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ABSTRACT
The user feedbacks could be delayed in many streaming recom-

mendation scenarios. As an example, the user feedbacks to a rec-

ommended coupon consist of the immediate feedback on the click

event and the delayed feedback on the resultant conversion. The
delayed feedbacks pose a challenge of training recommendation

models using instances with incomplete labels. When being applied

to real products, the challenge becomes more severe as the stream-

ing recommendation models need to be retrained very frequently

and the training instances need to be collected over very short time

scales. Existing approaches either simply ignore the unobserved

feedbacks or heuristically adjust the feedbacks on a static instance

set, resulting in biases in the training data and hurting the accuracy

of the learned recommenders. In this paper, we propose a novel

and theoretic sound counterfactual approach to adjusting the user

feedbacks and learning the recommendation models, called CBDF

(Counterfactual Bandit with Delayed Feedback). CBDF formulates

the streaming recommendation with delayed feedback as a prob-

lem of sequential decision making and models it with a batched

bandit. To deal with the issue of delayed feedback, at each iteration

(episode), a counterfactual importance sampling model is employed

to re-weight the original feedbacks and generate the modified re-

wards. Based on the modified rewards, a batched bandit is learned

for conducting online recommendation at the next iteration. Theo-

retical analysis showed that the modified rewards are statistically

unbiased, and the learned bandit policy enjoys a sub-linear regret

bound. Experimental results demonstrated that CBDF can outper-

form the state-of-the-art baselines on a synthetic dataset, the Criteo

dataset, and a dataset from Tencent’s WeChat app.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Reinforcement learning.
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1 INTRODUCTION
In streaming recommender systems, the models need to be updated

frequently on fresh user feedbacks, in order to prevent them from

becoming stale [8, 9, 18, 21, 37, 38]. In some applications, the user

feedbacks may have not yet occurred when the training data are

collected in a short period, resulting in themissing of a large number

of user feedback events. We refer to this category of limited user

feedback due to the time delay as the delayed feedback.
Streaming recommendation with delayed feedback is ubiqui-

tous in real applications. Let’s use coupon recommendation as an

example. After a user clicks a recommended coupon (immediate

feedback), she may use the coupon after some time (delayed conver-

sion), or just leave it there (no conversion). Figure 1 shows the delay

statistics of coupon recommendation in the Tencent’s social media

app, WeChat, where the blue histogram represents the percentage

of conversion events w.r.t. different time intervals. We observed

that a large proportion (almost 70%) of the conversion feedbacks

are delayed (i.e., after the 0-th day).

Usually, the streaming recommendation models are trained on

the log data collected in a short period of time (e.g., one day or

several days). It is inevitable that there exist a large number of

incompletely labeled instances in the training data because their

conversion events could be delayed to the time after the data collec-

tion. Studies have shown that the incompletely labeled instances

may seriously hurt the model training. Figure 2 shows an empir-

ical study where a series of LinUCB [22] models were trained on

a dataset with controlled proportions of delayed feedbacks. The

LinUCB simply treats the incompletely labeled instances as no

conversion. We observed that the recommendation performance

steadily decreased with the increase of the proportion of delayed

feedbacks (PRDF). The results clearly indicate that the delayed feed-

backs could be damaging in terms of hurting the model training.

A common approach to training streaming recommendation

models with delayed feedback is ignoring the unobserved feed-

backs and directly employing the typical online learning algorithms

https://doi.org/10.1145/3404835.3462892
https://doi.org/10.1145/3404835.3462892


0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Day

Pe
rc

en
ta

ge
 o

f C
on

ve
rs

io
n 

Ev
en

ts

Figure 1: Percentage of coupon conversion events w.r.t. the
number of days after users clicking the coupons, based on
the data collected fromTencent’sWeChat. The orange curve
indicates that the delay time approximately follows an expo-
nential distribution.

[15, 16, 34]. These algorithms usually need to wait for a period of

time until the delayed feedback could be correctly observed. In real-

world applications, waiting a long time before training is usually

not realistic, and only a small proportion of true feedbacks can

be observed in the training set. There are also studies that heuris-

tically adjusts the feedbacks on a static set of passively-received

log data [10, 21, 27, 40, 41]. These approaches are designed under

the batch learning framework, without considering the streaming

nature of data in streaming recommendation. More importantly,

in all of these models, the feedback distributions of the training

instances are different from the real user feedback, resulting in high

biases in reward estimation.

In this paper, we propose a novel and theoretical sound coun-

terfactual approach to streaming recommendation with delayed

feedback. To achieve unbiased estimates of the true rewards, we

propose to estimate the delayed feedbacks through re-weighting

the observed feedbacks with importance sampling. By dividing the

collected user feedbacks with a counterfactual deadline, a survival

model is estimated and subsequently used to determine the sam-

pling weights. The approach, referred to as CBDF, formalizes the

recommendation under delayed feedback as a problem of sequential

decision making and is modeled as a batch bandit. At each iteration,

it repeatedly performs the rewardmodification, updates the batched

banditmodel with themodified rewards, makes online recommenda-

tions, and collects user feedbacks for the next iteration. Theoretical

analysis shows that the modified rewards are statistically unbiased,

and the training of the batched bandit enjoys a sublinear regret

bound. Experimental results based on a synthetic dataset, Criteo

benchmark, and a real dataset collected from Tencent’s WeChat

showed that CBDF can outperform the state-of-the-art baselines

in terms of the recommendation accuracy and convergence rate.

Empirical analysis also verified the correctness of the theoretical

conclusions.

2 RELATEDWORK
Learning with Delayed Feedback has received considerable at-

tention in the studies of predicting click-through rate (CTR) or

conversion rate (CVR). Chapelle [10] assumed that the delay distri-

bution is exponential, and proposed two generalized linear models

for predicting the CVR and the delay time, respectively. This study

has been extended to a nonparametric delayed model using the

kernel density estimation [41]. Ktena et al. [21] focused on the
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Figure 2: Recommendation performance (average reward) of
LinUCB [22] w.r.t. the round of interaction between LinUCB
and synthetic environment in Section 6.2, where the rewards
are convex combinations of the click reward and the conver-
sion reward (Eq. (1)). “PRDF” means the proportion of de-
layed feedbacks, i.e., the proportion of the number of hidden
conversion events to the total number of conversion events.

CTR prediction problem in the presence of delayed feedbacks and

compared different combinations of losses and models. Saito et al.

[27] presented a dual learning algorithm for CVR prediction under

delayed feedback, in which a CVR predictor and a biased estimator

can be learned alternately using the observed conversions. Yasui

et al. [40] reduced the delayed feedback problem to a feedback shift

problem, which formulates a consistent empirical risk and corrected

the delayed feedbacks using importance weighting.

Multi-Armed Bandits with Delayed Feedback has attracted

much research efforts in recent years. Vernade et al. [34] proposed

stochastic bandits for the uncensored and censored feedbacks un-

der the assumption that the distribution of delay is known. Héliou

et al. [16] introduced a gradient-free online learning algorithm

with delayed feedback, where the action space is compact and

convex. Grover et al. [13] demonstrated that the high sample com-

plexity of bandits under delayed feedback can be offset when the

partial feedbacks are received. Bistritz et al. [5] showed the aver-

age strategy results in a Nash equilibrium under delayed feedback.

Delayed feedback has also been studied in the context of Markov

Decision Process (MDP) [20, 35]. Though contextual bandit has

been extensively studied and the representative models include

LinUCB [22, 28], EXP4 [4, 7], LinEXP3 [3, 24], etc. Applying them

to the recommendation with delayed feedback is still hard due to

the complex delay mechanisms and user behaviors.

3 BATCHED BANDIT FOR RECOMMENDATION
3.1 Problem Formulation
Streaming recommendation with delayed feedback can be formu-

lated as a problem of sequential decision making. As shown in

Figure 3, at each iteration, a batch of log data which consists of the

decision history from recommendation models and the feedbacks

(may be delayed) from users is collected. The recommendation

model is updated incrementally using the batch data. Usually, the

recommendation model is updated periodically (e.g., every 𝑋 hours

or days). New recommendations are made based on the updated
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Figure 3: Sequential decision making under delayed feedback.

model, and the results and user feedbacks are collected for further

updating the model.

In this paper, we propose to formulate the process as a batched

bandit which can be represented by a 7-tuple ⟨S,A, 𝜋, 𝑅,𝛾, 𝑁 , 𝐵⟩:
Context spaceS ⊆ R𝑑 denotes a context space that summarizes

the information of both the user and items.

Action space A denotes a given action space and each action

(arm) corresponds to a candidate item. Choosing an action 𝐴 ∈ A
means that the corresponding item is recommended.

Policy 𝝅 describes the behaviors of an agent, which is a function

of the input context 𝑆 ∈ S and output a distribution over actions

A. 𝝅 determines which action to take.

Reward 𝑅: in this paper, the reward is defined as a linear com-

bination of two feedbacks: (a) The immediate feedback which can

be immediately observed once the action is executed, coming from

the user click event. The immediate feedback is determined by an

observed variable 𝐶 ∈ {0, 1}. The click timestamp of 𝐶 occurs, de-

noted as 𝑐 , is also stored; (b) The delayed feedback which is received

at some time between the click timestamp and the data collection

timestamp, coming from the resultant conversion event. The de-

layed feedback is determined by an observed variable 𝑌 ∈ {0, 1}. It
is obvious that 𝑌 = 0 if 𝐶 = 0. Different from the immediate feed-

back, 𝑌 = 0 does not mean no conversion because the conversion

may occur after the data collection time. Let’s use the true (may

unobservable) variable 𝑉 ∈ {0, 1} to denote whether a conversion

will eventually occur, and a delayed variable 𝐷 ∈ {0, 1} to denote

whether a conversion can be correctly observed. It is also easy to

know that 𝑌 = 𝐷 ×𝑉 if 𝑉 = 1 and 𝑌 = 0 otherwise.

Delay time 𝛾 is the time between the click timestamp and its

resultant conversion timestamp, which is unobservable when 𝑌 = 0

and 𝑉 = 1 . In addition, we denote the following-up time by an

observed variable 𝑒 , which is the time between the click timestamp,

and the smaller value of the data collection timestamp and the

conversion timestamp. It is obvious that 𝛾 = 𝑒 when users convert

before data collection.

Number of episodes 𝑁 . The decision process of a batched ban-

dit is partitioned into 𝑁 episodes. Within an episode, the agent

updates the policy using the collected data, and then interacts with

users for multiple steps using the updated policy.

Batch size 𝐵 is the number of steps in each episode. That is, in

each episode, the agent interacts with the users 𝐵 times using a fixed

Table 1: A summary of notations.

Symbol Explanation

𝐶 ∈ {0, 1}
Observed variable indicating whether

a click event occurs with its click timestamp 𝑐

𝑌 ∈ {0, 1}
Observed variable indicating whether

a conversion occurs before the data is collected

𝑉 ∈ {0, 1}
True variable indicating whether a conversion

will eventually occur (may be unobserved)

𝐷 ∈ {0, 1}
Delayed variable indicating whether a conversion

can be correctly observed (may be unobserved)

𝛾 ∈ R+ ∪ {0}
Delay time between the click and

its resultant conversion (may be unobserved)

𝑒 ∈ R+ ∪ {0}
Following-up time since the click

(equals the delay time when user converts)

𝑁 , 𝐵 Number of episodes, batch size, respectively

policy, collects mini-batch data, and stores them into a data buffer

D = {(𝑆𝑖 , 𝐴𝑖 ,𝐶𝑖 , 𝑌𝑖 , 𝑐𝑖 , 𝑒𝑖 )}𝐵𝑖=1 at the end of each episode. Finally, a

new policy is trained on D at the beginning of the next episode.

Table 1 summarizes the notations used throughout the paper.

3.2 Problem Analysis
At each step of an episode, the agent observes a new context,

chooses an action, and receives a reward that includes two parts:

an immediate feedback and a delayed feedback. The agent in the

batched bandit can only wait for the delayed feedbacks for at most

𝐵 steps. As a result, the delayed feedbacks will be missing if the

conversion events occur after the end of this episode. That is, the

system observed 𝑌 = 0 while the true feedback could be 𝑉 = 1.

Ideally, the recommendation model would be trained using the

rewards based on the true delayed feedback 𝑉 ’s. In practice, how-

ever, 𝑉 is unobservable. Directly using the observed feedback 𝑌 ’s

inevitably introduces bias in training and hurts the model accuracy.

In the next section, we propose a novel counterfactual reward mod-

ification approach that adjusts the user feedbacks before training

so that the bias can be relieved.

4 COUNTERFACTUAL BANDIT WITH
DELAYED FEEDBACK

In this section, we propose a novel counterfactual approach tailored

for streaming recommendation with delayed feedback, called CBDF

(Counterfactual Bandit with Delayed Feedback).

4.1 Algorithm Overview
Figure 4 illustrates the overall algorithm architecture of CBDF. In

each episode, given the collected data bufferD, the agent re-weights

the delayed feedback for each record in D, obtaining the modified

reward 𝑅mod
and a counterfactual buffer Dmod

. A new policy 𝝅 is

then updated onDmod
for the recommendation in the next episode.

Algorithm 1 shows the detailed procedure. It takes batch size,

number of episodes, counterfactual deadline parameter, and action

space as inputs. After the initialization, the main loop of CBDF
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Figure 4: The𝑛-th episode of the proposed counterfactual ap-
proach to learning batched bandits with delayed feedback.

Algorithm 1: Counterfactual Bandit with Delayed Feed-

back (CBDF)

Require: Batch size 𝐵, number of episodes 𝑁 , counterfactual

deadline parameter 𝐶𝜉 , action space A = {𝐴 𝑗 } 𝑗 ∈[𝑀 ] , where
[𝑀] := {1, 2, . . . , 𝑀}

1: Initialize policy 𝝅0 ← 1/𝑀
2: Sample data buffer D1 = {(𝑆0,𝑏 , 𝐴𝐼0,𝑏 ,𝐶0,𝑏 , 𝑌0,𝑏 , 𝑐0,𝑏 , 𝑒0,𝑏 )}𝐵𝑏=1

using 𝝅0 during timestamps 𝑡 str
1

and 𝑡end
1

3: for 𝑛 = 1 to 𝑁 do
4: // Counterfactual Reward Modification
5: 𝜉 ← 𝐶𝜉 × (𝑡end𝑛 − 𝑡 str𝑛 ) + 𝑡 str𝑛 {counterfactual deadline}

6: Dmod

𝑛 ← CRM(D𝑛, 𝜉,A) {Algorithm 2}

7: // Batch Policy Updating
8: Obtain 𝝅𝑛 using batch policy updating Eq. (11) on Dmod

𝑛

9: // Online Recommendation
10: for 𝑏 = 1 to 𝐵 do
11: Observe context 𝑆𝑛,𝑏
12: Choose 𝐴𝐼𝑛,𝑏 ∈ A following 𝝅𝑛 (𝑆𝑛,𝑏 ) using Eq. (12)

13: end for
14: D𝑛+1 ← {(𝑆𝑛,𝑏 , 𝐴𝐼𝑛,𝑏 ,𝐶𝑛,𝑏 , 𝑌𝑛,𝑏 , 𝑐𝑛,𝑏 , 𝑒𝑛,𝑏 )}𝐵𝑏=1
15: 𝑡 str

𝑛+1, 𝑡
end

𝑛+1 ← start and end timestamps of collecting D𝑛+1
16: end for

repeatedly conducts three operations: counterfactual reward mod-

ification, batch policy updating, and online recommendation: (1)

the counterfactual reward modification tries to eliminate the bias in

the delayed feedbacks using counterfactual importance sampling;

(2) the batch policy updating approximates the optimal policy for

streaming recommendation based on the modified rewards; (3) the

online recommendation offers recommendations on items to users

following the updated policy (for 𝐵 steps), and collects the context-

action pairs, observed feedbacks (𝑌 and 𝐶), click timestamp 𝑐 , and

following-up time 𝑒 .

Next, we specify these operations with details. For convenience,

we will simplify the subscripts of elements in the data buffer as

(𝑆𝑖 , 𝐴𝑖 ,𝐶𝑖 , 𝑌𝑖 , 𝑐𝑖 , 𝑒𝑖 ) if not specified.

4.2 Counterfactual Reward Modification
Intuitively, the reward can be calculated as a linear combination of

the immediate feedback and the delayed feedback:

𝑅 = 𝜆𝑅 + (1 − 𝜆)𝑅, (1)

where 𝑅 = 𝐶 ∈ {0, 1} indicates the immediate feedback on whether

the user skips or clicks the presented item, and 𝑅 = 𝑌 ∈ {0, 1}
indicates the delayed feedback whether the user converts using this

item after the click events and before the data collection time, and

𝜆 ∈ [0, 1) is a weighting coefficient.

4.2.1 Importance Sampling for Delayed Rewards. Given a context

𝑆 ∈ S ⊆ R𝑑 , the delayed feedback can be expressed as a delayed

reward function 𝑅(𝑆,𝑌 ) . As mentioned in the previous sections,

the observed variable 𝑌 will not be consistent with the true but

unobservable variable𝑉 if the user conversion occurs after the data

collection time, resulting in the issue of biased delayed rewards. Ide-
ally, the goal of recommendation would be maximizing the expected
true delayed reward,

E𝑉

[
𝑅(𝑆,𝑉 )

]
= Pr {𝑉 = 1 | 𝑆} , (2)

rather than the expected biased delayed reward

E𝑌

[
𝑅(𝑆,𝑌 )

]
= Pr {𝑌 = 1 | 𝑆} , (3)

where 𝑅(𝑆,𝑉 ) denotes the true delayed reward based on the true

variable 𝑉 , and 𝑅(𝑆,𝑌 ) denotes the biased delayed reward based

on the observed variable 𝑌 . Since those users whose 𝑌 = 0 may

eventually convert (i.e., 𝑉 = 1) after the data collection timestamp,

resulting Pr {𝑌 = 1 | 𝑆} ≤ Pr {𝑉 = 1 | 𝑆} that introduces the bias.
Instead of directly using the biased delayed rewards, we propose

to modify the biased delayed rewards using importance sampling [6,

30, 40], obtaining the modified delayed rewards:

𝑅mod (𝑆,𝑌 ) = 𝑤𝑅(𝑆,𝑌 ),

where𝑤 is the importance weights which is defined as

𝑤 =
Pr {𝑉 = 1 | 𝑆}
Pr {𝑌 = 1 | 𝑆} . (4)

Therefore, the orignal reward in Eq. (1) becomes themodified reward:

𝑅mod (𝑆,𝑌 ) = 𝜆𝑅 + (1 − 𝜆)𝑅mod (𝑆,𝑌 ). (5)

Please note that the modified rewards 𝑅mod (𝑆,𝑌 ) may be larger

than 1 since it is possible that the importance weight𝑤 ≥ 1. The

intuition is that an observed conversion in delayed feedback envi-

ronments deserves a higher reward than that of in full-information.

We show that themodified delayed rewards using the importance

weights in Eq. (4) are unbiased when estimating the expected true

delayed reward, shown in Theorem 4.1.

Theorem 4.1 (Unbiasedness of Reward Estimation). For any
context 𝑆 ∈ S, the modified delayed reward is an unbiased estimate
of the expected true delayed reward, i.e.,

E𝑌

[
𝑅mod (𝑆,𝑌 )

]
= E𝑉

[
𝑅(𝑆,𝑉 )

]
. (6)

Let [𝑇 ] := {1, 2, . . . ,𝑇 }. If the important weights𝑤𝑖 ≤ 𝑤max, 𝑖 ∈ [𝑇 ]



and for a sequence of i.i.d contexts {𝑆𝑖 }𝑇𝑖=1 the rewards are indepen-
dent1, then with probability at least 1 − 𝛿����� 1𝑇 𝑇∑

𝑖=1

𝑅mod (𝑆𝑖 , 𝑌𝑖 ) − E𝑆,𝑉
[
𝑅(𝑆,𝑉 )

] ����� ≤ 𝑤max√
𝑇

√
1

2

ln

2

𝛿
. (7)

Proof of Theorem 4.1 can be found in the Appendix A.1. The

probabilistic error bound of Eq. (7) indicates that the mean of modi-

fied delayed rewards converges to the expected true delayed reward

with a convergence rate of order 𝑇−1/2, and a smaller𝑤max incurs

a tighter error bound.

4.2.2 Counterfactual Estimation of Importance Weights. Directly
computing the importance weight in Eq. (4) is intractable because

𝑉 is an unobservable variable. Inspired by [40], we proposed a

counterfactual learning approach to predicting the weight 𝑤 . As

shown in Figure 5, given a set of records collected from the previous

episodeD = {(𝑆𝑖 , 𝐴𝑖 ,𝐶𝑖 , 𝑌𝑖 , 𝑐𝑖 , 𝑒𝑖 )}𝐵𝑖=1 (collected during timestamps

𝑡 str and 𝑡end), we introduce a counterfactual deadline 𝜉 ∈ (𝑡 str, 𝑡end)
which simulates a virtual data collection timestamp, and splits D
into the observed set and hold-out set. Then, the instances from the

observed set whose conversions can be found in D (i.e., 𝑌 = 1)

are selected as the training instances. The conversions occurring

in the hold-out set are considered as the delayed while ‘observed’

true variable 𝑉 . Prediction models parameterized by {𝜷𝐴}𝐴∈A are

learned based on the selected instances, which are further employed

to predict the importance weights for all the instances from D.

Specifically, given the 𝑖-th instance (𝑆𝑖 , 𝐴𝑖 ,𝐶𝑖 , 𝑌𝑖 , 𝑐𝑖 , 𝑒𝑖 ) in D, its

modified reward in Eq. (5) can be simplified as 𝑅mod

𝑖
= 𝜆𝐶𝑖 + (1 −

𝜆)𝑤𝑖𝑌𝑖 , and the 𝑖-th importance weight𝑤𝑖 can be represented as

𝑤𝑖 =
Pr {𝑉𝑖 = 1 | 𝑆𝑖 }
Pr {𝑌𝑖 = 1 | 𝑆𝑖 }

=
1

Pr {𝐷𝑖 = 1 | 𝑉𝑖 = 1, 𝑆𝑖 }
(8)

=
1

1 − Pr {𝐷𝑖 = 0 | 𝑉𝑖 = 1, 𝑆𝑖 }
=

1

1 − exp
{
− exp(⟨𝜷𝐴𝑖

, 𝑆𝑖 ⟩)𝑒𝑖
} ,

where: (a) 𝐷𝑖 is the delayed variable indicating whether the 𝑖-th

conversion can be correctly observed, and Pr {𝐷𝑖 = 0 | 𝑉𝑖 = 1, 𝑆𝑖 }
means the𝑉𝑖 being incorrectly observed given the context 𝑆𝑖 ; (b) the

last equality uses a survival distribution model to represent the

conditional probability, by assuming the distribution of delayed

conversions can be approximated using exponential distributions

(cf. Figure 1), where ℎ𝐴𝑖
(𝑆𝑖 ) := exp(⟨𝜷𝐴𝑖

, 𝑆𝑖 ⟩) is the hazard func-

tion [19, 39], 𝜷𝐴𝑖
∈ R𝑑 is the model parameters corresponding to

action𝐴𝑖 .ℎ𝐴𝑖
(𝑆𝑖 )𝑒𝑖 can be explained as an estimate of the logarithm

probability that 𝑉𝑖 = 1 is unobserved within time span 𝑒𝑖 .

Then, we construct a subset of the observed set for training the

prediction models {𝜷𝐴}𝐴∈A . Using the counterfactual deadline 𝜉 ,
D is split into an observed set (indexed by {𝑖 : 𝑐𝑖 ≤ 𝜉, 𝑖 ∈ [𝐵]}) and
a hold-out set, where 𝑐𝑖 is the click timestamp of 𝑆𝑖 in D. From the

observed set, we further select some instances as the training set

D𝐴 = {(𝑆𝑖 , 𝐴𝑖 , 𝑌𝑖 , 𝑐𝑖 , 𝑌
obs

𝑖 , 𝑒obs𝑖 ) : 𝑐𝑖 ≤ 𝜉, 𝑌𝑖 = 1, 𝐴𝑖 = 𝐴, 𝑖 ∈ [𝐵]}
for all 𝐴 ∈ A, where 𝑌𝑖 = 1 indicates the conversion of the 𝑖-th

instance can be found in D, either in the observed set or in the

hold-out set;𝑌 obs

𝑖
indicates whether the conversion can be observed

1
The conditional independence assumption of the rewards is commonly used in the

bandits literature, which can be ensured using a master algorithm as a theoretical

construct [2, 11].
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strt endt

Figure 5: Data partition in counterfactual deadline approach
in each episode, where 𝑌 obs indicates whether the conver-
sion can be observed before the counterfactual deadline, 𝑒obs

is the counterfactual following-up time since the click event,
and 𝑞 is the number of instances in the observed set.

before the counterfactual deadline given the context 𝑆𝑖 , i.e., 𝑌
obs

𝑖
={

1 𝑐𝑖 + 𝑒𝑖 ≤ 𝜉

0 otherwise

, and 𝑒obs
𝑖

= min{𝜉 − 𝑐𝑖 , 𝑒𝑖 } is the counterfactual

following-up time since the click event.

Note that 𝑌𝑖 = 1 for all of the instances in D𝐴 . Therefore,

𝑌 obs

𝑖
= 0 also means the variable 𝑌𝑖 can not be correctly observed

in the observed set, i.e., the unobservable variable 𝐷𝑖 = 0 if the

data collection timestamp is set as the counterfactual deadline.

Motivated by this observation, D𝐴 can be used to estimate the

importance weight in Eq. (8) because it is also represented by the

variable 𝐷𝑖 . More specifically, for each action𝐴 ∈ A, the maximum

likelihood estimate of 𝜷𝐴 can be found by minimizing a negative

log-likelihood
2

𝜷𝐴 ← argmin

𝜷 ∈R𝑑
L𝜷 (D𝐴)

:=

|D𝐴 |∑
𝑖=1

{
(1 − 𝑌 obs

𝑖 )ℎ𝑖𝑒
obs

𝑖 − 𝑌 obs

𝑖 ln

[
1 − exp

(
−ℎ𝑖𝑒obs𝑖

)]}
,

(9)

where |D𝐴 | denotes the size of the action-specific training set D𝐴 ,

and ℎ𝑖 = exp(⟨𝜷, 𝑆𝑖 ⟩) the hazard function specific to 𝑆𝑖 and 𝜷 ,
and ℎ𝑖𝑒

obs

𝑖
denotes the estimate of the logarithm probability that

𝑌 obs

𝑖
= 0 (i.e., 𝑉𝑖 = 1 is unobserved within time span 𝑒obs

𝑖
).

Finally, given the prediction models {𝜷𝐴}𝐴∈A and Eq. (8), the

modified reward for the 𝑖-th instance in D can be predicted as

𝑅mod

𝑖 = 𝜆𝐶𝑖 +
(1 − 𝜆)𝑌𝑖

1 − exp
{
− exp(⟨𝜷𝐴𝑖

, 𝑆𝑖 ⟩)𝑒𝑖
} . (10)

We summarize the above steps in Algorithm 2, called CRM.

4.3 Model Training and Online Recommendation
Based on the modified rewards, the batch policy updating in [14]

can be employed for updating the batch policy and conducting

online recommendation.

4.3.1 Batch Policy Updating. In the 𝑛-th episode, for each action

𝐴 ∈ A, we store the context vectors and modified rewards into

𝑺𝑛−1
𝐴
∈ R𝑁𝑛−1

𝐴
×𝑑

and 𝑹𝑛−1
𝐴
∈ R𝑁𝑛−1

𝐴 , respectively, where 𝑁𝑛−1
𝐴

denotes the number of times action 𝐴 has been executed at the

end of this episode. Then we can update the covariance matrix

incrementally as 𝚽
𝑛
𝐴

= 𝚽
𝑛−1
𝐴
+ 𝑺𝑛−1⊺

𝐴
𝑺𝑛−1
𝐴

corresponding to the

2
We update the parameter 𝜷𝐴 using the gradient descent on D𝐴 , and set the updated

𝜷𝐴 as the initial value of the next episode.



Algorithm 2: Counterfactual Reward Modification (CRM)

Require: Buffer D = {(𝑆𝑖 , 𝐴𝑖 ,𝐶𝑖 , 𝑌𝑖 , 𝑐𝑖 , 𝑒𝑖 )}𝐵𝑖=1, counterfactual
deadline 𝜉 , action space A

Ensure: Counterfactual buffer Dmod = {(𝑆𝑖 , 𝐴𝑖 , 𝑅
mod

𝑖
)}𝐵

𝑖=1
1: Initialize D𝐴 ← ∅, for all 𝐴 ∈ A
2: for each action 𝐴 ∈ A do
3: for 𝑖 ∈ {𝑖 : 𝑐𝑖 ≤ 𝜉, 𝑌𝑖 = 1, 𝐴𝑖 = 𝐴, 𝑖 ∈ [𝐵]} do

4: 𝑌 obs

𝑖
←

{
1 𝑐𝑖 + 𝑒𝑖 ≤ 𝜉

0 otherwise

, 𝑒obs
𝑖
← min{𝜉 − 𝑐𝑖 , 𝑒𝑖 }

5: D𝐴 ← D𝐴
⋃ {(𝑆𝑖 , 𝑌 obs

𝑖
, 𝑒obs
𝑖
)}

6: end for
7: 𝜷𝐴 ← argmin𝜷 ∈R𝑑 L𝜷 (D𝐴) {Eq. (9)}

8: end for
9: Dmod ← ∅
10: for 𝑖 ∈ [𝐵] do
11: 𝑅mod

𝑖
← 𝜆𝐶𝑖 + (1−𝜆)𝑌𝑖

1−exp{− exp( ⟨𝜷𝐴𝑖
,𝑆𝑖 ⟩)𝑒𝑖 } {Eq. (10)}

12: Dmod ← Dmod
⋃{(𝑆𝑖 , 𝐴𝑖 , 𝑅

mod

𝑖
)}

13: end for
14: return Dmod

action 𝐴 ∈ A. From the ridge regression, for each action 𝐴 ∈ A,

we can obtain the closed-form solution for the policy’s parameter

vector as 𝜽𝑛
𝐴
=

(
𝚽
𝑛
𝐴

)−1
𝒃𝑛
𝐴
, where 𝒃𝑛

𝐴
= 𝒃𝑛−1

𝐴
+ 𝑺𝑛−1⊺

𝐴
𝑹𝑛−1
𝐴

. Finally,

by generalizing the UCB policy to a batch version, we obtain the

updated policy 𝝅𝑛 : S → A as

𝝅𝑛 (𝑆) = argmax

𝐴∈A

〈(
𝚽
𝑛
𝐴

)−1 𝒃𝑛𝐴, 𝑆〉 + 𝜇√𝑆⊺
(
𝚽
𝑛
𝐴

)−1
𝑆. (11)

4.3.2 Online Recommendation. In the online recommendation of

the 𝑛-th episode, the agent chooses actions based on the new con-

texts under the updated policy 𝝅𝑛 (𝑆) for 𝐵 steps, that is, offering

recommendations on items to users using the updated policy:

𝐴 = argmax

𝐴∈A

〈
𝜽𝑛𝐴, 𝑆

〉
+ 𝜇

√
𝑆⊺

(
𝚽
𝑛
𝐴

)−1
𝑆. (12)

The system then receives the context-action pairs and immediate

feedback after recommending the items, and collects the resultant

delayed reward and following-up time till the end of the batch.

Finally, these records are stored into a data buffer D𝑛+1 for the

updating in the next iteration.

5 DISCUSSIONS
Regret analysis. We prove that the proposed CBDF enjoys a

sublinear regret bound competing with the optimal policy. For any

context 𝑆𝑖 ∈ S ⊆ R𝑑 and any action 𝐴 ∈ A, we assume that the

expectation of true reward 𝑅true
𝑖,𝐴

is linear: there exists an unknown

parameter vector 𝜽 ∗
𝐴
∈ R𝑑 such that E

[
𝑅true
𝑖,𝐴
| 𝑆𝑖

]
=

〈
𝜽 ∗
𝐴
, 𝑆𝑖

〉
,

where the true reward is defined by 𝑅true
𝑖,𝐴

= 𝜆𝐶𝑖,𝐴 + (1−𝜆)𝑉𝑖,𝐴 (𝐶𝑖,𝐴

and 𝑉𝑖,𝐴 denote true binary variables of click and conversion when

executing action 𝐴 given context 𝑆𝑖 ). To measure the convergence

of streaming recommendation, we define the regret as follow:

R({𝐴𝐼𝑛,𝑏 }𝑛∈[𝑁 ],𝑏∈[𝐵 ] ) := max

𝐴∈A

∑
𝑛∈[𝑁 ],𝑏∈[𝐵 ]

〈
𝜽 ∗𝐴 − 𝜽

∗
𝐴𝐼𝑛,𝑏

, 𝑆𝑛,𝑏

〉
,

where 𝐼𝑛,𝑏 denotes the index of the executed action using policy

𝜋𝑛 (parameterized by {𝜽𝑛
𝐴
}𝐴∈A ) at step 𝑏 in the 𝑛-th episode. We

demonstrate the regret bound of our CBDF (Algorithm 1) as follows.

Theorem 5.1 (Regret Bound of CBDF). Let𝑇 = 𝐵𝑁 , the impor-

tant weights 𝑤𝑖 ≤ 𝑤max, 𝑖 ∈ [𝑇 ], and 𝜇 = 1 +
√
2𝑤2

max
ln(2𝑀𝐵/𝛿).

Assume that the conditional independence assumption about rewards
in Theorem 4.1 holds,𝑀 = 𝑂 (poly(𝑑)) and 𝑇 ≥ 𝑑2. Then, for an ar-
bitrary sequence of contexts {𝑆𝑖 }𝑇𝑖=1, with probability at least 1 − 𝑁𝛿 ,

R({𝐴𝐼𝑛,𝑏 }𝑛∈[𝑁 ],𝑏∈[𝐵 ] ) ≤ 2𝜇
√
10 ln(𝑇 + 1) (

√
𝑑𝑇 + 𝑑𝐵).

Remark 1. Setting 𝐵 = 𝑂

(√
𝑇 /𝑑

)
yields an upper bound of regret

of order 𝑂
(√

𝑑𝑇

)
, which matches the lower bound in the undelayed

feedback case up to a logarithmic factor [11, 14].

Regret bounds guarantee the global convergence of approximat-

ing the optimal policy in sequential decision making [7, 43, 44].

Besides, the probabilistic error bound Eq. (7) is of order 𝑂 (𝐵−1/2)
given constant 𝑁 , indicating that a suitable batch size 𝐵 needs to

be set. A theoretical value of the batch size is 𝐵 = 𝐶𝐵

√
𝑇 /𝑑 (i.e.,

𝐵 = 𝐶2

𝐵
𝑁 /𝑑), where the constant 𝐶𝐵 ∈ [75, 80] is a suitable choice

that has been verified in the experiments in Section 6.5.

The detailed proofs can be found in Appendix A.2.

Comparison with batched bandit. Recently, batched bandit

has become an important topic in statistics and learning theory

[12, 14, 25, 36, 42]. Little efforts have been spent to apply the batched

bandit to recommender systems. Compared to the Batched Bandit

Framework (BBF), the proposed CBDF has several striking differ-

ences: (1) In BBF, the reward of each action can only be received at

the end of the batch. But CBDF considers a more realistic scenario

where each reward is composed of the immediate feedback and

the delayed feedback; (2) BBF updates the policy directly using the

rewards. But in real-world environments, the feedbacks are usually

limited, resulting in biased rewards that hinder the effectiveness of

policy updating. CBDF maintains modified rewards using a coun-

terfactual approach, relieving the bias.

In recommendation with delayed feedback, it is hard to formu-

late the counterfactual approach [1, 17, 26, 29, 31–33, 45] in online

settings due to the delayed user behaviors and the bias affected by

delayed time. CBDF can be seen as an attempt to model a counter-

factual online approach to recommendation with delayed feedback.

6 EXPERIMENTS
We conducted experiments to test the performance of CBDF us-

ing three datasets: the synthetic dataset, publicly available Criteo

dataset, and dataset collected from Tencent’s WeChat.

6.1 Experimental Settings
According to theoretical results in Remark 1, we set the batch

size as 𝐵 = 𝐶2

𝐵
𝑁 /𝑑, and set the constant 𝐶𝐵 ∈ [75, 80], where

𝐶𝐵 ≈ 79, 77, 75, 76 on the synthetic dataset, two Criteo datasets,



and the Tencent’s WeChat, respectively. We set the weighting co-

efficient in the reward as 𝜆 = 𝐶𝜆 × 1

100
to maintain the relative

importance of clicks and conversions, where 𝐶𝜆 is the estimate of

CVR, and 𝐶𝜆 = 0.4, 0.5, 0.7 on the synthetic dataset, Criteo dataset,

and Tencent’s WeChat, respectively. The regularization parameter

𝜇 in the UCB policy was tuned in [0.5 : +0.1 : 2]. For our CBDF, the
counterfactual deadline parameter is set as 𝐶𝜉 = 50% to trade-offs

the sizes of observed set and hold-out set, which is analyzed in Sec-

tion 6.5.2. Guided by the inequality in Theorem 4.1, the importance

weights is truncated as 𝑤𝑖 = min{𝑤𝑖 ,𝑤max} where the constant
𝑤max is tuned in [1 : +0.1 : 2].

As for baselines, CBDF was compared with several algorithms

that directly use the unmodified delayed user feedbacks, including:

Sequential Batch UCB (SBUCB) [14] is a generalization of

LinUCB [22] where it is fed with batched data continuously;

Batched version of EXP3 (EXP3-B) [5]: EXP3 is a state-of-

the-art algorithm for adversarial bandits. The batched version of

EXP3 is denoted by EXP3-B.

CBDF was compared to another baseline that directly employs

the reward modification developed for batch learning, called Se-
quential version of Delayed Feedback Model (DFM-S) [10].

CBDFwas also compared to the baseline that directly discards the

instances in the batch data whose labels may be incomplete, called

SBUCBwith Discard (SBUCB-D). It is a variant of SBUCB, which
discards the potentially incomplete instances (i.e., 𝐶 = 1, 𝑌 = 0).

The average reward was used to evaluate the accuracy of algo-

rithms, which is computed by
1

𝑛𝐵

∑𝑛
𝑘=1

∑𝐵
𝑏=1

𝑅true
𝑘,𝑏

for the first 𝑛

episodes, where 𝑅true
𝑘,𝑏

is the true reward at step𝑏 in the 𝑘-th episode,

defined by 𝑅true
𝑘,𝑏

= 𝜆𝑅𝑘,𝑏 + (1 − 𝜆)𝑅(𝑆𝑘,𝑏 ,𝑉𝑘,𝑏 ). 𝜆 was set as that in

training. In the experiments, the algorithms were run 20 times and

the average performances were reported.

6.2 Experiments on Synthetic Dataset
Following the practices in [27], we first conducted experiments on

a synthetic dataset which simulates the online recommendation

environment under delayed feedback. The synthetic data generation

procedure was set as follows. Number of episodes: 𝑁 = 40; batch

size: 𝐵 = 10, 000; number of actions 𝑀 = 5; context 𝑆𝑖 ∈ R𝑑 : we
drew elements of 𝑆𝑖 independently from a Gaussian distribution

N(0.1, 0.22), where 𝑑 = 10; Click-Through-Rate (CTR): the CTRs

for the 5 actions were respectively set as {30%, 35%, 40%, 45%, 50%};
Conversion Rate (CVR) in context 𝑆𝑖 : when 𝐶𝑖 = 1, CVR(𝑺𝑖 ) :=
sigmoid(⟨𝒘c, 𝑆𝑖 ⟩), where the coefficient vector𝒘c ∈ R𝑑 is sampled

according to a Gaussian distribution as 𝒘c ∼ N(𝜅c1𝑑 , 𝜎2c 𝑰𝑑 ), and
we set different means and standard deviations for different action

with 𝜅c ∈ [0 : −0.2 : −0.8] and 𝜎c ∈ [0.01 : +0.01 : 0.05]; delay time

between the click and the conversion 𝛾𝑖 : when 𝐶𝑖 = 1, the delay

time 𝛾𝑖 is sampled according to an exponential distribution as 𝛾𝑖 ∼
E(𝜆(𝑆𝑖 )), where 𝜆(𝑆𝑖 ) = exp(⟨𝒘

d
, 𝑆𝑖 ⟩) and 𝒘

d
∼ N(𝜅

d
1𝑑 , 𝜎2

d
𝑰𝑑 ),

and we set different means and standard deviations for different

action with 𝜅
d
∈ [0 : +0.2 : 0.8] and 𝜎

d
∈ [0.01 : +0.01 : 0.05].

Figure 6(a) reports the average reward curves of CBDF and the

baselines DFM-S, SBUCB, EXP3-B, and SBUCB-D. We observed that

CBDF achieved the highest average reward after running about

10 episodes. Moreover, CBDF converged faster than SBUCB and

EXP3-B that directly use the unmodified rewards, demonstrating

the effectiveness of the reward modification in CBDF. CBDF also

outperformed the discard approach SBUCB-D, while the discard

trick in SBUCB-D could help improve the performance of SBUCB

in a simple synthetic environment. Besides, DFM-S obtained much

worse because its reward modification method was originally de-

veloped for batch learning, and resulting in low sample efficiency

when being applied to sequential decision making problems.

6.3 Experiments on Criteo Dataset
In these experiments, we made use of the publicly available Criteo

dataset
3
, which consists of a portion of Criteo’s traffic on display

ads over a period of two months. Each context in a Criteo record

consists of 8 integer features and 9 categorical features. Following

the practices in [41], the categorical features were represented

as one-hot vectors, which were then concatenated to the integer

features. The dimensionality of the feature vectors was reduced to

50 by conducting principal component analysis (PCA).

All of the algorithms were tested in a simulated online environ-

ment that was trained on users’ logs in the Criteo dataset. Specif-

ically, we chose some campaigns from the Criteo dataset, where

each campaign represents a type of items and corresponds to an

action. The online environment consists of a model for the delay

time and another model for the CVR, both were well trained by

applying DFM on each chosen campaign (with true user feedbacks).

The models’ AUCs are ranging from 70% to 90%, assuring that

the online environment can provide nearly realistic feedbacks. To

simulate the uncertainty of user behaviors, Gaussian noises with

zero-mean were added to the model parameters. At each step, the

online environment randomly selected a campaign and samples one

context from this campaign, and revealed the context to the agent

with a preset CTR. To generate a reasonable sequence of instances,

the environment kept the order of timestamps for each campaign.

We tested CBDF and the baselines with two online environments

on the Criteo dataset: in Criteo-recent-5actions, 5 campaigns

(75, 021 instances, batch size 𝐵 = 3, 000) were chosen from the recent

campaigns, corresponding to 5 actions; in Criteo-all-15actions,
15 campaigns (1, 278, 556 instances, batch size 𝐵 = 12, 000) were cho-

sen from all the campaigns, corresponding to 15 actions. Figure 6(b)

and (c) respectively depicts the curves in terms of average rewards

of CBDF and the baselines on these two online environments. We

can conclude that CBDF persistently performed better than the

baselines. We noticed that all the algorithms achieve decreasing

average rewards at the beginning of the testing, due to the influence

of the biased feedbacks. Also noted that CBDF can correct the biases

more effectively and approximate the optimal policy after several

episodes, indicating the superiority of our counterfactual reward

modification in streaming recommendation with delayed feedback.

6.4 Experiments on Real Commercial Product
We also tested the performance of CBDF on a real dataset col-

lected from Tencent’s WeChat app, to verify its effectiveness on

real products. In the app, after clicking a recommended coupon,

a user may convert the coupon after some time, or just leave it

there. The dataset was collected during a 1-month period (with a

subsampling), and consists of 216, 568 instances from 5 categories

3
https://labs.criteo.com/2013/12/conversion-logs-dataset/
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Figure 6: Average rewards of DFM-S, SBUCB, EXP3-B, SBUCB-D, and CBDF on the synthetic dataset and the Criteo dataset.

Table 2: Performance comparison of coupon recommenda-
tion on a real commercial dataset from Tencent’s WeChat.

Algorithm CVR CTCVR Running time (s)

DFM-S 0.7389 ± 0.0090 0.2794 ± 0.0065 311.5 ± 10.5853

SBUCB 0.7307 ± 0.0015 0.2807 ± 0.0008 60.9 ± 3.2078

EXP3-B 0.4809 ± 0.0029 0.1792 ± 0.0050 26.9 ± 0.5385

SBUCB-D 0.6831 ± 0.0026 0.2643 ± 0.0012 37.0 ± 0.4472

CBDF 0.7775 ± 0.0056 0.3046 ± 0.0025 66.5 ± 6.9606

of coupons. Each context is described by 86 numerical features and

16 categorical features. The timestamps of clicks and conversions

were also recorded.

Following the previous settings on the Criteo dataset, we rep-

resented the categorical features as a one-hot vector, reduced the

dimensionality of the feature vectors to 50 by PCA. We set the

batch size 𝐵 = 5, 000 (yielding that 𝐶𝐵 ≈ 76). The action space

contains 5 actions, each corresponding to one coupon category.

Due to the limitation of real online experiments, in this experiment

we still trained DFM (with true user feedbacks) as the online en-

vironment (AUCs ranging from 75% to 90%). Table 2 reports the

performance of CBDF and the baselines, in terms of CVR (mean

± std), CTCVR (mean ± std), and total running time (mean ± std)
over all the episodes, where CTCVR = CTR×CVR [23]. The results

indicated that CBDF performed better than the baselines with the

improvements of 3.86% CVR and 2.39% CTCVR over the second-best

algorithm. Besides, CBDF was much more efficient than DFM-S,

and had time costs that comparable to the online algorithm SBUCB.

The results demonstrate the efficiency of the counterfactual reward

modification adopted by CBDF. Although DFM-S also used the

exponential distribution of delay time as the prior knowledge, its

rewardmodification originally developed for batch learning still had

much worse performance. From the reward curves in Figure 7(a),

we found that CBDF outperformed all of the baselines after several

episodes, indicating its effectiveness in real commercial products.

6.5 Analysis
6.5.1 Empirical Verification of Remark 1. Section 5 gives a theoret-

ical optimal value 𝐵 = 𝐶2

𝐵
𝑁 /𝑑 . We empirically verified the correct-

ness of this conclusion.We fixed the number of instances (i.e., 𝐵×𝑁 )

on synthetic data (160, 000 instances) and Criteo-recent-5actions

Table 3: Performance comparison of CBDF with different
counterfactual deadlines 𝜉 on the synthetic dataset, where
𝜉 = 𝐶𝜉 × (𝑡end − 𝑡 str) + 𝑡 str and 𝐶𝜉 ∈ (0, 100%).

𝐶𝜉 CVR CTCVR Average Reward

30% 0.3835 ± 0.0044 0.1580 ± 0.0005 0.1590 ± 0.0006

40% 0.3855 ± 0.0071 0.1580 ±0.0006 0.1590 ± 0.0006

50% 0.3891 ± 0.0052 0.1581 ± 0.0005 0.1591 ± 0.0005

60% 0.3881 ± 0.0043 0.1583 ± 0.0004 0.1593 ± 0.0005

70% 0.3848 ± 0.0064 0.1584 ± 0.0005 0.1594 ± 0.0006

80% 0.3843 ± 0.0057 0.1578 ± 0.0005 0.1588 ± 0.0006

(75, 021 instances), and tested CBDF with different 𝐵 values (result-

ing in different number of episodes 𝑁 ). Figure 7(b) and (c) show the

performance curves w.r.t. proportion of episodes that had passed

(denoted as ‘𝑥%𝑁 ’). From the curves in Figure 7(b), we can ob-

serve that CBDF with 𝐵 = 10, 000 achieved persistently higher

rewards than the baselines on the synthetic dataset, yielding that

𝐶𝐵 =
√
𝐵𝑑/𝑁 ≈ 79. Similar phenomenon can also be observed

on the experiments of Criteo-recent-5actions. As shown in

Figure 7(c), CBDF with 𝐵 = 3, 000 achieved the highest average re-

wards in which𝐶𝐵 ≈ 77. In the previous experiments in Section 6.3,

choosing 𝐶𝐵 ≈ 75 on the larger setting Criteo-all-15actions
and 𝐶𝐵 ≈ 76 on Tencent’s WeChat app also achieved the best

performance. All of the results verified the theoretical conclusion:

𝐵 = 𝐶2

𝐵
𝑁 /𝑑 is a nearly optimal choice when setting 𝐶𝐵 ∈ [75, 80].

6.5.2 Influence of Counterfactual Deadline. The counterfactual

deadline 𝜉 trade-offs the sizes of observed set and hold-out set.

Larger observed set (larger 𝐶𝜉 ) means more instances for estimat-

ing 𝜷 ’s while hurts the deriving of 𝑌 obs
and 𝑒obs, and vise versa.

We conducted experiments to test the performance of CBDF with

different 𝐶𝜉 values. The results showed in Table 3 indicate that

CBDF is not sensitive to parameter𝐶𝜉 , and setting𝐶𝜉 ∈ [50%, 70%]
achieved best performance.

7 CONCLUSION
In real-world streaming recommender systems, the data are fed

continuously and the models need to be updated frequently, and

some conversions have not yet occurred when the training data
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Figure 7: (a) Average rewards of DFM-S, SBUCB, EXP3-B, SBUCB-D, and the proposed CBDF on real commercial product data
from WeChat; (b) CBDF with different batch sizes on the synthetic dataset; (c) CBDF with different batch sizes on the Criteo
dataset.

are collected, resulting in the issue of delayed feedback. In this

paper, we propose a counterfactual approach to modifying the

rewards and learning batched bandit recommendationmodels under

delayed feedback, called CBDF. We proved that CBDF is statistically

unbiased for reward estimation and enjoys a sublinear regret bound

against the optimal policy. Experiments on synthetic data, public

benchmark, and commercial product data from WeChat showed

that CBDF can outperform the state-of-the-art baselines.
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A PROOF OF THEOREMS
A.1 Proof of Theorem 4.1

Proof of Theorem 4.1. Combining the definition of 𝑅mod
with

Eq. (2), Eq. (3) and Eq. (4), we have

E𝑌

[
𝑅mod (𝑆,𝑌 )

]
= E𝑌

[
Pr {𝑉 = 1 | 𝑆}
Pr {𝑌 = 1 | 𝑆}𝑅(𝑆,𝑌 )

]
= E𝑉

[
𝑅(𝑆,𝑉 )

]
.

Since 𝑆𝑖 , 𝑖 ∈ [𝑇 ] are i.i.d., from Eq. (6) we have

E𝑆,𝑌

[
𝑅mod (𝑆,𝑌 )

]
= E𝑆,𝑉

[
𝑅(𝑆,𝑉 )

]
. (13)

From𝑤𝑖 ≤ 𝑤max, 𝑖 ∈ [𝑇 ] we can obtain that𝑅mod (𝑆,𝑌 ) ∈ [0,𝑤max].
Then combing Eq. (13) with Hoeffding’s inequality yileds that

Pr

{����� 𝑇∑
𝑖=1

𝑅mod (𝑆𝑖 , 𝑌𝑖 )
𝑇

− E𝑆,𝑉
[
𝑅(𝑆,𝑉 )

] ����� ≥ 𝜀

}
≤ 2 exp

(
−2𝜀2𝑇
𝑤2

max

)
.

Letting 𝛿 = 2 exp

(
−2𝜀2𝑇 /𝑤2

max

)
yields the final result. □

A.2 Proof of Theorem 5.1
Proof of Theorem 5.1. We first demonstrate the instantaneous

regret bound of CBDF at some step in one episode. For convenience

we drop all the superscripts and subscripts about 𝑛 and 𝑏. We

introduce the notation 𝑳𝐴 ∈ R𝑁𝐴×𝑑
and 𝑻𝐴 ∈ R𝑁𝐴

, representing

the matrix that stores all the received context vectors corresponding

to action 𝐴, and the reward vector that stores all the modified

rewards of action 𝐴, respectively. By the formulation of 𝜽𝐴 and the

triangular inequality, we first obtain that��⟨𝜽𝐴, 𝑆⟩ − 〈
𝜽 ∗𝐴, 𝑆

〉�� = ��𝑆⊺ (𝑰𝑑 + 𝚽𝐴)−1 𝑳⊺𝐴𝑻𝐴 − 𝑆
⊺𝜽 ∗𝐴

��
≤
��𝑆⊺ (𝑰𝑑 + 𝚽𝐴)−1 𝑳⊺𝐴

(
𝑻𝐴 − 𝑳𝐴𝜽 ∗𝐴

) ��︸                                      ︷︷                                      ︸
𝑍
(1)
𝐴

+
��𝑆⊺ (𝑰𝑑 + 𝚽𝐴)−1 𝜽 ∗𝐴

��︸                   ︷︷                   ︸
𝑍
(2)
𝐴

.

Next, we bound 𝑍
(1)
𝐴

. Let 𝑅mod

𝐴
(𝑆,𝑌 ) be the modified reward that

is obtained when action 𝐴 is executed. For ∀𝑆 ∈ S, from Eq. (6) in

Theorem 4.1, we have E𝑌

[
𝑅mod

𝐴
(𝑆,𝑌 )

]
= E

[
𝑅true
𝐴
| 𝑆

]
=
〈
𝜽 ∗
𝐴
, 𝑆
〉
,

yielding that E [𝑻𝐴] = 𝑳𝐴𝜽
∗
𝐴
. Letting 𝜈 > 0 be some constant,

since 𝑅mod

𝐴
(𝑆,𝑌 ) ≤ 𝑤max, by Azuma-Hoeffding bound and the

conditional independence assumption of rewards, we get

Pr

{���𝑍 (1)
𝐴

��� ≥ 𝜈

√
𝑆⊺ (𝑰𝑑 + 𝚽𝐴)−1 𝑆

}
≤ 2 exp

{
− 𝜈2𝑆⊺ (𝑰𝑑 + 𝚽𝐴)−1 𝑆
2𝑤2

max
∥𝑳𝐴 (𝑰𝑑 + 𝚽𝐴)−1 𝑆 ∥2

2

}
.

(14)

Since ∥𝑳𝐴 (𝑰𝑑 + 𝚽𝐴)−1 𝑆 ∥22 ≤ 𝑆⊺ (𝑰𝑑 + 𝚽𝐴)−1 𝑆, combing Eq. (14)

with the union bound, yields that, with probability at least 1−𝛿 , for
∀𝐴 ∈ A at arbitrary step ∀𝑏 ∈ [𝐵],

���𝑍 (1)
𝐴

��� ≤ 𝜈

√
𝑆⊺ (𝑰𝑑 + 𝚽𝐴)−1 𝑆,

where 𝜈 =

√
2𝑤2

max
ln(2𝑀𝐵/𝛿) . Since 𝚽𝐴 is positive semi-definite,

we can obtain that |𝑍 (2)
𝐴
| ≤

√
𝑆⊺ (𝑰𝑑 + 𝚽𝐴)−1 𝑆 , combined with the

upper bound of |𝑍 (1)
𝐴
| yielding that��⟨𝜽𝐴, 𝑆⟩ − 〈
𝜽 ∗𝐴, 𝑆

〉�� ≤ (1 + 𝜈)√𝑆⊺ (𝑰𝑑 + 𝚽𝐴)−1 𝑆. (15)

Let 𝜇 = 1 + 𝜈 , combining Eq. (15) with lemma 3 in [14] gives the

final bound. □
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