. One possible
way to conquer the challenge would be to incorporate existing
knowledge such as WordNet and Wikipedia into the matching
model. There has been some progress on research of the problem
(e.g., [65, 104]), but certainly more studies are necessary.

• More natural language processing techniques need to be employed
to enhance the performance of query document matching in
search. This is because long queries and natural language queries
are comprised of a large proportion of dissatisfied queries.
Linguistic knowledge such as that indicating “distance between X
and Y” and “how far is X from Y” are equivalent representations
is necessary to be utilized in query document matching.

9.4. Open Problems and Future Directions 103

• The Cranfield approach [48] is usually employed for evaluation
of a search system, particularly evaluation of relevance models.
When semantic matching is necessary, it often involves cases in
which the queries are tail queries and relevance judgments are
difficult for human assessors, who are not query owners. The
question is whether it is possible to introduce new mechanisms
for relevance evaluation, particularly that using users’ click data,
to enhance the research on matching.

Acknowledgements

We would like to express our sincere gratitude to our former and
current colleagues, interns, and collaborators, Gu Xu, Wei Wu, Quan
Wang, Jiafeng Guo, Zhengdong Lu, Fan Bu, Tianqi Chen, Jingfang
Xu, Daxin Jiang, Yunhua Hu, Ziqi Wang, Chen Wang, Haocheng Wu,
Xiaobing Xue, Shuanghong Yang, Hao Wang, Keping Bi, Chaoliang
Zhong, Yu Tao, W. Bruce Croft, Michael Bendersky, Xueqi Cheng,
Xiaoyan Zhu, Yong Yu, Enhong Chen, Ming Zhang, Nick Craswell,
and Satoshi Oyama, with whom we worked together on the problem
of semantic matching in search and in general learning to match. This
survey benefits a lot from the joint work with them.

We thank the three anonymous reviewers, as well as Douglas W.
Oard, Quan Wang, Xin Jiang, Stephen Robertson, Jagadeesh Gorla,
Milad Shokouhi, who read the draft of this survey and made many
valuable comments.

We would also like to thank Douglas W. Oard and Mark Sanderson.
Without their support and guidance, this survey would not have been
published.

This work is supported in part by China National 973 project
2014CB340301.

104

References

[1] Jacob Abernethy, Francis Bach, Theodoros Evgeniou, and Jean-
Philippe Vert. A new approach to collaborative filtering: Operator esti-
mation with spectral regularization. J. Mach. Learn. Res., 10:803–826,
June 2009.

[2] Deepak Agarwal and Bee-Chung Chen. Regression-based latent factor
models. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’09, pages
19–28, New York, NY, USA, 2009. ACM.

[3] Farooq Ahmad and Grzegorz Kondrak. Learning a spelling error
model from search query logs. In Proceedings of the Conference
on Human Language Technology and Empirical Methods in Natural
Language Processing, HLT ’05, pages 955–962, Stroudsburg, PA, USA,
2005. Association for Computational Linguistics.

[4] Jaime Arguello, Jonathan L. Elsas, Jamie Callan, and Jaime G.
Carbonell. Document representation and query expansion models for
blog recommendation. In International Conference on Weblogs and
Social Media, pages 10–18. AAAI Press, 2008.

[5] Ricardo Baeza-Yates, Carlos Hurtado, and Marcelo Mendoza. Query
clustering for boosting web page ranking. In Jesĺšs Favela, Ernestina
Menasalvas, and Edgar Chĺćvez, editors, Advances in Web Intelligence,
volume 3034 of Lecture Notes in Computer Science, pages 164–175.
Springer Berlin Heidelberg, 2004.

105

106 References

[6] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern
Information Retrieval - the concepts and technology behind search.
Pearson Education Ltd., Harlow, England, 2nd edition, 2011.

[7] Bing Bai, Jason Weston, David Grangier, Ronan Collobert, Kunihiko
Sadamasa, Yanjun Qi, Olivier Chapelle, and Kilian Weinberger. Super-
vised semantic indexing. In Proceedings of the 18th ACM Conference
on Information and Knowledge Management, CIKM ’09, pages 187–196,
New York, NY, USA, 2009. ACM.

[8] Bing Bai, Jason Weston, David Grangier, Ronan Collobert, Kunihiko
Sadamasa, Yanjun Qi, Olivier Chapelle, and Kilian Weinberger. Learn-
ing to rank with (a lot of) word features. Inf. Retr., 13(3):291–314, June
2010.

[9] Suhrid Balakrishnan and Sumit Chopra. Collaborative ranking. In
Proceedings of the Fifth ACM International Conference on Web Search
and Data Mining, WSDM ’12, pages 143–152, New York, NY, USA,
2012. ACM.

[10] Niranjan Balasubramanian, Giridhar Kumaran, and Vitor R. Carvalho.
Exploring reductions for long web queries. In Proceedings of the 33rd
international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’10, pages 571–578, New York, NY, USA,
2010. ACM.

[11] Hannah Bast, Florian Bäurle, Björn Buchhold, and Elmar Haussmann.
Broccoli: Semantic full-text search at your fingertips. CoRR, 2012.

[12] Doug Beeferman and Adam Berger. Agglomerative clustering of a
search engine query log. In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD
’00, pages 407–416, New York, NY, USA, 2000. ACM.

[13] Steven M. Beitzel, Eric C. Jensen, Ophir Frieder, David Grossman,
David D. Lewis, Abdur Chowdhury, and Aleksandr Kolcz. Automatic
web query classification using labeled and unlabeled training data. In
Proceedings of the 28th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’05,
pages 581–582, New York, NY, USA, 2005. ACM.

[14] Michael Bendersky and W. Bruce Croft. Analysis of long queries in a
large scale search log. In Proceedings of the 2009 Workshop on Web
Search Click Data, WSCD ’09, pages 8–14, New York, NY, USA, 2009.
ACM.

References 107

[15] Michael Bendersky and W. Bruce Croft. Modeling higher-order
term dependencies in information retrieval using query hypergraphs.
In Proceedings of the 35th international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’12, pages
941–950, New York, NY, USA, 2012. ACM.

[16] Michael Bendersky, W. Bruce Croft, and David A. Smith. Joint
annotation of search queries. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language
Technologies, ACL ’11, pages 102–111. The Association for Computer
Linguistics, 2011.

[17] Michael Bendersky, Donald Metzler, and W. Bruce Croft. Learning
concept importance using a weighted dependence model. In Proceedings
of the third ACM international conference on Web search and data
mining, WSDM ’10, pages 31–40, New York, NY, USA, 2010. ACM.

[18] Michael Bendersky, Donald Metzler, and W. Bruce Croft. Effective
query formulation with multiple information sources. In Proceedings
of the Fifth ACM International Conference on Web Search and Data
Mining, WSDM ’12, pages 443–452, New York, NY, USA, 2012. ACM.

[19] Yoshua Bengio, Holger Schwenk, Jean-Sĺębastien Senĺęcal, Frĺęderic
Morin, and Jean-Luc Gauvain. Neural probabilistic language models.
In DawnE. Holmes and LakhmiC. Jain, editors, Innovations in Machine
Learning, volume 194 of Studies in Fuzziness and Soft Computing, pages
137–186. Springer Berlin Heidelberg, 2006.

[20] Paul N. Bennett, Krysta Svore, and Susan T. Dumais. Classification-
enhanced ranking. In Proceedings of the 19th International Conference
on World Wide Web, WWW ’10, pages 111–120, New York, NY, USA,
2010. ACM.

[21] Adam Berger, Rich Caruana, David Cohn, Dayne Freitag, and Vibhu
Mittal. Bridging the lexical chasm: statistical approaches to answer-
finding. In Proceedings of the 23rd annual international ACM SIGIR
conference on Research and development in information retrieval,
SIGIR ’00, pages 192–199, New York, NY, USA, 2000. ACM.

[22] Adam Berger and John Lafferty. Information retrieval as statistical
translation. In Proceedings of the 22nd annual international ACM SI-
GIR conference on Research and development in information retrieval,
SIGIR ’99, pages 222–229, New York, NY, USA, 1999. ACM.

108 References

[23] Shane Bergsma and Qin Iris Wang. Learning noun phrase query
segmentation. In Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural
Language Learning, EMNLP-CoNLL ’07, pages 819–826, Prague, Czech
Republic, June 2007. Association for Computational Linguistics.

[24] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[25] David M. Blei. Probabilistic topic models. Commun. ACM, 55(4):77–84,
April 2012.

[26] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet
allocation. J. Mach. Learn. Res., 3:993–1022, March 2003.

[27] Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato, Aris-
tides Gionis, and Sebastiano Vigna. The query-flow graph: Model
and applications. In Proceedings of the 17th ACM Conference on
Information and Knowledge Management, CIKM ’08, pages 609–618,
New York, NY, USA, 2008. ACM.

[28] Thorsten Brants, Francine Chen, and Ioannis Tsochantaridis. Topic-
based document segmentation with probabilistic latent semantic anal-
ysis. In Proceedings of the Eleventh International Conference on
Information and Knowledge Management, CIKM ’02, pages 211–218,
New York, NY, USA, 2002. ACM.

[29] Eric Brill and Robert C. Moore. An improved error model for
noisy channel spelling correction. In Proceedings of the 38th Annual
Meeting on Association for Computational Linguistics, ACL ’00, pages
286–293, Stroudsburg, PA, USA, 2000. Association for Computational
Linguistics.

[30] Andrei Broder, Peter Ciccolo, Evgeniy Gabrilovich, Vanja Josifovski,
Donald Metzler, Lance Riedel, and Jeffrey Yuan. Online expansion
of rare queries for sponsored search. In Proceedings of the 18th
International Conference on World Wide Web, WWW ’09, pages
511–520, New York, NY, USA, 2009. ACM.

[31] Andrei Broder, Marcus Fontoura, Vanja Josifovski, and Lance Riedel.
A semantic approach to contextual advertising. In Proceedings of the
30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’07, pages 559–566, New
York, NY, USA, 2007. ACM.

References 109

[32] Andrei Z Broder. On the resemblance and containment of documents.
In Proceedings of the Compression and Complexity of Sequences 1997,
SEQUENCES ’97, pages 21–, Washington, DC, USA, 1997. IEEE
Computer Society.

[33] Andrei Z. Broder. Identifying and filtering near-duplicate documents.
In Proceedings of the 11th Annual Symposium on Combinatorial
Pattern Matching, COM ’00, pages 1–10, London, UK, UK, 2000.
Springer-Verlag.

[34] Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and
Robert L. Mercer. The mathematics of statistical machine translation:
parameter estimation. Comput. Linguist., 19(2):263–311, June 1993.

[35] Fan Bu, Hang Li, and Xiaoyan Zhu. String re-writing kernel.
In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers - Volume 1, ACL ’12, pages
449–458, Stroudsburg, PA, USA, 2012. Association for Computational
Linguistics.

[36] Fan Bu, Hang Li, and Xiaoyan Zhu. An introduction to string re-
writing kernel. In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, IJCAI’13, pages 2982–2986. AAAI
Press, 2013.

[37] Robin D Burke, Kristian J Hammond, Vladimir Kulyukin, Steven L
Lytinen, Noriko Tomuro, and Scott Schoenberg. Question answering
from frequently asked question files: Experiences with the faq finder
system. AI magazine, 18(2):57, 1997.

[38] Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and Stephen Robertson.
Selecting good expansion terms for pseudo-relevance feedback. In
Proceedings of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’08, pages
243–250, New York, NY, USA, 2008. ACM.

[39] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong
Chen, and Hang Li. Context-aware query suggestion by mining
click-through and session data. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data
mining, KDD ’08, pages 875–883, New York, NY, USA, 2008. ACM.

[40] Claudio Carpineto and Giovanni Romano. A survey of automatic query
expansion in information retrieval. ACM Comput. Surv., 44(1):1:1–1:50,
January 2012.

110 References

[41] Lara D. Catledge and James E. Pitkow. Characterizing browsing
strategies in the world-wide web. Comput. Netw. ISDN Syst.,
27(6):1065–1073, April 1995.

[42] Moses S. Charikar. Similarity estimation techniques from rounding
algorithms. In Proceedings of the Thiry-fourth Annual ACM Symposium
on Theory of Computing, STOC ’02, pages 380–388, New York, NY,
USA, 2002. ACM.

[43] Qing Chen, Mu Li, and Ming Zhou. Improving query spelling correction
using web search results. In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, EMNLP-CoNLL ’07, pages 181–189. ACL,
2007.

[44] TianQi Chen, Hang Li, Qiang Yang 0001, and Yong Yu. General
functional matrix factorization using gradient boosting. In ICML ’13:
Proceedings of the 30th International Conference on Machine Learning,
volume 28 of JMLR Proceedings, pages 436–444, 2013.

[45] Tianqi Chen, Zhao Zheng, Qiuxia Lu, Weinan Zhang, and Yong Yu.
Feature-based matrix factorization. CoRR, abs/1109.2271, 2011.

[46] David Chiang. Hierarchical phrase-based translation. Comput.
Linguist., 33(2):201–228, June 2007.

[47] Freddy Y. Y. Choi, Peter Wiemer-Hastings, and Johanna Moore. Latent
semantic analysis for text segmentation. In Lillian Lee and Donna
Harman, editors, Proceedings of the 2001 Conference on Empirical
Methods in Natural Language Processing, EMNLP ’01, pages 109–117,
2001.

[48] C.W. Cleverdon. The Effect of Variations in Relevance Assessment in
Comparative Experimental Tests of Index Languages. Cranfield Library
report. Cranfield Inst. of Technology, 1970.

[49] Michael Collins and Nigel Duffy. New ranking algorithms for parsing
and tagging: Kernels over discrete structures, and the voted perceptron.
In Proceedings of the 40th Annual Meeting on Association for Compu-
tational Linguistics, ACL ’02, pages 263–270, Stroudsburg, PA, USA,
2002. Association for Computational Linguistics.

[50] Nick Craswell and Martin Szummer. Random walks on the click graph.
In Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’07,
pages 239–246, New York, NY, USA, 2007. ACM.

References 111

[51] W. Bruce Croft, Michael Bendersky, Hang Li, and Gu Xu. Query rep-
resentation and understanding workshop. SIGIR Forum, 44(2):48–53,
January 2011.

[52] W. Bruce Croft, Donald Metzler, and Trevor Strohman. Search
Engines: Information Retrieval in Practice. Addison-Wesley Publishing
Company, USA, 1st edition, 2009.

[53] Silviu Cucerzan and Eric Brill. Spelling correction as an iterative process
that exploits the collective knowledge of web users. In Proceedings of the
2004 Conference on Empirical Methods in Natural Language Processing,
EMNLP ’04, pages 293–300. ACL, 2004.

[54] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal
recognising textual entailment challenge. In Proceedings of the First
International Conference on Machine Learning Challenges: Evaluating
Predictive Uncertainty Visual Object Classification, and Recognizing
Textual Entailment, MLCW’05, pages 177–190. Springer-Verlag, Berlin,
Heidelberg, 2006.

[55] Dipanjan Das and Noah A. Smith. Paraphrase identification as
probabilistic quasi-synchronous recognition. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the
AFNLP: Volume 1 - Volume 1, ACL ’09, pages 468–476, Stroudsburg,
PA, USA, 2009. Association for Computational Linguistics.

[56] Ali Dasdan, Paolo D’Alberto, Santanu Kolay, and Chris Drome.
Automatic retrieval of similar content using search engine query
interface. In Proceedings of the 18th ACM Conference on Information
and Knowledge Management, CIKM ’09, pages 701–710, New York, NY,
USA, 2009. ACM.

[57] Fabio De Bona, Stefan Riezler, Keith Hall, Massimiliano Ciaramita,
Amaç Herdaǧdelen, and Maria Holmqvist. Learning dense models of
query similarity from user click logs. In Human Language Technologies:
The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, HLT ’10, pages 474–482,
Stroudsburg, PA, USA, 2010. Association for Computational Linguis-
tics.

[58] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K.
Landauer, and Richard Harshman. Indexing by latent semantic analysis.
Journal of the American Society for Information Science, 41(6):391–
407, 1990.

112 References

[59] Fernando Diaz. Regularizing ad hoc retrieval scores. In Proceedings of
the 14th ACM international conference on Information and knowledge
management, CIKM ’05, pages 672–679, New York, NY, USA, 2005.
ACM.

[60] Fernando Diaz and Donald Metzler. Improving the estimation of
relevance models using large external corpora. In Proceedings of the
29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’06, pages 154–161, New
York, NY, USA, 2006. ACM.

[61] Hao Ding, Ichigaku Takigawa, Hiroshi Mamitsuka, and Shanfeng Zhu.
Similarity-based machine learning methods for predicting drugĺctarget
interactions: a brief review. Briefings in Bioinformatics, page bbt056,
2013.

[62] Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction
of large paraphrase corpora: Exploiting massively parallel news sources.
In Proceedings of the 20th International Conference on Computational
Linguistics, COLING ’04, Stroudsburg, PA, USA, 2004. Association for
Computational Linguistics.

[63] Huizhong Duan and Bo-June (Paul) Hsu. Online spelling correction for
query completion. In Proceedings of the 20th international conference
on World wide web, WWW ’11, pages 117–126, New York, NY, USA,
2011. ACM.

[64] Susan T Dumais, Todd A Letsche, Michael L Littman, and Thomas K
Landauer. Automatic cross-language retrieval using latent semantic
indexing. In AAAI spring symposium on cross-language text and speech
retrieval, volume 15, page 21, 1997.

[65] Ofer Egozi, Shaul Markovitch, and Evgeniy Gabrilovich. Concept-based
information retrieval using explicit semantic analysis. ACM Trans. Inf.
Syst., 29(2):8:1–8:34, April 2011.

[66] Edward A. Fox and Joeseph A. Shaw. Combination of multiple searches.
In The Second Text REtrieval Conference (TREC-2), volume 500-215
of NIST Special Publication, pages 243–252. NIST, 1994.

[67] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The
vocabulary problem in human-system communication. Commun. ACM,
30(11):964–971, November 1987.

References 113

[68] Jianfeng Gao, Xiaodong He, and Jian-Yun Nie. Clickthrough-based
translation models for web search: from word models to phrase models.
In Proceedings of the 19th ACM international conference on Information
and knowledge management, CIKM ’10, pages 1139–1148, New York,
NY, USA, 2010. ACM.

[69] Jianfeng Gao and Jian-Yun Nie. Towards concept-based translation
models using search logs for query expansion. In Proceedings of the
21st ACM International Conference on Information and Knowledge
Management, CIKM ’12, pages 1:1–1:10, New York, NY, USA, 2012.
ACM.

[70] Jianfeng Gao, Jian-Yun Nie, Guangyuan Wu, and Guihong Cao.
Dependence language model for information retrieval. In Proceedings
of the 27th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’04, pages 170–177,
New York, NY, USA, 2004. ACM.

[71] Jianfeng Gao, Kristina Toutanova, and Wen-tau Yih. Clickthrough-
based latent semantic models for web search. In Proceedings of the 34th
international ACM SIGIR conference on Research and development in
Information Retrieval, SIGIR ’11, pages 675–684, New York, NY, USA,
2011. ACM.

[72] Jianfeng Gao, Wei Yuan, Xiao Li, Kefeng Deng, and Jian-Yun Nie.
Smoothing clickthrough data for web search ranking. In Proceedings
of the 32Nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’09, pages 355–362, New
York, NY, USA, 2009. ACM.

[73] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-match: an
algorithm and an implementation of semantic matching. In Proceedings
of The Semantic Web: Research and Applications, First European
Semantic Web Symposium, ESWS ’04, pages 61–75. Springer, 2004.

[74] Andrew R. Golding and Dan Roth. A winnow-based approach to
context-sensitive spelling correction. Mach. Learn., 34(1-3):107–130,
February 1999.

[75] Jagadeesh Gorla, Stephen Robertson, Jun Wang, and Tamas Jambor.
A theory of information matching. CoRR, abs/1205.5569, 2012.

[76] David Grangier and Samy Bengio. A discriminative kernel-based
approach to rank images from text queries. IEEE Trans. Pattern Anal.
Mach. Intell., 30(8):1371–1384, August 2008.

114 References

[77] R. Guha, Rob McCool, and Eric Miller. Semantic search. In Proceedings
of the 12th international conference on World Wide Web, WWW ’03,
pages 700–709, New York, NY, USA, 2003. ACM.

[78] Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. Named entity
recognition in query. In Proceedings of the 32nd international ACM SI-
GIR conference on Research and development in information retrieval,
SIGIR ’09, pages 267–274, New York, NY, USA, 2009. ACM.

[79] Jiafeng Guo, Gu Xu, Hang Li, and Xueqi Cheng. A unified and
discriminative model for query refinement. In Proceedings of the
31st annual international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’08, pages 379–386, New
York, NY, USA, 2008. ACM.

[80] Matthias Hagen, Martin Potthast, Anna Beyer, and Benno Stein. To-
wards optimum query segmentation: In doubt without. In Proceedings of
the 21st ACM International Conference on Information and Knowledge
Management, CIKM ’12, pages 1015–1024, New York, NY, USA, 2012.
ACM.

[81] Matthias Hagen, Martin Potthast, Benno Stein, and Christof
Bräutigam. Query segmentation revisited. In Proceedings of the
20th International Conference on World Wide Web, WWW ’11, pages
97–106, New York, NY, USA, 2011. ACM.

[82] Aria Haghighi and Lucy Vanderwende. Exploring content models for
multi-document summarization. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, NAACL
’09, pages 362–370, Stroudsburg, PA, USA, 2009. Association for
Computational Linguistics.

[83] David R. Hardoon and John Shawe-taylor. Kcca for different level
precision in content-based image retrieval. In In Third International
Workshop on Content-Based Multimedia Indexing, IRISA, 2003.

[84] David R. Hardoon, Sandor R. Szedmak, and John R. Shawe-taylor.
Canonical correlation analysis: An overview with application to learning
methods. Neural Comput., 16(12):2639–2664, December 2004.

[85] Michael Heilman and Noah A. Smith. Tree edit models for recognizing
textual entailments, paraphrases, and answers to questions. In Human
Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics,
HLT ’10, pages 1011–1019, Stroudsburg, PA, USA, 2010. Association
for Computational Linguistics.

References 115

[86] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Support vector
learning for ordinal regression. In In Proceedings of the International
Conference on Articial Neural Networks, pages 97–102, 1999.

[87] Dustin Hillard, Stefan Schroedl, Eren Manavoglu, Hema Raghavan,
and Chirs Leggetter. Improving ad relevance in sponsored search. In
Proceedings of the third ACM international conference on Web search
and data mining, WSDM ’10, pages 361–370, New York, NY, USA,
2010. ACM.

[88] Thomas Hofmann. Probabilistic latent semantic indexing. In Pro-
ceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’99, pages
50–57, New York, NY, USA, 1999. ACM.

[89] Chien-Kang Huang, Lee-Feng Chien, and Yen-Jen Oyang. Relevant
term suggestion in interactive web search based on contextual informa-
tion in query session logs. J. Am. Soc. Inf. Sci. Technol., 54(7):638–649,
May 2003.

[90] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero,
and Larry Heck. Learning deep structured semantic models for
web search using clickthrough data. In Proceedings of the 22Nd
ACM International Conference on Conference on Information &
Knowledge Management, CIKM ’13, pages 2333–2338, New York, NY,
USA, 2013. ACM.

[91] Samuel Huston, J. Shane Culpepper, and W. Bruce Croft. Indexing
word sequences for ranked retrieval. ACM Trans. Inf. Syst., 32(1):3:1–
3:26, January 2014.

[92] Aminul Islam and Diana Inkpen. Real-word spelling correction
using google web it 3-grams. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing: Volume 3 -
Volume 3, EMNLP ’09, pages 1241–1249, Stroudsburg, PA, USA, 2009.
Association for Computational Linguistics.

[93] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evalu-
ation of ir techniques. ACM Trans. Inf. Syst., 20(4):422–446, October
2002.

[94] Daxin Jiang, Jian Pei, and Hang Li. Mining search and browse logs
for web search: A survey. ACM Trans. Intell. Syst. Technol., 4(4):57:1–
57:37, October 2013.

116 References

[95] Rong Jin, Alex G. Hauptmann, and Cheng Xiang Zhai. Title language
model for information retrieval. In Proceedings of the 25th annual
international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’02, pages 42–48, New York, NY, USA,
2002. ACM.

[96] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. Gen-
erating query substitutions. In Proceedings of the 15th international
conference on World Wide Web, WWW ’06, pages 387–396, New York,
NY, USA, 2006. ACM.

[97] In-Ho Kang and GilChang Kim. Query type classification for web
document retrieval. In Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Informaion
Retrieval, SIGIR ’03, pages 64–71, New York, NY, USA, 2003. ACM.

[98] Maryam Karimzadehgan and ChengXiang Zhai. Estimation of
statistical translation models based on mutual information for ad
hoc information retrieval. In Proceedings of the 33rd international
ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’10, pages 323–330, New York, NY, USA, 2010. ACM.

[99] Philipp Koehn. Statistical Machine Translation. Cambridge University
Press, New York, NY, USA, 1st edition, 2010.

[100] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical
phrase-based translation. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguis-
tics on Human Language Technology - Volume 1, NAACL ’03, pages
48–54, Stroudsburg, PA, USA, 2003. Association for Computational
Linguistics.

[101] Yehuda Koren. Factorization meets the neighborhood: A multifaceted
collaborative filtering model. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’08, pages 426–434, New York, NY, USA, 2008. ACM.

[102] Yehuda Koren. Factor in the neighbors: Scalable and accurate
collaborative filtering. ACM Trans. Knowl. Discov. Data, 4(1):1:1–1:24,
January 2010.

[103] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42(8):30–37, August
2009.

References 117

[104] Alexander Kotov and ChengXiang Zhai. Tapping into knowledge base
for concept feedback: Leveraging conceptnet to improve search results
for difficult queries. In Proceedings of the Fifth ACM International
Conference on Web Search and Data Mining, WSDM ’12, pages 403–
412, New York, NY, USA, 2012. ACM.

[105] Ralf Krestel, Peter Fankhauser, and Wolfgang Nejdl. Latent dirichlet
allocation for tag recommendation. In Proceedings of the Third ACM
Conference on Recommender Systems, RecSys ’09, pages 61–68, New
York, NY, USA, 2009. ACM.

[106] Oren Kurland and Lillian Lee. Corpus structure, language models,
and ad hoc information retrieval. In Proceedings of the 27th annual
international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’04, pages 194–201, New York, NY, USA,
2004. ACM.

[107] T. K. Landauer, D. Laham, and M. Derr. From paragraph to graph:
Latent semantic analysis for information visualization. Proceedings of
the National Academy of Sciences of the United States of America,
101(Suppl 1):5214–5219, apr 2004.

[108] Hao Lang, Donald Metzler, Bin Wang, and Jin-Tao Li. Improved
latent concept expansion using hierarchical markov random fields. In
Proceedings of the 19th ACM international conference on Information
and knowledge management, CIKM ’10, pages 249–258, New York, NY,
USA, 2010. ACM.

[109] Victor Lavrenko and W. Bruce Croft. Relevance based language models.
In Proceedings of the 24th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’01,
pages 120–127, New York, NY, USA, 2001. ACM.

[110] Matthew Lease. An improved markov random field model for supporting
verbose queries. In Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval,
SIGIR ’09, pages 476–483, New York, NY, USA, 2009. ACM.

[111] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative
matrix factorization. In T.K. Leen, T.G. Dietterich, and V. Tresp,
editors, Advances in Neural Information Processing Systems 13, pages
556–562. MIT Press, 2001.

[112] Joon Ho Lee. Analyses of multiple evidence combination. In Proceedings
of the 20th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’97, pages 267–276,
New York, NY, USA, 1997. ACM.

118 References

[113] Uichin Lee, Zhenyu Liu, and Junghoo Cho. Automatic identification
of user goals in web search. In Proceedings of the 14th International
Conference on World Wide Web, WWW ’05, pages 391–400, New York,
NY, USA, 2005. ACM.

[114] Gina-Anne Levow, Douglas W. Oard, and Philip Resnik. Dictionary-
based techniques for cross-language information retrieval. Inf. Process.
Manage., 41(3):523–547, May 2005.

[115] Hang Li. Learning to rank for information retrieval and natural language
processing. Synthesis Lectures on Human Language Technologies,
4(1):1–113, 2011.

[116] Hang Li. A short introduction to learning to rank. IEICE TRANSAC-
TIONS on Information and Systems, 94-D(10):1854–1862, 2011.

[117] Hang Li, Gu Xu, W. Bruce Croft, Michael Bendersky, Ziqi Wang,
and Evelyne Viegas. Qru-1: A public dataset for promoting query
representation and understanding research. In Proceedings of the
Workshop on Web Search Click Data, WSCD ’12, 2012.

[118] Mu Li, Yang Zhang, Muhua Zhu, and Ming Zhou. Exploring
distributional similarity based models for query spelling correction.
In Proceedings of the 21st International Conference on Computational
Linguistics and the 44th Annual Meeting of the Association for Compu-
tational Linguistics, ACL-44, pages 1025–1032, Stroudsburg, PA, USA,
2006. Association for Computational Linguistics.

[119] Xiao Li, Ye-Yi Wang, and Alex Acero. Learning query intent from
regularized click graphs. In Proceedings of the 31st Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’08, pages 339–346, New York, NY, USA, 2008. ACM.

[120] Yanen Li, Huizhong Duan, and ChengXiang Zhai. A generalized hidden
markov model with discriminative training for query spelling correction.
In Proceedings of the 35th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’12, pages
611–620, New York, NY, USA, 2012. ACM.

[121] Yanen Li, Bo-Jun Paul Hsu, ChengXiang Zhai, and Kuansan Wang.
Unsupervised query segmentation using clickthrough for information
retrieval. In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
SIGIR ’11, pages 285–294, New York, NY, USA, 2011. ACM.

References 119

[122] Yinghao Li, Wing Pong Robert Luk, Kei Shiu Edward Ho, and
Fu Lai Korris Chung. Improving weak ad-hoc queries using wikipedia
as external corpus. In Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’07, pages 797–798, New York, NY, USA, 2007. ACM.

[123] Zhen Liao, Daxin Jiang, Enhong Chen, Jian Pei, Huanhuan Cao, and
Hang Li. Mining concept sequences from large-scale search logs for
context-aware query suggestion. ACM Trans. Intell. Syst. Technol.,
3(1):17:1–17:40, October 2011.

[124] David Liben-Nowell and Jon Kleinberg. The link-prediction problem
for social networks. J. Am. Soc. Inf. Sci. Technol., 58(7):1019–1031,
May 2007.

[125] Dekang Lin and Patrick Pantel. Discovery of inference rules for
question-answering. Nat. Lang. Eng., 7(4):343–360, December 2001.

[126] Kenneth C Litkowski. Question-answering using semantic relation
triples. In In Proceedings of the 8th Text Retrieval Conference
(TREC-8), pages 349–356, 1999.

[127] H. Liu and P. Singh. Conceptnet — a practical commonsense
reasoning tool-kit. BT Technology Journal, 22(4):211–226, October
2004.

[128] Tie-Yan Liu. Learning to rank for information retrieval. Found. Trends
Inf. Retr., 3(3):225–331, March 2009.

[129] Yumao Lu, Fuchun Peng, Gilad Mishne, Xing Wei, and Benoit
Dumoulin. Improving web search relevance with semantic features. In
Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing: Volume 2 - Volume 2, EMNLP ’09, pages
648–657, Stroudsburg, PA, USA, 2009. Association for Computational
Linguistics.

[130] Zhengdong Lu and Hang Li. A deep architecture for matching short
texts. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems 26, pages 1367–1375. Curran Associates, Inc., 2013.

[131] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval. Cambridge University Press,
New York, NY, USA, 2008.

120 References

[132] K. Tamsin Maxwell and W. Bruce Croft. Compact query term selection
using topically related text. In Proceedings of the 36th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’13, pages 583–592, New York, NY, USA, 2013. ACM.

[133] Qiaozhu Mei, Dengyong Zhou, and Kenneth Church. Query suggestion
using hitting time. In Proceedings of the 17th ACM Conference on
Information and Knowledge Management, CIKM ’08, pages 469–478,
New York, NY, USA, 2008. ACM.

[134] Aditya Krishna Menon and Charles Elkan. Link prediction via matrix
factorization. In Proceedings of the 2011 European Conference on
Machine Learning and Knowledge Discovery in Databases - Volume
Part II, ECML PKDD’11, pages 437–452, Berlin, Heidelberg, 2011.
Springer-Verlag.

[135] Donald Metzler. A Feature-Centric View of Information Retrieval.
Springer, 2012 edition, 2011.

[136] Donald Metzler and W. Bruce Croft. A markov random field model
for term dependencies. In Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’05, pages 472–479, New York, NY, USA, 2005. ACM.

[137] Donald Metzler and W. Bruce Croft. Latent concept expansion using
markov random fields. In Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’07, pages 311–318, New York, NY, USA, 2007. ACM.

[138] Alessandro Moschitti. Efficient convolution kernels for dependency
and constituent syntactic trees. In Proceedings of the 17th European
Conference on Machine Learning, ECML’06, pages 318–329, Berlin,
Heidelberg, 2006. Springer-Verlag.

[139] Alessandro Moschitti and Fabio Massimo Zanzotto. Fast and effective
kernels for relational learning from texts. In Proceedings of the 24th
International Conference on Machine Learning, ICML ’07, pages 649–
656, New York, NY, USA, 2007. ACM.

[140] Jian-Yun Nie. Cross-language information retrieval. Synthesis Lectures
on Human Language Technologies, 3(1):1–125, 2010.

[141] Douglas W Oard and Anne R Diekema. Cross-language information
retrieval. Annual Review of Information Science (ARIST), 33, 1998.

References 121

[142] Franz Josef Och and Hermann Ney. Discriminative training and
maximum entropy models for statistical machine translation. In Pro-
ceedings of the 40th Annual Meeting on Association for Computational
Linguistics, ACL ’02, pages 295–302, Stroudsburg, PA, USA, 2002.
Association for Computational Linguistics.

[143] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The pagerank citation ranking: Bringing order to the web. Technical
Report 1999-66, Stanford InfoLab, November 1999. Previous number =
SIDL-WP-1999-0120.

[144] Deepa Paranjpe. Learning document aboutness from implicit user
feedback and document structure. In Proceedings of the 18th ACM
Conference on Information and Knowledge Management, CIKM ’09,
pages 365–374, New York, NY, USA, 2009. ACM.

[145] Jae Hyun Park, W. Bruce Croft, and David A. Smith. A quasi-
synchronous dependence model for information retrieval. In Proceedings
of the 20th ACM international conference on Information and knowledge
management, CIKM ’11, pages 17–26, New York, NY, USA, 2011. ACM.

[146] Fuchun Peng, Nawaaz Ahmed, Xin Li, and Yumao Lu. Context
sensitive stemming for web search. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’07, pages 639–646, New York, NY, USA,
2007. ACM.

[147] Yonggang Qiu and Hans-Peter Frei. Concept based query expansion.
In Proceedings of the 16th annual international ACM SIGIR conference
on Research and development in information retrieval, SIGIR ’93, pages
160–169, New York, NY, USA, 1993. ACM.

[148] Steffen Rendle. Factorization machines. In Data Mining (ICDM), 2010
IEEE 10th International Conference on, pages 995–1000. IEEE, IEEE
Computer Society, 2010.

[149] Steffen Rendle. Factorization machines with libfm. ACM Trans. Intell.
Syst. Technol., 3(3):57:1–57:22, May 2012.

[150] Stefan Riezler and Yi Liu. Query rewriting using monolingual statistical
machine translation. Comput. Linguist., 36(3):569–582, September
2010.

[151] Eric Sven Ristad and Peter N. Yianilos. Learning string-edit distance.
IEEE Trans. Pattern Anal. Mach. Intell., 20(5):522–532, May 1998.

[152] S. E. Robertson. The Probability Ranking Principle in IR. Journal of
Documentation, 33(4):294–304, 1977.

122 References

[153] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M
Hancock-Beaulieu, and Mike Gatford. Okapi at trec-3. NIST SPECIAL
PUBLICATION SP, pages 109–109, 1995.

[154] Roman Rosipal and Nicole Krämer. Overview and recent advances in
partial least squares. In Proceedings of the 2005 international conference
on Subspace, Latent Structure and Feature Selection, SLSFS’05, pages
34–51, Berlin, Heidelberg, 2006. Springer-Verlag.

[155] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Commun. ACM, 18(11):613–620, November 1975.

[156] Tefko Saracevic. Relevance: A review of and a framework for the
thinking on the notion in information science. Journal of the American
Society for Information Science, 26(6):321–343, 1975.

[157] Tefko Saracevic. Relevance: A review of the literature and a framework
for thinking on the notion in information science. part iii: Behavior and
effects of relevance. J. Am. Soc. Inf. Sci. Technol., 58(13):2126–2144,
November 2007.

[158] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and Beyond.
MIT Press, Cambridge, MA, USA, 2001.

[159] William Robson Schwartz, Aniruddha Kembhavi, David Harwood, and
Larry S. Davis. Human detection using partial least squares analysis. In
IEEE 12th International Conference on Computer Vision, pages 24–31.
IEEE, 2009.

[160] Daniel Sheldon, Milad Shokouhi, Martin Szummer, and Nick Craswell.
Lambdamerge: Merging the results of query reformulations. In
Proceedings of the Fourth ACM International Conference on Web Search
and Data Mining, WSDM ’11, pages 795–804, New York, NY, USA,
2011. ACM.

[161] Dou Shen, Rong Pan, Jian-Tao Sun, Jeffrey Junfeng Pan, Kangheng Wu,
Jie Yin, and Qiang Yang. Query enrichment for web-query classification.
ACM Trans. Inf. Syst., 24(3):320–352, July 2006.

[162] Lixin Shi and Jian-Yun Nie. Using various term dependencies according
to their utilities. In Proceedings of the 19th ACM international
conference on Information and knowledge management, CIKM ’10,
pages 1493–1496, New York, NY, USA, 2010. ACM.

[163] Fabrizio Silvestri. Mining query logs: Turning search usage data into
knowledge. Found. Trends Inf. Retr., 4(1—2):1–174, January 2010.

References 123

[164] Amit Singhal and Fernando Pereira. Document expansion for speech
retrieval. In Proceedings of the 22Nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
SIGIR ’99, pages 34–41, New York, NY, USA, 1999. ACM.

[165] Richard Socher, Eric H. Huang, Jeffrey Pennin, Christopher D Manning,
and Andrew Y. Ng. Dynamic pooling and unfolding recursive
autoencoders for paraphrase detection. In J. Shawe-Taylor, R.S. Zemel,
P.L. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems 24, pages 801–809. Curran
Associates, Inc., 2011.

[166] Ruihua Song, Michael J. Taylor, Ji-Rong Wen, Hsiao-Wuen Hon, and
Yong Yu. Viewing term proximity from a different perspective. In
Proceedings of the IR Research, 30th European Conference on Advances
in Information Retrieval, ECIR’08, pages 346–357. Springer-Verlag,
Berlin, Heidelberg, 2008.

[167] Krysta M. Svore, Pallika H. Kanani, and Nazan Khan. How good
is a span of terms?: exploiting proximity to improve web retrieval.
In Proceedings of the 33rd international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’10, pages
154–161, New York, NY, USA, 2010. ACM.

[168] Bin Tan and Fuchun Peng. Unsupervised query segmentation using
generative language models and wikipedia. In Proceedings of the 17th
international conference on World Wide Web, WWW ’08, pages 347–
356, New York, NY, USA, 2008. ACM.

[169] Tao Tao, Xuanhui Wang, Qiaozhu Mei, and ChengXiang Zhai. Language
model information retrieval with document expansion. In Proceedings
of the Main Conference on Human Language Technology Conference
of the North American Chapter of the Association of Computational
Linguistics, HLT-NAACL ’06, pages 407–414, Stroudsburg, PA, USA,
2006. Association for Computational Linguistics.

[170] Tao Tao and ChengXiang Zhai. An exploration of proximity measures
in information retrieval. In Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’07, pages 295–302, New York, NY, USA, 2007. ACM.

[171] Anastasios Tombros, Ian Ruthven, and Joemon M. Jose. How users
assess web pages for information seeking. J. Am. Soc. Inf. Sci. Technol.,
56(4):327–344, February 2005.

124 References

[172] Kristina Toutanova and Robert C. Moore. Pronunciation modeling
for improved spelling correction. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, ACL ’02, pages
144–151, Stroudsburg, PA, USA, 2002. Association for Computational
Linguistics.

[173] Peter D. Turney. Mining the web for synonyms: Pmi-ir versus
lsa on toefl. In Proceedings of the 12th European Conference on
Machine Learning, EMCL ’01, pages 491–502, London, UK, UK, 2001.
Springer-Verlag.

[174] Ellen M. Voorhees. Query expansion using lexical-semantic relations. In
Proceedings of the 17th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’94,
pages 61–69, New York, NY, USA, 1994. Springer-Verlag New York,
Inc.

[175] Chen Wang, Keping Bi, Yunhua Hu, Hang Li, and Guihong Cao.
Extracting search-focused key n-grams for relevance ranking in web
search. In Proceedings of the fifth ACM international conference on
Web search and data mining, WSDM ’12, pages 343–352, New York,
NY, USA, 2012. ACM.

[176] Hao Wang, Zhengdong Lu, Hang Li, and Enhong Chen. A dataset
for research on short-text conversations. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing,
EMNLP ’13, pages 935–945. ACL, 2013.

[177] Jianqiang Wang and Douglas W. Oard. Matching meaning for cross-
language information retrieval. Inf. Process. Manage., 48(4):631–653,
July 2012.

[178] Kai Wang, Zhaoyan Ming, and Tat-Seng Chua. A syntactic tree
matching approach to finding similar questions in community-based
qa services. In Proceedings of the 32Nd International ACM SIGIR
Conference on Research and Development in Information Retrieval,
SIGIR ’09, pages 187–194, New York, NY, USA, 2009. ACM.

[179] Quan Wang, Zheng Cao, Jun Xu, and Hang Li. Group matrix
factorization for scalable topic modeling. In Proceedings of the 35th
international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’12, pages 375–384, New York, NY, USA,
2012. ACM.

References 125

[180] Quan Wang, Jun Xu, Hang Li, and Nick Craswell. Regularized latent
semantic indexing. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval,
SIGIR ’11, pages 685–694, New York, NY, USA, 2011. ACM.

[181] Quan Wang, Jun Xu, Hang Li, and Nick Craswell. Regularized latent
semantic indexing: A new approach to large-scale topic modeling. ACM
Trans. Inf. Syst., 31(1):5:1–5:44, January 2013.

[182] Xuanhui Wang and ChengXiang Zhai. Mining term association patterns
from search logs for effective query reformulation. In Proceedings of
the 17th ACM Conference on Information and Knowledge Management,
CIKM ’08, pages 479–488, New York, NY, USA, 2008. ACM.

[183] Ziqi Wang, Gu Xu, Hang Li, and Ming Zhang. A fast and accurate
method for approximate string search. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human
Language Technologies - Volume 1, HLT ’11, pages 52–61, Stroudsburg,
PA, USA, 2011. Association for Computational Linguistics.

[184] Xing Wei and W. Bruce Croft. Lda-based document models for
ad-hoc retrieval. In Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’06, pages 178–185, New York, NY, USA, 2006. ACM.

[185] Ji-Rong Wen, Jian-Yun Nie, and Hong-Jiang Zhang. Clustering user
queries of a search engine. In Proceedings of the 10th international
conference on World Wide Web, WWW ’01, pages 162–168, New York,
NY, USA, 2001. ACM.

[186] Haocheng Wu, Yunhua Hu, Hang Li, and Enhong Chen. Query seg-
mentation for relevance ranking in web search. CoRR, abs/1312.0182,
2013.

[187] Wei Wu, Hang Li, and Jun Xu. Learning query and document
similarities from click-through bipartite graph with metadata. In
Proceedings of the Sixth ACM International Conference on Web Search
and Data Mining, WSDM ’13, pages 687–696, New York, NY, USA,
2013. ACM.

[188] Wei Wu, Zhengdong Lu, and Hang Li. Learning bilinear model for
matching queries and documents. J. Mach. Learn. Res., 14(1):2519–
2548, January 2013.

[189] Wei Wu, Jun Xu, Hang Li, and Satoshi Oyama. Learning a robust
relevance model for search using kernel methods. J. Mach. Learn. Res.,
12:1429–1458, July 2011.

126 References

[190] Gu Xu, Shuang-Hong Yang, and Hang Li. Named entity mining from
click-through data using weakly supervised latent dirichlet allocation.
In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’09, pages 1365–1374, New
York, NY, USA, 2009. ACM.

[191] Jingfang Xu and Gu Xu. Learning similarity function for rare queries. In
Proceedings of the fourth ACM international conference on Web search
and data mining, WSDM ’11, pages 615–624, New York, NY, USA,
2011. ACM.

[192] Jinxi Xu and W. Bruce Croft. Query expansion using local and global
document analysis. In Proceedings of the 19th annual international
ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’96, pages 4–11, New York, NY, USA, 1996. ACM.

[193] Jun Xu, Hang Li, and Chaoliang Zhong. Relevance ranking using
kernels. In Pu-Jen Cheng, Min-Yen Kan, Wai Lam, and Preslav Nakov,
editors, Information Retrieval Technology, volume 6458 of Lecture Notes
in Computer Science, pages 1–12. Springer Berlin Heidelberg, 2010.

[194] Jun Xu, Wei Wu, Hang Li, and Gu Xu. A kernel approach to addressing
term mismatch. In Proceedings of the 20th international conference
companion on World wide web, WWW ’11, pages 153–154, New York,
NY, USA, 2011. ACM.

[195] Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on
non-negative matrix factorization. In Proceedings of the 26th Annual
International ACM SIGIR Conference on Research and Development in
Informaion Retrieval, SIGIR ’03, pages 267–273, New York, NY, USA,
2003. ACM.

[196] Gui-Rong Xue, Hua-Jun Zeng, Zheng Chen, Yong Yu, Wei-Ying Ma,
WenSi Xi, and WeiGuo Fan. Optimizing web search using web
click-through data. In Proceedings of the Thirteenth ACM International
Conference on Information and Knowledge Management, CIKM ’04,
pages 118–126, New York, NY, USA, 2004. ACM.

[197] Xiaobing Xue, Yu Tao, Daxin Jiang, and Hang Li. Automatically mining
question reformulation patterns from search log data. In Proceedings of
the 50th Annual Meeting of the Association for Computational Linguis-
tics: Short Papers - Volume 2, ACL ’12, pages 187–192, Stroudsburg,
PA, USA, 2012. Association for Computational Linguistics.

References 127

[198] Kenji Yamada and Kevin Knight. A syntax-based statistical translation
model. In Proceedings of the 39th Annual Meeting on Association for
Computational Linguistics, ACL ’01, pages 523–530, Stroudsburg, PA,
USA, 2001. Association for Computational Linguistics.

[199] Yin Yang, Nilesh Bansal, Wisam Dakka, Panagiotis Ipeirotis, Nick
Koudas, and Dimitris Papadias. Query by document. In Proceedings
of the Second ACM International Conference on Web Search and Data
Mining, WSDM ’09, pages 34–43, New York, NY, USA, 2009. ACM.

[200] Xing Yi and James Allan. A comparative study of utilizing topic
models for information retrieval. In Proceedings of the 31th European
Conference on IR Research on Advances in Information Retrieval, ECIR
’09, pages 29–41, Berlin, Heidelberg, 2009. Springer-Verlag.

[201] Xing Yi and James Allan. Discovering missing click-through query
language information for web search. In Proceedings of the 20th ACM
International Conference on Information and Knowledge Management,
CIKM ’11, pages 153–162, New York, NY, USA, 2011. ACM.

[202] Wen-tau Yih, Kristina Toutanova, John C. Platt, and Christopher
Meek. Learning discriminative projections for text similarity measures.
In Proceedings of the Fifteenth Conference on Computational Natural
Language Learning, CoNLL ’11, pages 247–256, Stroudsburg, PA, USA,
2011. Association for Computational Linguistics.

[203] Fabio massimo Zanzotto, Marco Pennacchiotti, and Alessandro Mos-
chitti. A machine learning approach to textual entailment recognition.
Nat. Lang. Eng., 15(4):551–582, October 2009.

[204] ChengXiang Zhai. Statistical language models for information retrieval
a critical review. Found. Trends Inf. Retr., 2(3):137–213, March 2008.

[205] Xian Zhang, Yu Hao, Xiaoyan Zhu, Ming Li, and David R. Cheriton.
Information distance from a question to an answer. In Proceedings of the
13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’07, pages 874–883, New York, NY, USA, 2007.
ACM.

[206] Le Zhao and Jamie Callan. Term necessity prediction. In Proceedings of
the 19th ACM international conference on Information and knowledge
management, CIKM ’10, pages 259–268, New York, NY, USA, 2010.
ACM.

[207] Le Zhao and Jamie Callan. Automatic term mismatch diagnosis for
selective query expansion. In Proceedings of the 35th international
ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’12, pages 515–524, New York, NY, USA, 2012. ACM.

