
Foundations and Trends R© in Information Retrieval

Deep Learning for Matching in
Search and Recommendation

Suggested Citation: Jun Xu, Xiangnan He and Hang Li (2020), “Deep Learning for
Matching in Search and Recommendation”, Foundations and Trends R© in Information
Retrieval: Vol. 14, No. 2–3, pp 102–288. DOI: 10.1561/1500000076.

Jun Xu
Gaoling School of Artificial Intelligence

Renmin University of China
China

junxu@ruc.edu.cn

Xiangnan He
School of Information Science and Technology
University of Science and Technology of China

China
hexn@ustc.edu.cn

Hang Li
Bytedance AI Lab

China
lihang.lh@bytedance.com

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval. Boston — Delft

Contents

1 Introduction 107
1.1 Search and Recommendation 107
1.2 Unifying Search and Recommendation from

Matching Viewpoint . 109
1.3 Mismatching Challenge in Search 111
1.4 Mismatching Challenge in Recommendation 112
1.5 Recent Advances . 113
1.6 About This Survey . 114

2 Traditional Matching Models 117
2.1 Learning to Match . 117
2.2 Matching Models in Search and Recommendation 123
2.3 Latent Space Models in Search 126
2.4 Latent Space Models in Recommendation 129
2.5 Further Reading . 132

3 Deep Learning for Matching 134
3.1 Overview of Deep Learning 134
3.2 Overview of Deep Learning for Matching 150

4 Deep Matching Models in Search 156
4.1 Matching Based on Representation Learning 159

4.2 Matching Based on Matching Function Learning 176
4.3 Discussions and Further Reading 194

5 Deep Matching Models in Recommendation 203
5.1 Matching Based on Representation Learning 203
5.2 Matching Based on Matching Function Learning 235
5.3 Further Reading . 246

6 Conclusion and Future Directions 251
6.1 Summary of the Survey 251
6.2 Matching in Other Tasks 252
6.3 Open Questions and Future Directions 253

Acknowledgements 256

References 257

Deep Learning for Matching in
Search and Recommendation
Jun Xu1, Xiangnan He2 and Hang Li3

1Gaoling School of Artificial Intelligence, Renmin University of China,
China; junxu@ruc.edu.cn
2School of Information Science and Technology, University of Science
and Technology of China; hexn@ustc.edu.cn
3Bytedance AI Lab, China; lihang.lh@bytedance.com

ABSTRACT

Matching is a key problem in both search and recommenda-
tion, which is to measure the relevance of a document to a
query or the interest of a user to an item. Machine learning
has been exploited to address the problem, which learns
a matching function based on input representations and
from labeled data, also referred to as “learning to match”.
In recent years, efforts have been made to develop deep
learning techniques for matching tasks in search and recom-
mendation. With the availability of a large amount of data,
powerful computational resources, and advanced deep learn-
ing techniques, deep learning for matching now becomes
the state-of-the-art technology for search and recommenda-
tion. The key to the success of the deep learning approach
is its strong ability in learning of representations and gen-
eralization of matching patterns from data (e.g., queries,
documents, users, items, and contexts, particularly in their
raw forms).

Jun Xu, Xiangnan He and Hang Li (2020), “Deep Learning for Matching in Search
and Recommendation”, Foundations and TrendsR© in Information Retrieval: Vol. 14,
No. 2–3, pp 102–288. DOI: 10.1561/1500000076.

103

This survey gives a systematic and comprehensive introduc-
tion to the deep matching models for search and recommen-
dation developed recently. It first gives a unified view of
matching in search and recommendation. In this way, the
solutions from the two fields can be compared under one
framework. Then, the survey categorizes the current deep
learning solutions into two types: methods of representation
learning and methods of matching function learning. The
fundamental problems, as well as the state-of-the-art solu-
tions of query-document matching in search and user-item
matching in recommendation, are described. The survey
aims to help researchers from both search and recommenda-
tion communities to get in-depth understanding and insight
into the spaces, stimulate more ideas and discussions, and
promote developments of new technologies.

Matching is not limited to search and recommendation.
Similar problems can be found in paraphrasing, question
answering, image annotation, and many other applications.
In general, the technologies introduced in the survey can be
generalized into a more general task of matching between
objects from two spaces.

104

List of Acronyms

PLS Partial Least Square

RMLS Regularized Matching in Latent Space

SSI Supervised Semantic Indexing

BMF Biased Matrix Factorization

FISM Factored Item Similarity Model

FM Factorization Machine

FFN Feedforward Neural Network

MLP Multilayer Perceptron

CNN Convolutional Neural Networks

RNN Recurrent Neural Networks

GAN Generative Adversarial Network

AE Autoencoders

DAE Denoising Autoencoder

CBOW Continuous Bag of Words

SG Skip Gram

BERT Bidirectional Encoder Representations from Transformers

DSSM Deep Structured Semantic Models

CLSM Convolutional Latent Semantic Model

CNTN Convolutional Neural Tensor Network

LSTM-RNN Recurrent Neural Networks with Long Short-Term
Memory cells

NVSM Neural Vector Space Model

105

SNRM Standalone Neural Ranking Model

ACMR Adversarial Cross Modal Retrieval

ARC-II Convolutional Matching Model II

DRMM Deep Relevance Matching Model

K-NRM Kernel Based Neural Ranking Model

DeepMF Deep Matrix Factorization

CDAE Collaborative Denoising Auto-Encoder

NAIS Neural Attentive Item Similarity

NARM Neural Attentive Recommendation Machine

DeepCoNN Deep Cooperative Neural Networks

NARRE Neural Attention Regression with Review-level Explanation

VBPR Visual Bayesian Personalized Ranking

CDL Comparative Deep Learning

ACF Attentive Collaborative Filtering

NGCF Neural Graph Collaborative Filtering

KGAT Knowledge Graph Attention Network

KPRN Knowledge Path Recurrent Network

NCF Neural Collaborative Filtering

ConvNCF Convolutional Neural Collaborative Filtering

GMF Generalized Matrix Factorization

NeuMF Neural Matrix Factorization

CML Collaborative Metric Learning

106

TransRec Translation-based Recommendation

LRML Latent Relational Metric Learning

NFM Neural Factorization Machine

AFM Attentional Factorization Machine

1
Introduction

1.1 Search and Recommendation

With the rapid growth of the internet, one of the fundamental problems
in information science becomes even more critical today, that is, how
to identify the information satisfying a user’s need from a usually
huge pool of information. The goal is to present the user only the
information that is of interest and relevance, at the right time, place,
and context. Nowadays, two types of information accessing paradigms,
search and recommendation, are widely used in a great variety of
scenarios.

In search, documents (e.g., web documents, Twitter posts, or
E-commerce products) are first pre-processed and indexed in the search
engine. After that, the search engine takes a query (a number of key-
words) from the user. The query describes the user’s information need.
Relevant documents are retrieved from the index, matched with the
query, and ranked according to their relevance to the query. For example,
if a user is interested in news about quantum computing, the query
“quantum computing” mat be submitted to a search engine and get
news articles about the topic will be returned.

107

108 Introduction

Different from search, a recommendation system typically does not
take a query. Instead, it analyzes the user’s profile (e.g., demographics
and contexts) and historical interactions on items, and then makes
recommendation on items to the user. The user features and item
features are indexed and stored in the system in advance. The items
are ranked according to the likelihood that the user is interested in
them. For example, on a news website, when a user browses and clicks
a new article, several news articles with similar topics or news articles
that other users have clicked together with the current one may be
shown.

Table 1.1 summarizes the differences between search and recom-
mendation. The fundamental mechanism of search is “pull”, because
users first make specific requests (i.e., submit queries) and then re-
ceive information. The fundamental mechanisms of recommendation
is “push”, because users are provided information which they do not
specifically request (e.g., submit queries). Here “beneficiary” means
the people whose interests are to be met in the task. In a search en-
gine, the results are typically created solely based on the user’s needs,
and thus the beneficiary is the users. In a recommendation engine,
the results usually need to satisfy both the users and providers, and
thus the beneficiary is all of them. However, the distinction is becom-
ing blurred recently. For example, some search engines mix search
results with paid advertisements, which benefits both the users and
the providers. As for “serendipity”, it means that conventional search
focuses more on information that is clearly relevant. Conventional recom-
mendation, on the other hand, is allowed to offer unexpected but useful
information.

Table 1.1: Information-providing mechanisms of search and recommendation

Search Recommendation

Query available Yes No
Delivery model Pull Push
Beneficiary User User and provider
Serendipity No Yes

1.2. Unifying Search and Recommendation 109

Figure 1.1: Unified view of matching in search and recommendation.

1.2 Unifying Search and Recommendation from
Matching Viewpoint

Garcia-Molina et al. (2011) pointed out that the fundamental problems
in search and recommendation are to identify information objects satisfy-
ing users’ information needs. It is also indicated that search (information
retrieval) and recommendation (information filtering) are the two sides
of the same coin, having strong connections and similarities (Belkin and
Croft, 1992). Figure 1.1 illustrates the unified matching view of search
and recommendation. The goal in common is to present to the users
the information they need.

Search is a retrieval task, which aims to retrieve the documents that
are relevant to the query. In contrast, recommendation is a filtering
task, which aims to filter out the items that are of interest to the user
(Adomavicius and Tuzhilin, 2005). As such, search can be considered as
conducting matching between queries and documents, and recommen-
dation can be considered as conducting matching between users and
items. More formally, both the matching in search and recommendation
can be considered as constructing a matching model f : X × Y 7→ R
which calculates the matching degree between two input objects x and
y, where X and Y denote two object spaces. X and Y are the spaces of
queries and documents in search, or the spaces of users and items in
recommendation.

Under the unified matching view in Figure 1.1, we use the term infor-
mation objects to denote the documents/items to retrieve/recommend,
and use information needs to denote the queries/users in the respective
task. By unifying the two tasks under the same view of matching and

110 Introduction

comparably reviewing existing techniques, we can provide deeper in-
sights and more powerful solutions to the problems. Moreover, unifying
the two tasks also has practical and theoretical implications.

Search and recommendation have already been combined in some
practical applications. For example, at some E-commerce sites, when
the user submits a query, a ranking list of products are presented
based on not only relevance (query-product matching) but also user
interest (user-product matching). In some lifestyle apps, when the
user searches for restaurants, the results are returned based on both
relevance (query-restaurant matching) and user interest (user-restaurant
matching). There is a clear trend that search and recommendation will
be integrated into a single system at certain scenarios to meet users’
needs better, where matching plays an essential role.

Search and recommendation already have many shared technolo-
gies because of their similarities in matching. Some search problems
can be solved by using recommendation techniques (Zamani et al.,
2016), and vice versa (Costa and Roda, 2011), on the basis of match-
ing. With the use of deep learning technologies, the matching models
for search and recommendation bear even more resemblance in archi-
tecture and methodology, as reflected in the techniques: embedding
the inputs (queries, users, documents, and items) as distributed rep-
resentations, combining neural network components to represent the
matching function, and training the model parameters in an end-to-end
manner. Moreover, search and recommendation can be jointly modeled
and optimized if they share the same set of information objects (as
in the above examples of E-commerce sites and lifestyle apps) (Schedl
et al., 2018; Zamani and Croft, 2018a, 2020). Therefore, in order to
develop more advanced ones, it is necessary and advantageous to take
a unified matching view to analyze and compare existing search and
recommendation technologies.

The matching tasks in search and in recommendation face different
challenges in practice. The underlying problem is essentially the same,
however, that is, the mismatch challenge. Next, we introduce the key
challenges of the two tasks, respectively.

1.3. Mismatching Challenge in Search 111

1.3 Mismatching Challenge in Search

In search, queries and documents (usually their titles) are taken as
texts. The relevance of a document to a query is mainly represented
by the matching degree between the two. The document is considered
relevant to the query if the matching degree is high. Natural language
understanding by computer is still challenging, and thus the calculation
of matching degree is still limited to the text level but not at the semantic
level. A high match degree at the text level does not necessarily mean
high relevance at the semantic level, and vice versa. Moreover, queries
are issued by users, while documents are compiled by editors. Due
to the ambiguity of natural language, users and editors are likely to
use different language styles and expressions for presenting the same
concepts or topics. As a result, the search system may suffer from the so-
called query-document mismatch problem. Specifically, when the users
of a search engine and the editors of the documents use different texts
to describe the same concept (e.g., “ny times” vs. “new york times”),
query-document mismatch may occur. This is still one of the main
challenges for search. Moving to the cross-modal IR (e.g., using text
queries to retrieve image documents), the query-document mismatch
problem becomes even more severe, because different modalities have
different types of representations. In cross-modal retrieval, one major
challenge is how to construct a matching function that can bridge the
“heterogeneity gap” amongst the modalities.

To address the query-document mismatch challenge, methods have
been proposed to perform matching at the semantic level, referred
to as semantic matching. The key idea in the solutions is either to
perform more query and document understanding to better represent
the meanings of the query and document, or to construct more powerful
matching functions that can bridge the semantic gap between the query
and document. Both traditional machine learning approaches (Li and
Xu, 2014) and deep learning approaches (Guo et al., 2019b; Mitra and
Craswell, 2018; Onal et al., 2018) have been developed for semantic
matching.

112 Introduction

1.4 Mismatching Challenge in Recommendation

The mismatching problem is even more severe in recommendation. In
search, queries and documents consist of terms in the same language,1
making it at least meaningful to conduct direct matching on their terms.
In recommendation, however, users and items are usually represented
by different types of features, for example, the features of users can be
the user ID, age, income level, and recent behaviors, while the features
for items can be the item ID, category, price, and brand name. Since the
features of users and items are from the spaces of different semantics,
the naive approaches based on the matching of superficial features do
not work for recommendation. More challengingly, the items can be
described by multi-modal features, e.g., images of clothing products
and cover images of movies, which could play a pivotal role in affecting
the decision-making of users. In such visually-aware scenarios, we need
to consider the cross-modal matching between users and multi-modal
content.

To address the mismatching challenge in recommendation, the col-
laborative filtering principle has been proposed (Shi et al., 2014). Col-
laborative Filtering (CF), which works as the fundamental basis of
almost all personalized recommender systems, assumes that a user
may like (consume) the items that are liked (consumed) by the similar
users, for which the similarity is judged from the historical interac-
tions (Sarwar et al., 2001). However, directly evaluating the similarity
between users (items) suffers from the sparsity issue, since a user only
consumed a few items in the whole item space. A typical assumption
to address the sparsity issue is that the user-item interaction matrix
is low-rank, which thus can be estimated from low-dimensional user
(and item) latent feature matrix. Then the user (item) similarity can be
more reliably reflected in the latent feature matrix. This leads to the
effectiveness of matrix factorization for collaborative filtering (Koren
et al., 2009; Rendle et al., 2009), which becomes a strong CF method
and an essential design for many recommender models. Besides matrix
factorization, many other types of CF methods have been developed

1Here we do not consider cross-language information retrieval.

1.5. Recent Advances 113

like neural network-based methods (He et al., 2017c; Liang et al., 2018)
and graph-based methods (Wang et al., 2019b; Ying et al., 2018).

To leverage the various side information beyond the interaction
matrix, such as user profiles, item attributes, and the current contexts,
many generic recommender models that follow the standard supervised
learning paradigm have been proposed. These models can be used in
the (re-)ranking stage of a recommendation engine, e.g., by predicting
the click-through rate (CTR) of an item. A representative model is
factorization machine (FM) (Rendle, 2010), which extends the low-rank
assumption of matrix factorization to model feature interactions. Since
the expressiveness of FM is limited by its linearity and second-order
interaction modeling, many later efforts complement it with neural
networks for nonlinear and higher-order interaction modeling (He and
Chua, 2017; Lian et al., 2018; Zhou et al., 2018). These neural network
models have now been intensively used in industrial applications. Batmaz
et al. (2019) and Zhang et al. (2019) reviewed deep learning methods
for recommendation systems.

Please note that though query-document matching and user-item
matching are critical for search engines and recommendation systems,
these systems also include other important components. Besides match-
ing, web search engines also include crawling, indexing, document un-
derstanding, query understanding, and ranking, etc. Recommendation
systems also include components such as user modeling (profiling),
indexing, caching, diversity controlling, and online exploration, etc.

1.5 Recent Advances

Though traditional machine learning was successful for matching in
search and recommendation, recent advances in deep learning have
brought even more significant progress to the area with a large number
of deep matching models proposed. The power of deep learning models
lies in the ability to learn distributed representations from the raw
data (e.g., text) for the matching problem, to avoid many limitations
of hand-crafted features, and to learn the representations and matching
networks in an end-to-end fashion. Moreover, deep neural networks have
sufficient capacity to model complicated matching tasks. They have

114 Introduction

the flexibility of extending to cross-modal matching naturally, where
the common semantic space is learned to represent data of different
modalities universally. All these characteristics are helpful in handling
the complexity of search and recommendation.

In search, the mismatch between query and document is more effec-
tively addressed by deep neural networks, including the feed-forward
neural networks (FFNs), convolutional neural networks (CNNs), and
Recurrent neural networks (RNNs), because they have stronger ca-
pabilities in representation learning and matching function learning.
Most notably, Bidirectional Encoder Representations from Transformers
(BERT) has significantly enhanced the accuracy of matching in search
and stands out as the state-of-the-art technique now.

In recommendation, recent focus has shifted from behavior-centric
collaborative filtering to information-rich user-item matching as in
sequential, context-aware, and knowledge graph enhanced recommen-
dations, which are all practical scenario-driven. In terms of techniques,
graph neural networks (GNNs) become an emerging tool for represen-
tation learning (Wang et al., 2019a,b), because recommendation data
can be naturally organized in a heterogeneous graph and GNNs have
the capability to exploit such data. To handle user behavior sequence
data, self-attention and BERT are also adopted, which demonstrates
promising results in sequential recommendation (Sun et al., 2019; Yuan
et al., 2020).

1.6 About This Survey

This survey focuses on the fundamental problems of matching in search
and recommendation. State-of-the-art matching solutions using deep
learning are described. A unified view of search and recommendation
from matching is provided. The ideas and solutions explained may mo-
tivate industrial practitioners to turn the research results into products.
The methods and the discussions may help academic researchers to
develop new approaches. The unified view may bring researchers in the
search and the recommendation communities together and inspire them
to explore new directions.

1.6. About This Survey 115

The survey is organized as follows: Section 2 describes the traditional
machine learning approaches to matching for search and recommen-
dation; Section 3 gives a general formulation of deep matching meth-
ods; Section 4 and Section 5 describe the details of the deep learning
approaches to search and recommendation respectively. Each section
includes the representation learning-based approaches and matching
function learning-based approaches; Section 6 summarizes the survey
and discusses open problems. Sections 2, 3, 4, and 5 are self-contained,
and the readers can choose to read on the basis of their interest and
need.

Note that deep learning for search and recommendation is a very hot
topic of research. As such, this survey does not try to cover all related
works in the fields of information retrieval and recommender systems.
Instead, we discuss the most representative approaches of the two fields
from the viewpoint of matching, aiming to summarize their key ideas
which are general and essential. In particular, this survey covers the
representative work before 2019.

Several previous FnTIR issues have given detailed introductions to
related topics. One issue (Li and Xu, 2014) introduces the traditional
machine learning approaches to the semantic matching problem, partic-
ularly in web search. Our survey in this issue is very different from it
in the sense that (1) it focuses on the newly developed deep learning
methods, and (2) it considers both search and recommendation. Mitra
and Craswell (2018) conducted a comprehensive survey on deep neural
networks for information retrieval, referred to as Neural IR. Bast et al.
(2016) carries out a survey on the techniques and systems of semantic
search, which means search with keyword queries, structured queries,
and natural language queries, to documents, knowledge bases, and their
combinations.

Several surveys and tutorials have been made on deep learning for
information retrieval and recommendation. For example, Onal et al.
(2018) have explained neural models for ad-hoc retrieval, query un-
derstanding, question answering, sponsored search, and similar item
retrieval. Zhang et al. (2019) reviews deep learning-based recommenda-
tion methods according to the taxonomy of deep learning techniques,
e.g., MLP, CNN, RNN, autoencoder-based, and so on. Other related

116 Introduction

surveys and tutorials include Kenter et al. (2017), Li and Lu (2016),
Guo et al. (2019b), Batmaz et al. (2019), and Zhang et al. (2019). They
all quite differ from this survey, which summarizes existing work from
the perspective of matching (e.g., input representations and the way
for matching).

This survey focuses on state-of-the-art matching techniques using
deep learning. We expect that the readers have a certain knowledge
of search and recommendation. Those who are not familiar with the
areas may consult existing materials (e.g., Adomavicius and Tuzhilin,
2005; Croft et al., 2009; Li and Xu, 2014; Liu, 2009; Ricci et al., 2015).
We also assume that the readers have sufficient knowledge of machine
learning, particularly deep learning.

2
Traditional Matching Models

Methods for conducting query-document matching in search and user-
item matching in recommendation using traditional machine learning
techniques have been proposed. The methods can be formalized within
a more general framework, called by us “learning to match”. Besides
search and recommendation, it is also applicable to other applications
such as paraphrasing, question answering, and natural language dia-
logue. This section first gives a formal definition of learning to match.
Then, it introduces traditional learning to match methods developed
for search and recommendation. Finally, it provides further reading in
this direction.

2.1 Learning to Match

2.1.1 Matching Function

The learning to match problem can be defined as follows. Suppose
that there are two spaces X and Y. A class of matching functions
F = {f(x, y)} is defined on two objects from the two spaces x ∈ X and
y ∈ Y, where each function f : X × Y 7→ R represents the matching

117

118 Traditional Matching Models

degree between the two objects x and y. The two objects x and y, and
their relationship can be described with a set of features Φ(x, y).

The matching function f(x, y) can be a linear combination of
features:

f(x, y) = 〈w,Φ(x, y)〉,

where w is the parameter vector. It can also be a generalized linear
model, a tree model, or a neural network.

2.1.2 Learning of Matching Functions

Supervised learning can be employed to learn the parameters of the
matching function f , as shown in Figure 2.1. Supervised learning for
matching typically consists of two phases: offline learning and on-
line matching. In offline learning, a set of training instances D =
{(x1, y1, r1), . . . , (xN , yN , rN)} is given, where ri is a Boolean value or
real number indicating the matching degree between objects xi and yi,
and N is the size of training data. Learning is conducted to choose a
matching function f ∈ F that can perform the best in matching. In
online matching, given a test instance (a pair of objects) (x, y) ∈ X ×Y ,

Figure 2.1: Supervised learning for matching.

2.1. Learning to Match 119

the learned matching function f is utilized to predict the matching
degree between the object pair denoted as f(x, y).

Similar to other supervised learning problems, we can define the goal
of learning to match as minimizing a loss function, which represents how
much accuracy the matching function can achieve on the training data
as well as the test data. More specifically, given the training data D,
the learning amounts to solving the following problem:

arg min
f∈F

L(D, f) + Ω(f).

The objective consists of two parts: the empirical loss L(D, f) measures
the overall loss incurred by the matching function f on training data,
and the regularizer Ω(f) prevents overfitting to the training data. Ω(f)
is typically chosen to impose a penalty on the complexity of f . Popular
regularizers include `1, `2, and a mixture of them.

Different definitions of the empirical loss function L(D, f) lead to
different types of learning to match algorithms. Three types of loss
functions, respectively referred to as pointwise loss function, pairwise
loss function, and listwise loss function, have been popularly used in the
literature (Cao et al., 2006; He et al., 2017c; Joachims, 2002; Nallapati,
2004; Rendle et al., 2009). Next, we briefly describe the three types of
loss functions.

Pointwise Loss Function

The pointwise loss function is defined only on one instance, i.e., a source
object and a target object. Suppose that there is a pair of objects (x, y)
with the true matching degree of r. Further, suppose the predicted
matching degree of (x, y) given by the matching model is f(x, y). The
pointwise loss function is defined as a measure representing the disagree-
ment between the matching degrees, denoted as `point(r, f(x, y)). The
closer f(x, y) is to r, the less value the loss function has.

In learning, given the training dataset D = {(x1, y1, r1), . . . , (xN ,
yN , rN)}, we are to minimize the total loss on the training data, or the
sum of the losses of object pairs:

Lpoint(D, f) =
N∑
i=1

`point(f(xi, yi), ri), (2.1)

120 Traditional Matching Models

where ri is the ground-truth matching degree of training instance
(xi, yi).

As an example of the pointwise loss, Mean Square Error (MSE) is
a widely used loss function. Given a labeled instance (x, y, r) and the
matching model f , the MSE is defined as:

`MSE = (f(x, y)− r)2.

Another example is the cross-entropy loss function. Cross-entropy loss
function assumes that r ∈ {0, 1} where 1 indicates relevant and 0
otherwise. It further assumes that f(x, y) ∈ [0, 1] is the predicted
probability that x and y are relevant. Then, the cross-entropy loss is
defined as:

`cross-entropy = −r log f(x, y)− (1− r) log(1− f(x, y)).

Pairwise Loss Function

Suppose that there are two pairs of objects (x, y+) and (x, y−), with
one of the objects x being shared. We call x source object (e.g., query or
user) and y+ and y− target objects (e.g., documents or items). Further
suppose that there exists an order between the objects y+ and y− given
the object x, denoted as r+ � r−. Here r+ and r− denote the matching
degrees of (x, y+) and (x, y−) respectively. The order relations between
objects can be explicitly or implicitly obtained.

We use f(x, y+) and f(x, y−) to denote the matching degrees of
(x, y+) and (x, y−) given by the matching model f , respectively. The
pairwise loss function is defined as a measure representing the disagree-
ment between the matching degrees and the order relation, denoted as
`pair(f(x, y+), f(x, y−)). The larger f(x, y+) is than f(x, y−), the less
value the loss function has.

In learning, given the training dataset D, a set of ordered object
pairs P is derived as follows:

P = {(x, y+, y−) | (x, y+, r+) ∈ D ∧ (x, y−, r−) ∈ D ∧ r+ � r−},
The total empirical loss on the training data is the sum of the losses
over the ordered object pairs:

Lpair(P, f) =
∑

(x,y+,y−)∈P
`pair(f(x, y+), f(x, y−)). (2.2)

2.1. Learning to Match 121

We can see that the pairwise loss function is defined on ordered pairs of
objects.

As an example, the pairwise hinge loss is commonly adopted. Given
a preference pair (x, y+, y−) and the matching model f , the pairwise
hinge loss is defined as

`pairwise-hinge = max{0, 1− f(x, y+) + f(x, y−)}.

Another common choice of pairwise loss in recommendation is the
Bayesian Personalized Ranking (BPR) loss (Rendle et al., 2009), which
aims to maximize the margin between the prediction of the positive
instance and that of negative instance:

`pairwise-BPR = − ln σ(f(x, y+)− f(x, y−)),

where σ(·) is the sigmoid function.

Listwise Loss Function

In search and recommendation, a source object (e.g., a query or a user)
is usually related to multiple target objects (e.g., multiple documents or
items). The evaluation measures for search and recommendation usually
treat a list of target objects as a whole. It is reasonable, therefore, to
define the loss function over a list of target objects, called listwise loss
function. Suppose that a source object x is related to multiple target ob-
jects y = {y1, y2, . . . , yN}, and the corresponding true matching degrees
are r = {r1, r2, . . . , yN}, respectively. The predicted matching degrees
by f between x and y1, y2, . . . , yN are r̂ = {f(x, y1), . . . , f(x, yN)}. The
listwise loss function is defined as a measure to represent the disagree-
ment between the true matching degrees and predicted matching degrees,
denoted as `list(r̂, r). The more the predicted matching degrees in r̂
agree with the true matching degrees in r, the lower value the loss
function has. In learning, given the training data D = {(xi,yi, ri)}Mi=1,
the empirical loss function is defined as the sum of the listwise losses
over the training instances:

Llist(D, f) =
∑

(x,y,r)∈D
`list(r̂, r). (2.3)

122 Traditional Matching Models

As an example of listwise loss function, some methods define it as
the negative probability of the relevant object given the other irrelevant
objects. Specifically, let us assume that there exists only one relevant
document in y denoted as y+. Then, the list of labeled objects can
be written as (x,y = {y+, y−1 , . . . , y

−
M}), where y

−
1 , . . . , y

−
M are the M

irrelevant objects. The list-wise loss function can be defined as the
negative probability that y+ is relevant given x:

`prob = −P (y+ | x) = − exp(λf(x, y+))∑
y∈y exp(λf(x, y)) ,

where λ > 0 is a parameter.

Relation with Learning to Rank

We view learning to match and learning to rank as two different machine
learning problems, although they are strongly related. Learning to
rank (Li, 2011; Liu, 2009) is to learn a function represented as g(x, y)
where x and y can be query and document in search and user and item
in recommendation respectively. In search, for example, the ranking
function g(x, y) may contain features about the relations between x

and y, as well as features on x and features on y. In contrast, the
matching function f(x, y) only contains features about the relations
between x and y.

Usually the matching function f(x, y) is trained first and then the
ranking function g(x, y) is trained with f(x, y) being a feature. For
ranking, determination of the order of multiple objects is the key, while
for matching, determination of the relation between two objects is the
key. When the ranking function g(x, y) only consists of the matching
function f(x, y), one only needs to employ learning to match.

In search, the features on x can be semantic categories of query
x and the features on y can be PageRank score and URL length of
document y. The features defined by the matching function f(x, y)
can be BM25 in traditional IR or a function learned by traditional
machine learning or deep learning. The ranking function g(x, y) can be
implemented by LambdaMART (Burges, 2010) which is an algorithm
of traditional machine learning. Table 2.1 lists some key differences
between learning to matching and learning to rank.

2.2. Matching Models in Search and Recommendation 123

Table 2.1: Learning to match vs. learning to rank

Learning to Match Learning to Rank

Prediction Matching degree between Ranking list of documents
query and document

Model f(x, y) g(x, y1), . . . , g(x, yN)
Challenge Mismatch Correct ranking on the top

Recently, researchers find that the univariate scoring paradigm in
traditional IR is sub-optimal because it fails to capture inter-document
relationships and local context information. Ranking models that di-
rectly rank a list of documents together with multivariate scoring
functions have been developed (Ai et al., 2018; Bello et al., 2018; Jiang
et al., 2019b; Pang et al., 2020). Similar efforts have been made in
recommendation (Pei et al., 2019). Therefore, the problems of matching
and ranking can be even more distinctively separated in that sense.

2.2 Matching Models in Search and Recommendation

Next, we give an overview of matching models in search and recommen-
dation, and introduce the approaches of matching in a latent space.

2.2.1 Matching Models in Search

When applied to search, learning to match can be described as follows.
A set of query-document pairs D = {(q1, d1, r1), (q2, d2, r2), . . . , (qN ,
dN , rN)} are given as training data, where qi, di, and ri (i = 1, . . . , N)
denote a query, a document, and the query-document matching degree
(relevance), respectively. Each tuple (q, d, r) ∈ D is generated in the
following way: query q is generated according to probability distribution
P (q), document d is generated according to conditional probability dis-
tribution P (d | q), and relevance r is generated according to conditional
probability distribution P (r | q, d). This corresponds to the fact: queries
are submitted to the search systems independently, documents associ-
ated with a query are retrieved with the query words, and the relevance
of a document with respect to a query is determined by the contents

124 Traditional Matching Models

of the query and document. Human labeled data or click-through data
can be used as training data.

The goal of learning to match for search is to automatically learn
a matching model represented as a scoring function f(q, d) (or as a
conditional probability distribution P (r | q, d)). The learning problem
can be formalized as minimization of the pointwise loss function in
Equation (2.1), the pairwise loss function in Equation (2.2), or the
listwise loss function in Equation (2.3). The learned model must have
the generalization capability to conduct matching on unseen test data.

2.2.2 Matching Models in Recommendation

When applied to recommendation, learning to match can be described
as follows. A set of M users U = {u1, . . . , uM} and a set of N items
V = {i1, . . . , iN}, as well as a rating matrix R ∈ RM×N are given,
where each entry rij denotes the rating (interaction) of user ui on
item ij and rij is set to zero if the rating (interaction) is unknown.
We assume that each tuple (ui, ij , rij) is generated in the following
way: user ui is generated according to probability distribution P (ui),
item ij is generated according to probability distribution P (ij), and
rating rij is generated according to conditional probability distribution
P (rij | ui, ij). This corresponds to the fact: users and items are presented
in the recommender systems, and the interest of a user on an item is
determined by the known interest of users on items in the system.

The goal of learning to match for recommendation is to learn the
underlying matching model f(ui, ij) that can make predictions on the
ratings (interactions) of the zero entries in matrix R:

r̂ij = f(ui, ij),

where r̂ij denotes the estimated affinity score between user ui and item ij .
In this way, given a user, a subset of items with the highest scores with
respect to the user can be recommended. The learning problem can
be formalized as minimizing the regularized empirical loss function.
Still, the loss function can be either pointwise loss, pairwise loss, or
listwise loss as in Equation (2.1), Equation (2.2), or Equation (2.3). If
the loss function is pointwise loss like square loss or cross-entropy, the

2.2. Matching Models in Search and Recommendation 125

model learning becomes a regression or classification problem, where the
prediction value indicates the strength of interest. If the loss function
is pairwise loss or listwise loss, it becomes a genuine ranking problem,
where the prediction value indicates the relative strengths of interest
on items for a user.

2.2.3 Matching in Latent Space

As explained in Section 1, the fundamental challenge to matching in
search and recommendation is the mismatch between objects from
two different spaces (query and document, as well as user and item).
One effective approach to dealing with the challenge is to represent
the two objects in matching in a common space, and to perform the
task of matching in the common space. As the space may not have an
explicit definition, it is often referred to as “latent space”. This is the
fundamental idea behind the approach of matching in the latent space,
for both search (Wu et al., 2013b) and recommendation (Koren et al.,
2009).

Without loss of generality, let us take search as an example.
Figure 2.2 illustrates query-document matching in a latent space. There
are three spaces: query space, document space, and latent space, and
there exist semantic gaps between the query space and document space.
Queries and documents are first mapped to the latent space, and then
matching is conducted in the latent space. Two mapping functions
specify the mappings from the query space and document space into the
latent space. The uses of different types of mapping functions (e.g., linear
and non-linear) and similarity measures in the latent space (e.g., inner

Figure 2.2: Query-document matching in latent space.

126 Traditional Matching Models

product and Euclidean distance) lead to different types of matching
models.

Formally, let Q denote the query space (query q ∈ Q) and D denote
the document space (document d ∈ D), respectively, and H denotes
the latent space. The mapping function from Q to H is represented as
φ: Q 7→ H, where φ(q) stands for the mapped vector of q in H. Similarly,
the mapping function from D to H is represented as φ′: D 7→ H, where
φ′(d) stands for the mapped vector of d in H. The matching score
between q and d is defined as the similarity between the mapped vectors
(representations) of q and d in the latent space, i.e., φ(q) and φ′(d).

Before the prevalence of deep learning, most methods are “shallow”,
in the sense that linear functions and inner product are adopted as the
mapping function and similarity, respectively,

s(q, d) = 〈φ(q), φ′(d)〉, (2.4)

where φ and φ′ denote linear functions and 〈·〉 denotes inner product.
In learning of the model, training instances indicating the matching

relations between queries and documents are given. For example, click-
through data can be naturally used. The training data is represented as
(q1, d1, c1), (q2, d2, c2), . . . , (qN , dN , cN), where each instance is a triple
of query, document, and click-number (or logarithm of click-number).

2.3 Latent Space Models in Search

Next, we introduce the matching models based on latent spaces as
examples. A complete introduction to semantic matching in search
can be found in Li and Xu (2014). Specifically, we briefly introduce
representative methods for search that perform matching in a latent
space, including Partial Least Square (PLS) (Rosipal and Krämer, 2006),
Regularized Matching in Latent Space (RMLS) (Wu et al., 2013b), and
Supervised Semantic Indexing (SSI) (Bai et al., 2009, 2010).

2.3.1 Partial Least Square

Partial Least Square (PLS) is a technique initially proposed for regres-
sion in statistics (Rosipal and Krämer, 2006). It is shown that PLS can

2.3. Latent Space Models in Search 127

be employed in learning of latent space model for search (Wu et al.,
2013a).

Let us consider using the matching function f(q, d) in Equation (2.4).
Let us also assume that the mapping functions are defined as φ(q) = Lqq
and φ′(d) = Ldd, where q and d are feature vectors representing query
q and document d, and Lq and Ld are orthonormal matrices. Thus, the
matching function becomes

f(q, d) = 〈Lqq,Ldd〉, (2.5)

where Lq and Ld are to be learned.
Given the training data, the learning of Lq and Ld amounts to opti-

mizing the objective function (based on pointwise loss) with
constraints:

argmax
Lq ,Ld

=
∑

(qi,di)
cif(qi, di),

s.t. LqLTq = I, LdLTd = I,
(2.6)

where (qi, di) is a pair of query and document, ci is the click number of
the pair, and I is the identity matrix. This is a non-convex optimization
problem, however, the global optimum exists and can be achieved by
employing SVD (Singular Value Decomposition) (Wu et al., 2013a,b).

2.3.2 Regularized Mapping to Latent Space

PLS assumes that the mapping functions are orthonormal matrices.
When the training data size is large, learning becomes hard because
it needs to solve SVD, which is of high time complexity. To address
the issue, Wu et al. (2013b) propose a new method called Regular-
ized Matching in Latent Space (RMLS), in which the orthonormality
constraints in PLS are replaced with `1 and `2 regularizations, under
the assumption that the solutions are sparse. In this way, there is no
need to solve SVD, and the optimization can be carried out efficiently.
Specifically, the optimization problem becomes that of minimizing the

128 Traditional Matching Models

objective function (based on pointwise loss) with `1 and `2 constraints:

argmax
Lq ,Ld

=
∑

(qi,di)
cif(qi, di),

s.t. ∀j: |ljq| ≤ θq, |l
j
d| ≤ θd, ‖ljq‖ ≤ τq, ‖ljd‖ ≤ τd,

(2.7)

where (qi, di) is a pair of query and document, ci is the click number of
the pair, Lq and Ld are linear mapping matrices, ljq and ljd are the j-th
row vectors of Lq and Ld, and θq, θd, τq, and τd are thresholds. | · | and
‖ · ‖ denote `1 and `2 norms, respectively. Note that the regularizations
are defined on the row vectors, not column vectors. The use of `2 norm
is to avoid a trivial solution.

The learning in RMLS is also a non-convex optimization problem.
There is no guarantee that a globally optimal solution can be found.
One way to cope with the problem is to employ alternative optimization,
that is, to first fix Lq and optimize Ld, and then fix Ld and optimize Lq,
and repeat until convergence. One can easily see that the optimization
can be decomposed and performed row by row and column by column
of the matrices. That means that the learning in RMLS can be easily
parallelized and scaled up.

The matching function in Equation (2.5) can be rewritten as a
bilinear function

f(q, d) = (Lqq)T (Ldd)
= qT (LTq Ld)d (2.8)
= qTWd,

where W = LTq Ld. Thus, both PLS and RMLS can be viewed as a
method of learning a bilinear function with matrix W which can be
factorized into two low-rank matrices Lq and Ld.

2.3.3 Supervised Semantic Indexing

A special assumption can be made in PLS and RMLS; that is, the query
space and the document space have the same dimensions. For example,
when both queries and documents are represented as bag-of-words, they
have the same dimensions in the query and document spaces. As a
result, W in Equation (2.8) becomes a square matrix. The method of

2.4. Latent Space Models in Recommendation 129

Supervised Semantic Indexing (SSI) proposed by Bai et al. (2009, 2010)
exactly makes the assumption. It further represents W as a low rank
and diagonal preserving matrix:

W = LTq Ld + I,

where I denotes the identity matrix. Thus, the matching function
becomes

f(q, d) = qT (LTq Ld + I)d.
The addition of the identity matrix means that SSI makes a tradeoff
between the use of a low-dimensional latent space and the use of a
classical Vector Space Model (VSM).1 The diagonal of matrix W gives
a score to each term which occurs in both query and document.

Given click-through data, ordered query-document pairs are first
derived, denoted as P = {(q1, d

+
1 , d

−
1), . . . , (qM , d+

M , d
−
M)} where d+ is

ranked higher than d− and M is the number of pairs. The goal of
learning is to choose Lq and Ld such that f(q, d+) > f(q, d−) holds for
all pairs. A pairwise loss function is utilized. The optimization problem
becomes

argmin
Lq ,Ld

∑
(q,d+,d−)∈P

max(0, 1− (f(q, d+)− f(q, d−))),

= argmin
Lq ,Ld

∑
(q,d+,d−)∈P

max(0, 1− qT (LTq Ld + I)(d+ − d−)). (2.9)

The learning of SSI is also a non-convex optimization problem and there
is no guarantee to find the global optimal solution. The optimization
can be conduced in a way similar to that of RMLS.

2.4 Latent Space Models in Recommendation

Next, we briefly introduce representative methods for recommendation
that perform matching in a latent space, including Biased Matrix Fac-
torization (BMF) (Koren et al., 2009), Factored Item Similarity Model
(FISM) (Kabbur et al., 2013), and Factorization Machine (FM) (Rendle,
2010).

1If W = I, then the model degenerates to VSM. If W = LTq Ld, then the model
is equivalent to the models of PLS and RMLS.

130 Traditional Matching Models

2.4.1 Biased Matrix Factorization

Biased Matrix Factorization (BMF) is a model proposed for predicting
the ratings of users (Koren et al., 2009), i.e., formalizing recommendation
as a regression task. It is developed during the period of Netflix Challenge
and quickly becomes popular due to its simplicity and effectiveness.
The matching model can be formulated as:

f(u, i) = b0 + bu + bi + pTuqi, (2.10)

where b0, bu, and bi are scalars denoting the overall bias, user bias, and
item bias in rating scores, and pu and qi are latent vectors denoting
the user and the item. This can be interpreted as just using the IDs of
users and items as features of them, and projecting the IDs into the
latent space with two linear functions. Let u be the one-hot ID vector
of user u and i be the one-hot ID vector of item i, and P be the user
projection matrix and Q be the item projection matrix. Then we can
express the model under the mapping framework of Equation (2.4):

f(u, i) = 〈φ(u), φ′(i)〉 = 〈[b0, bu, 1,P · u], [1, 1, bi,Q · i]〉, (2.11)

where [·, ·] denotes vector concatenation.
Given the training data, the learning of model parameters (Θ =

{b0, bu, bi,P,Q}) becomes optimizing the pointwise regression error
with regularization:

arg min
Θ

∑
(u,i)∈D

(Rui − f(u, i))2 + λ||Θ||2, (2.12)

where D denotes all observed ratings, Rui denotes the rating for (u, i),
and λ is the L2 regularization coefficient. As it is a non-convex optimiza-
tion problem, alternating least squares (He et al., 2016b) or stochastic
gradient decent (Koren et al., 2009) are typically employed, which
cannot guarantee to find a global optimum.

2.4.2 Factored Item Similarity Model

Factored Item Similarity Model (FISM) (Kabbur et al., 2013) adopts the
assumption of item-based collaborative filtering, i.e., users will prefer
items that are similar to what they have chosen so far. To do so, FISM

2.4. Latent Space Models in Recommendation 131

uses the items that a user has chosen to represent the user and projects
the combined items into the latent space. The model formulation of
FISM is:

f(u, i) = bu + bi + d−αu

(∑
j∈D+

u

pj
)T

qi, (2.13)

where D+
u denotes the items that user u has chosen, du denotes the

number of such items, and d−αu represents normalization across users.
qi is the latent vector of target item i, and pj is the latent vector of
historical item j chosen by user u. FISM treats pTj qj as the similarity
between items i and j, and aggregates the similarities of the target item
i and the historical items of user u.

FISM employs a pairwise loss and learns a model from binary implicit
feedback. Let U be all users, the total pairwise loss is given by∑

u∈U

∑
i∈D+

u

∑
j /∈D+

u

(f(u, i)− f(u, j)− 1)2 + λ||Θ||2, (2.14)

which forces the score of a positive (observed) instance to be larger than
that of a negative (unobserved) instance with a margin of one. Another
pairwise loss, the Bayesian Personalized Ranking (BPR) (Rendle et al.,
2009) loss, is also widely used,∑

u∈U

∑
i∈D+

u

∑
j /∈D+

u

− ln σ(f(u, i)− f(u, j)) + λ||Θ||2, (2.15)

where σ(·) denotes the sigmoid function that converts the difference
of scores to a probability value between zero and one, and thus the
loss has a probabilistic interpretation. The main difference between the
two losses is that BPR enforces the differences between positive and
negative instances as large as possible, without explicitly defining a
margin. Both pairwise losses can be seen as a surrogate of the AUC
metric, which measures how many pairs of items are correctly ranked
by the model.

2.4.3 Factorization Machine

Factorization Machine (FM) (Rendle, 2010) is developed as a general
model for recommendation. In addition to the interaction information

132 Traditional Matching Models

between users and items, FM also incorporates side information of users
and items, such as user profiles (e.g., age, gender, etc.), item attributes
(e.g., category, tags, etc.) and contexts (e.g., time, location, etc.). The
input to FM is a feature vector x = [x1, x2, . . . , xn] that can contain
any features for representing the matching function, as described above.
Consequently, FM casts the matching problem as a supervised learning
problem. It projects the features into the latent space, modeling their
interactions with the inner product:

f(x) = b0 +
n∑
i=1

bixi +
n∑
i=1

n∑
j=i+1

vTi vjxixj , (2.16)

where b0 is the bias, bi is the weight of feature xi, and vi is the latent
vector of feature xi. Given the fact that the input vector x can be large
but sparse, e.g., multi-hot encoding of categorical features, FM only
captures interactions between non-zero features (with term xixj).

FM is a very general model in the sense that feeding different input
features into the model will lead to different formulations of the model.
For example, when x only retains the user ID and target item ID, FM
becomes the BMF model; and when x only keeps the IDs of user’s
historically chosen items and target item ID, FM becomes the FISM
model. Other prevalent latent space models such as SVD++ (Koren,
2008) and Factorized Personalized Markov Chain (FPMC) (Rendle et al.,
2010) can also be subsumed by FM with proper feature engineering.

2.5 Further Reading

Query reformulation is another way to address the query-document
mismatch in search, that is, to transform the query to another query
which can do better matching. Query transformation includes spelling
error correction of the query. For example, Brill and Moore (2000)
propose a source channel model, and Wang et al. (2011) propose a
discriminative method for the task. Query transformation also includes
query segmentation (Bendersky et al., 2011; Bergsma and Wang, 2007;
Guo et al., 2008). Inspired by Statistical Machine Translation (SMT),
researchers also consider leveraging translation technologies to deal with
query document mismatch, assuming that query is in one language and

2.5. Further Reading 133

document is in another. Berger and Lafferty (1999) exploit a word-based
translation model to perform the task. Gao et al. (2004) propose using
the phrase-based translation model to capture the dependencies between
words in the query and document title. Topic models can also be utilized
to address the mismatch problem. A simple and effective approach is to
use a linear combination of term matching score and topic matching
score (Hofmann, 1999). Probabilistic topic models are also employed to
smooth document language models (or query language models) (Wei
and Croft, 2006; Yi and Allan, 2009). Li and Xu (2014) provides a
comprehensive survey on the traditional machine learning approaches
to semantic matching in search.

In recommendation, besides the classical latent factor models in-
troduced, other types of methods have been developed. For example,
matching can be conducted on the original interaction space with pre-
defined heuristics, like item-based CF (Sarwar et al., 2001) and unified
user-based and item-based CF (Wang et al., 2006). User-item interac-
tions can be organized as a bipartite graph, on which random walk is
performed to estimate the relevance between any two nodes (a user
and an item, two users, or two items) (Eksombatchai et al., 2018; He
et al., 2017b). One can also model the generation process of user-item
interactions using probabilistic graphical models (Salakhutdinov and
Mnih, 2007). To incorporate various side information such as the user
profiles and contexts, besides the FM model introduced, tensor factor-
ization (Karatzoglou et al., 2010) and collective matrix factorization (He
et al., 2014) are also exploited. We refer the readers to two survey papers
on the traditional matching methods for recommendation (Adomavicius
and Tuzhilin, 2005; Shi et al., 2014).

3
Deep Learning for Matching

Recent years have observed tremendous progress in applications of
deep learning into matching in search and recommendation (Guo et al.,
2019b; Naumov et al., 2019). The main reason for the success is due to
deep learning’s strong ability in learning of representations for inputs
(i.e., queries, documents, users, and items) and learning of nonlinear
functions for matching. In this section, we first give an overview of Deep
Learning (DL) techniques and then describe a general framework, typical
architectures, and designing principles of deep learning for matching in
search and recommendation.

3.1 Overview of Deep Learning

3.1.1 Deep Neural Networks

Deep neural networks are complicated nonlinear functions from input
to output. In this subsection, we describe several neural network archi-
tectures that are widely used. Please refer to Goodfellow et al. (2016)
for a more detailed introduction.

134

3.1. Overview of Deep Learning 135

Feed-Forward Neural Networks

The Feed-forward Neural Networks (FFN), also called Multilayer Per-
ceptron (MLP), are neural networks consisting of multiple layers of
units, which are connected layer by layer without a loop. It is called
feed-forward because the signal only moves in one direction in the net-
work, from the input layer, through the hidden layers, and finally to
the output layer. The feed-forward neural networks can be utilized to
approximate any function, for example, a regressor y = f(x) that maps
a vector input x to a scalar output y.

Figure 3.1 shows a feedforward neural network with one hidden layer.
For an input vector x, the neural network returns an output vector y.
The model is defined as the following non-linear function

y = σ(W2 · σ(W1 · x + b1) + b2),

where σ is the element-wise sigmoid function, W1,W2,b1 and b2 are
model parameters to be determined in learning. To construct a deeper
neural network, one only needs to stack more layers on the top of the
network. Besides sigmoid function, other functions such as tanh and
Rectified Linear Units (ReLU) are also utilized.

Figure 3.1: A simple feed-forward neural network.

136 Deep Learning for Matching

In learning, training data of input-output pairs are fed into the
network as ground-truth. A loss is calculated for each instance by
contrasting the ground truth and the prediction by the network, and
the training is performed by adjusting the parameters so that the
total loss is minimized. The well-known back-propagation algorithm is
employed to conduct the minimization.

Convolutional Neural Networks

Convolutional Neural Networks are neural networks that make use of
convolution operations in at least one of the layers. They are specialized
neural networks for processing data that has a grid-like structure, e.g.,
time serious data (1-D grid of time intervals) and image data (2-D grid
of pixels).

As shown in Figure 3.2, a typical convolutional network consists of
multiple stacked layers: convolutional layer, detector layer, and pooling
layer. In the convolutional layer, convolution functions are applied in
parallel to produce a set of linear activations. In the detector layer, the
set of linear activations are run through a nonlinear activation function.

Figure 3.2: Typical convolutional layers.

3.1. Overview of Deep Learning 137

Figure 3.3: Fully connected layer and convolutional layer.

In the pooling layer, pooling functions are used to further modify the
set of outputs.

Figure 3.3 shows a comparison between a fully connected layer and
a convolutional layer. The fully connected layer uses a weight matrix
to model the global features of all input units, and therefore it has
dense connections between layers. The convolutional layer, on the other
hand, uses convolutional kernel vectors (or matrices) to model the local
features of each position (unit), where the weights of kernels are shared
across positions (units). Thus it has much sparse connections between
layers. Specifically, in one-dimension, given convolution kernel w and
input vector x, the output of position (unit) i is decided as:

yi = (x ∗w)(i) =
∑
a

xi−awa,

where “*” denotes the convolution operator.
In the two-dimension case, given the convolution kernel K and the

input matrix X, the output of position (unit) (i, j) is decided as:

Yi,j = (X ∗W)(i, j) =
∑
a

∑
b

Xi−a,j−bWa,b.

In the second detector layer, nonlinear activation functions such as
sigmoid, tanh, and ReLU are usually utilized.

138 Deep Learning for Matching

In the third pooling layer, pooling functions such as max-pooling,
average-pooling, and min-pooling are exploited. For example, in max-
pooling, the output at each position is determined as the maximum of
outputs of a kernel in the neighborhood.

Recurrent Neural Networks

Recurrent Neural Networks are neural networks for processing sequence
data x(1), . . . ,x(T). Unlike FFNs which can only handle one instance at
a time, RNN can handle a long sequence of instances with a variable
length.

As shown in Figure 3.4, an RNN shares the same parameters at
different positions. That is, at each position, the output is from the
same function of input at the current position as well as output at the
previous position. The outputs are determined with the same rule across
positions. Specifically, at each position t = 1, . . . , T , the output vector
o(t) and the state of the hidden unit h(t) are calculated as

h(t) = tanh(Wh(t−1) + Ux(t) + b1),
o(t) = softmax(Vh(t) + b2),

where W,U,V,b1, and b2 are model parameters.
Unfolding an RNN, we obtain a deep neural network with many

stages (right part of Figure 3.4) that share parameters over all stages.

Figure 3.4: An RNN and its unfolded form.

3.1. Overview of Deep Learning 139

The number of stages is determined by the length of the input sequence.
This structure makes it challenging to learn the model of RNN, because
the gradients propagated over the positions may either vanish or explode.
To address the issue, variations of RNN such as Long Short Term
Memory (LSTM) and Gated Recurrent Units (GRU) are proposed.

Attention-Based Neural Networks

Attention is a useful tool in deep learning. It is originally proposed
to dynamically and selectively collect information from the source
sentence in an encoder-decoder model in neural machine translation
(NMT) (Bahdanau et al., 2015).

Attention based Model: Figure 3.5 shows an encoder-decoder model
with the additive attention mechanism. Suppose that there are an
input sequence (w1, w2, . . . , wM) of length M and an output sequence
(y1, y2, . . . , yN) of length N . The encoder (e.g., an RNN) creates a
hidden state hi at each input position wi (i = 1, . . . ,M). The decoder
constructs a hidden state st = f(st−1, yt−1, ct) at output position t

(t = 1, . . . , N), where f is the function of the decoder, st−1 and yt−1
are the state and output of the previous position, and ct is the context

Figure 3.5: The encoder-decoder model with additive attention mechanism.

140 Deep Learning for Matching

vector at the position. The context vector is defined as the sum of
hidden states at all input positions, weighted by attention scores:

ct =
M∑
i=1

αt,ihi,

and the attention score αt,i is defined as:

αt,i = exp(g(st,hi))∑M
j=1 exp(g(st,hj))

.

The function g is determined by the hidden state of the previous output
position and the context vector of the current output position. It can
be defined as, for example, a feed-forward network with a single hidden
layer:

g(st,hi)) = vTa tanh(Wa[st,hi]),

where va and Wa are parameters.
We can see that the context vector ct selectively and dynamically

combines the information of the entire input sequence with the attention
mechanism. Compared to the traditional encoder-decoder model in
which only a single vector is used, multiple vectors are used to capture
the information of the encoder regardless of the distance.

Transformer: Transformer (Vaswani et al., 2017) is another attention-
based neural network under the encoder and decoder framework. Differ-
ent from the aforementioned model which sequentially reads the input
sequence (left-to-right or right-to-left), Transformer reads the entire
input sequence at once. The characteristic enables it to learn the model
by considering both the left and the right context of a word.

As shown in Figure 3.6, Transformer consists of an encoder for trans-
forming the input sequence of words into a sequence of vectors (internal
representation) and a decoder for generating an output sequence of
words one by one given the internal representation. The encoder is a
stack of encoder components with an identical structure, and the de-
coder is also a stack of decoder components with an identical structure,
where the encoder and decoder have the same number components.

Each encoder component or layer consists of a self-attention sub-
layer and a feed-forward network sub-layer. It receives a sequence of

3.1. Overview of Deep Learning 141

linear and softmax

word embedding

yt (t=1, 2, . . . , N)

y1 yt-1

Figure 3.6: An example transformer with two-layers of encoder and decoder. The
encoder is responsible for creating internal representations of input words. The
decoder is applied multiple times to generate the output words one by one. Note
that the residual connections around the sub-layers are not shown in the figure.

vectors (packed into a matrix) as input, processes the vectors with
the self-attention sub-layer, and then passes them through the feed-
forward network sub-layer. Finally, it sends the vectors as output to
the next encoder component. Specifically, the input is a sequence of
words (w1, w2, . . . , wM) with length M . Each word wi is represented
by a vector xi as sum of the word embedding and positional encoding
of it. The vectors are packed into a matrix X(0) = [x1,x2, . . . ,xM]T .
The self-attention sub-layer converts X(0) into Z = [z1, z2, . . . , zM]T
through self-attention defined as

Z = Attention(Q,K,V) = softmax
(

QKT

√
dk

)
V,

where K,V, and Q are matrices of key vectors, value vectors, and query
vectors respectively; dk is the dimensionality of key vector; K is the
resulting matrix consisting of M vectors. The matrices K,V, and Q

142 Deep Learning for Matching

are calculated as

Q = X(0)WQ,

K = X(0)WK ,

V = X(0)WV ,

where WQ,WK and WV are embedding matrices. After that, the vec-
tors zi in Z are independently processed by the feed-forward network
sub-layer. In each sub-layer, a residual connection is employed, followed
by layer-normalization. The output of the encoder component is rep-
resented as X(1) = [x(1)

1 ,x(1)
2 , . . . ,x(1)

M]T . X(1) is then fed into the next
encoder component. The encoder finally outputs the vectors (represen-
tations) corresponding to all input words, denoted as Xenc. There are
multiple heads at each attention sub-layer and we omit the description
on it here.

Each decoder component or layer in the decoder consists of a self-
attention sub-layer, an encoder-decoder attention sub-layer, and a feed-
forward network sub-layer. The sub-layers have the same architecture as
that of the encoder component. After encoding, the output of the encoder
is used to represent the key and value vectors: K = V = Xenc, which
are then used for “encoder-decoder attention” in each decoder compo-
nent. The decoder sequentially generates words for all output positions
1, 2, . . . , N . At each position 1 ≤ t ≤ N , the bottom decoder component
receives the previously outputted words “[start], y1, . . . , yt−1”, masks
the future positions, and outputs internal representations for the next
decoder component. Finally, the word at position t, denoted as vt, is se-
lected according to a probabilistic distribution generated by the softmax
layer on the top decoder component. The process is repeated until a
special symbol (e.g., “[end]”) is generated, or the maximal length is
reached.

Autoencoders

Autoencoders are neural networks that aim to learn the hidden in-
formation of the input, by compressing the input into a latent-space
representation and then reconstructing the output from the represen-
tation. In the model, high-dimensional data is first converted into a

3.1. Overview of Deep Learning 143

Figure 3.7: Architecture of an autoencoder.

low-dimensional latent representation by a multilayer encoder neural
network. Then, the data is reconstructed from the latent representation
by a multilayer decoder neural network. Therefore, it consists of two
parts: an encoder y = f(x); and a decoder x̂ = g(y). The autoencoder
as a whole can be described by the function g(f(x)) = x̂ where it is
expected that x̂ is as close to the original input x as possible.

Vanilla Autoencoder (Hinton and Salakhutdinov, 2006): Figure 3.7
shows the architecture of the vanilla autoencoder model. The encoder
and decoder can be neural networks with one hidden layer or deep
neural networks with multiple hidden layers. The goal in learning is
to construct the encoder and decoder so as to make the output x̂ as
close to the input x as possible, i.e., g(f(x)) ≈ x. Suppose that we are
given a training dataset D = {x1, . . . ,xN}, the encoder and decoder
(f and g) can be learned through minimization of the squared-error loss
function:

min
f,g

N∑
i=1

`(xi, x̂i) =
N∑
i=1
‖xi − g(f(xi))‖2.

An alternative is minimization of the reconstruction cross-entropy, where
it is assumed that x and x̂ are either bit vectors or probability vectors,

min
f,g

N∑
i=1

`H(xi, x̂i) = −
N∑
i=1

D∑
k=1

[xki log x̂ki + (1− xki) log(1− x̂ki)],

144 Deep Learning for Matching

where D is the dimensionality of input, and xki and x̂ki are the k-th
dimension of xi and x̂i, respectively. The optimization in learning of
autoencoder is typically carried out by stochastic gradient descent.

By limiting the dimensionality of latent representation y, autoen-
coder is forced to learn a representation in which the most salient
features of data are uncovered in the “compressed” low dimensional
representation.

Denoising Autoencoder (DAE): To deal with corruption in the data,
DAE is also proposed (Vincent et al., 2008) as an extension of vanilla
autoencoder. It is assumed that DAE receives a corrupted data sample
as input and predicts the original uncorrupted data sample as output.
First, a corrupted input x̃ is created from the original uncorrupted input
x through a random process x̃ ∼ qD(x̃ | x), where qD is a conditional
distribution over corrupted data samples conditioned on an uncorrupted
data sample. Next, the corrupted input x̃ is mapped into a latent
representation y = f(x̃) and then the latent representation is mapped
into a reconstructed output x̂ = g(f(x̃)), as shown in Figure 3.8. The
parameters of the encoder and the decoder are learned to minimize
the average reconstruction error (e.g., cross entropy error) between the
input x and reconstructed output x̂.

Figure 3.8: Architecture of a de-noising autoencoder.

3.1. Overview of Deep Learning 145

Other types of autoencoder include Sparse autoencoder (Ranzato
et al., 2007), Variational Autoencoder (Kingma and Welling, 2014), and
Convolutional Autoencoder (Masci et al., 2011).

3.1.2 Representation Learning

The strong ability in representation learning is the primary reason
for the big success of deep learning. In this subsection, we introduce
several methods of representation learning that are successfully ap-
plied in matching, including methods of learning word embeddings and
contextualized word representations.

Word Embeddings

Word embedding is a basic way of representing words in Natural Lan-
guage Processing (NLP) and Information Retrieval (IR). Embeddings
of words are usually created based on the assumption that the meaning
of a word can be determined by its contexts in documents.

Word2Vec: Mikolov et al. (2013) proposed the Word2Vec tool and
made word embedding popular. Word2Vec learns embeddings of words
from a large corpus using shallow neural networks in an unsupervised
manner. There are two specific methods in Word2Vec: Continuous Bag
of Words (CBOW) and Skip Gram.

As shown in Figure 3.9, CBOW takes the context of a word as input
and predicts the word from the context. It aims to learn two matrices,
U ∈ RD×|V | and W ∈ R|V |×D, where D is the size of embedding space,
V is the vocabulary, and |V | is the size of the vocabulary. U is the
input word matrix such that the i-th column of U, denoted as ui, is a
D-dimensional embedding vector of input word wi. Similarly, W is the
output word matrix such that the j-th row of W, denoted as wj , is a
D-dimensional embedding vector of output word wj . Note that each
word wi has two embedding vectors, i.e., the input word vector ui and
the output vector wi. Given a corpus, the learning of the U and W
amounts to the following calculation:

1. Selecting a word sequence of size 2m+1: (wc−m, . . . , wc−1, wc, wc+1,

. . . , wc+m) and generating a one-hot word vector for wc, denoted

146 Deep Learning for Matching

Figure 3.9: Architecture of CBOW.

as xc, and generating one-hot word vectors for the context of wc,
denoted as (xc−m, . . . ,xc−1,xc+1, . . . ,xc+m);

2. Mapping to the embedding word vectors of the context: (uc−m =
Uxc−m, . . . ,uc−1 = Uxc−1,uc+1 = Uxc+1,uc+m = Uxc+m);

3. Getting the average context: û = 1
2m(uc−m + · · · + uc−1 + uc+1

. . .uc+m);

4. Mapping to the embedding vectors of the center word: wc = Wxc;

5. Assuming that the center word is “generated” by the average
context û.

CBOW adjusts the parameters in U and W such that

argmin
U,W

` = −
∏
c

logP (wc | wc−m, . . . , wc−1, wc+1, . . . , wc+m)

= −
∏
c

log exp{wT
c û}∑|V |

k=1 exp{wT
k û}

.

3.1. Overview of Deep Learning 147

Figure 3.10: Architecture of skip gram.

The setting of Skip Gram is similar to that of CBOW, while input
and output are swapped. As shown in Figure 3.10, the input of Skip
Gram is the one-hot vector of the center word, and the outputs are
the vectors of the words in the context. Skip Gram also aims to learn
two matrices U ∈ RD×|V | and W ∈ R|V |×D. Given a text corpus, the
learning amounts to the following calculation:

1. Selecting a word sequence of size 2m + 1: (wc−m, . . . , wc−1, wc,

wc+1, . . . , wc+m) and generating a one-hot word vector for wc,
denoted as xc, and generating one-hot word vectors for the context
of wc, denoted as (xc−m, . . . ,xc−1,xc+1, . . . ,xc+m);

2. Mapping to the embedding word vector of the center word: uc =
Uxc;

3. Mapping to the embedding word vectors of the context: wc−m =
Wxc−m, . . . ,wc−1 = Wxc−1,wc+1 = Wxc+1, . . . ,wc+m =
Wxc+m;

148 Deep Learning for Matching

4. Assuming that the embedding vectors of the context wc−m, . . . ,

wc−1,wc+1, . . . ,wc+m are “generated” by the center word uc.

Skip Gram adjusts the parameters in U and W such that

argmin
U,W

` = − log
∏
c

2m∏
j=0;j 6=m

P (wc−m+j | wc)

= − log
∏
c

2m∏
j=0;j 6=m

exp{wT
c−m+juc}∑|V |

k=1 exp{wT
k uc}

.

Besides Word2Vec, a number of word embedding (and document
embedding) models have been developed in recent years, including
the GloVe (Global Vectors) (Pennington et al., 2014), fastText,1 and
doc2Vec (Le and Mikolov, 2014).

Contextualised Word Representations

The classical word embedding models (e.g., Word2Vec and GloVe) have
a fundamental shortcoming: they generate and utilize the same embed-
dings of the same words in different contexts. Therefore, they cannot
effectively deal with the context-dependent nature of words. Contextu-
alized word embeddings aim at capturing lexical semantics in different
contexts. A number of models have been developed, including ULMFiT
(Universal Language Model Fine-tuning), ELMo (Peters et al., 2018),
GPT (Radford et al., 2018), GPT-2 (Radford et al., 2019), Bidirectional
Encoder Representations from Transformers (BERT) (Devlin et al.,
2019), and XLNet (Yang et al., 2019c).

Among the models, BERT is the most widely used. BERT is a mask
language model (a denoising auto-encoder) that aims to reconstruct the
original sentences from the corrupted ones. That is, in the pre-train
phase, the input sentence is corrupted by replacing some original words
with “[MASK]”. The learning objective, therefore, is to predict the
masked words to get the original sentence.

As illustrated in Figure 3.11, BERT employs the Transformer to
learn the contextual relations between words in a text. Specifically,

1https://fasttext.cc/.

https://fasttext.cc/

3.1. Overview of Deep Learning 149

Figure 3.11: BERT training procedure: (a) The pre-training stage and transformer
architecture; (b) the fine-tuning stage modifies the pre-trained parameters by task-
specific training.

the model receives a pair of sentences separated by token “[SEP]” as
input. The two sentences are referred to as the left context and the
right context, respectively. BERT manages to capture the language
representations of both the left and the right contexts by using a Trans-
former encoder. Formally, given a word sequenceW = {w1, w2, . . . , wN}
of which consists of the words in the left context, the token “[SEP]”,
and the words in the right context, BERT first constructs an input
representation en for each word wn by summing the corresponding
word embedding vTn (i.e., by Word2Vec), segment embedding vSn (i.e.,
indicate whether it is from the left context and or the right context),
and position embedding vPn (i.e., indicate the position of the word in the
sequence). The input representations are then fed into the layered blocks
of Transformer encoder to obtain contextualized representations for the
words of the pair of sentences. Each Transformer block is composed of
a multi-head attention followed by a feed-forward layer.

150 Deep Learning for Matching

The learning of BERT consists of two stages: pre-training and fine-
tuning. In pre-training, sentence pairs collected from a large corpus
are used as training data. The model parameters are determined using
two training strategies: mask language modeling and next sentence
prediction. (1) In mask language modeling, 15% of the randomly chosen
words in the two sentences are replaced with token “[MASK]” before
feeding them into the model. The training goal, then, is to predict
the original masked words, based on the contexts provided by the
non-masked words in the sentences. (2) In next sentence prediction,
the model receives pairs of sentences as input. The training goal is to
predict if the second sentence in the pair is the subsequent sentence in
the original document. About 50% of the inputs are positive examples,
while the other 50% of the inputs are negative examples. In pre-training,
mask language modeling and next sentence prediction are conducted
jointly, by minimizing the combined loss functions of the two strategies.

Fine-tuning of a pre-trained BERT model is conducted in a super-
vised learning manner, for generating word representations tailored for
the specific task. Let us use text classification as an example. A clas-
sification layer is added on top of the BERT model to construct a
classifier. Suppose that each instance in the training data consists of a
word sequence x1, . . . , xM , and a label y. The model feeds the sequence
through the pre-trained BERT model, generates the representation
for the “[CLS]” token, and predicts the label ŷ. The fine-tuning objec-
tive, therefore, can be defined upon the ground-truth label y and the
predicted label ŷ.

3.2 Overview of Deep Learning for Matching

Deep learning for matching, referred to as deep matching, has become
the state-of-the-art technologies in search and recommendation (Mitra
and Craswell, 2019). Compared with the traditional machine learn-
ing approaches, the deep learning approaches improve the matching
accuracy in three ways: (1) using deep neural networks to construct
richer representations for matching of objects (i.e., query, document,
user, and item), (2) using deep learning algorithms to construct more
powerful functions for matching, and (3) learning the representations

3.2. Overview of Deep Learning for Matching 151

and matching functions jointly in an end-to-end fashion. Another ad-
vantage of deep matching approaches is their flexibility of extending
to multi-modal matching where the common semantic space can be
learned to universally represent data of different modalities.

Various neural network architectures have been developed. Here, we
give a general framework, typical architectures, and designing principles
of deep matching.

3.2.1 General Framework for Deep Matching

Figure 3.12 shows a general framework of matching. The matching
framework takes two matching objects as its input and outputs a
numerical value to represent the matching degree. The framework has
input and output layers at the bottom and the top. Between the input
and output layers, there are three consecutive layers. Each layer can be
implemented as a neural network or a part of a neural network:

The input layer receives the two matching objects which can be word
embeddings, ID vectors, or feature vectors.

Figure 3.12: The general matching framework.

152 Deep Learning for Matching

The representation layer converts the input vectors into the dis-
tributed representations. Neural networks such as MLP, CNN,
and RNN can be used here, depending on the type and nature of
the input.

The interaction layer compares the matching objects (i.e., two dis-
tributed representations) and outputs a number of (local or global)
matching signals. Matrix and tensor can be used for storing the
signals and their locations.

The aggregation layer aggregates the individual matching signals
into a high-level matching vector. Operations in deep neural
networks such as pooling and concatenation are usually adopted
in this layer.

The output layer takes the high-level matching vector and outputs
a matching score. Linear model, MLP, Neural Tensor Networks
(NTN), or other neural networks can be utilized.

Neural network architectures developed so far for query-document
matching in search and user-item matching in recommendation can be
summarized in the framework.

3.2.2 Typical Architectures for Deep Matching

Figure 3.13 shows a typical architecture for deep matching in search
(Huang et al., 2013) and recommendation (He et al., 2017c). In the
architecture, the inputs X and Y are two texts in search or two feature
vectors in recommendation. The two inputs are first processed with
two neural networks independently, for creating their representations.
Then, the architecture calculates the interactions between the two
representations and outputs matching signals. Finally, the matching
signals are aggregated to form the final matching score. A special case
of the architecture is to let the two representation neural networks
identical and their parameters shared (Huang et al., 2013; Shen et al.,
2014). The simplification makes the network architecture easier to train
and more robust, which is possible when both X and Y are texts.

3.2. Overview of Deep Learning for Matching 153

Figure 3.13: A common neural network architecture one for deep matching.

Figure 3.14 shows an architecture widely used for deep matching in
search (Hu et al., 2014; Pang et al., 2016b). It takes two texts X and
Y as input, and each word in the texts is represented by its embedding.
The architecture first calculates lexical interactions between the two
texts. The results of the lexical interactions are stored in a matrix or
a tensor, for keeping the results as well as their locations. Then, the
interactions at the lexical level are aggregated into the final matching
score. Compared to the first architecture, this architecture has two
remarkable properties: (1) conducting the interactions at the lexical
level rather than at the semantic level, which is usually necessary for
search; (2) storing and utilizing the location of each interaction at the
next step.

Figure 3.15 shows an architecture widely used for deep matching
in recommendation (He and Chua, 2017; Xin et al., 2019a). The input
matching objects are a user (query) and an item (document) with their
feature vectors. The input vectors can be combined (concatenated).
Then, the combined input vectors are processed with a neural network
for creating a distributed representation (embeddings) of them. Next, the
architecture calculates the interactions between the user and item, e.g.,
first-order interactions using linear regression, second-order interactions

154 Deep Learning for Matching

Figure 3.14: The neural network architecture two for query-document matching.

Figure 3.15: The neural network architecture for user-item matching.

using factorization machine, and higher-order interactions using MLP
or CNN. Finally, these interactions are aggregated to obtain the final
matching score. Please note that though it is originally designed in
recommendation system literature, the hybrid structure is also popular
in search. For example, the search model of Duet Mitra et al. (2017)
adopts similar architecture for matching queries and documents.

3.2. Overview of Deep Learning for Matching 155

3.2.3 Designing Principles of Deep Matching

We propose two designing principles for the development of deep match-
ing models in search and recommendation: the modular principle and
the hybrid principle.

The modular principle postulates that a matching model usually
consists of multiple modules (functions), and thus the development
of such a model should also take a modular approach. For example,
the representation module can be implemented with CNN, RNN, or
MLP, the interaction module can be a matrix or a tensor, and the
aggregation module can be a pooling or concatenating operator. Different
combinations of the modules result in different matching models.

The hybrid principle asserts that a combination of dichotomic tech-
niques is helpful in the development of matching models. For example,
in user-item matching in recommendation, the first-order, second-order,
and higher-order interactions all contribute to the determination of the
final matching degree. In query-document matching in search, the query
and document can be represented with both bag-of-words and sequences
of word embeddings. Furthermore, in both search and recommendation,
the representation and interaction between objects can be combined
using a combination of deep and wide neural networks, or nonlinear
and linear models.

The next two sections will introduce the neural network architectures
designed for search and recommendation with more details.

4
Deep Matching Models in Search

The deep learning approaches to query-document matching in search
mainly fall into two categories: representation learning and matching
function learning, whose architectures are depicted in Figure 3.13 and
Figure 3.14, respectively. In the two categories, neural networks are
utilized for representing queries and documents, for conducting the
interactions between queries and documents, and for aggregating the
matching signals. Different combinations of techniques result in differ-
ent deep matching models. Table 4.1 summarizes the deep matching
models in search. The first column categorizes the models as matching
based on representation learning, matching based on matching function
learning, and the models that combine the two approaches. The second
column further categorizes the models according to how word order
information is used in the initial representations. For example, “bag of
letter tri-grams” and “bag of words means” means that the order of
words in the queries and/or documents are not considered. “Sequence
of words” means that the models utilize the word ordering informa-
tion. The third column describes the types of the neural networks (or
transformation functions) employed in the models. Note that we use
the terms “representation learning” and “matching function learning”

156

157

T
ab

le
4.

1:
D
ee
p
le
ar
ni
ng

ap
pr
oa
ch
es

to
qu

er
y-
do

cu
m
en
t
m
at
ch
in
g
in

se
ar
ch

In
pu

t
N

et
w

or
k

R
ep

re
se

nt
at

io
n

A
rc

hi
te

ct
ur

e
M

at
ch

in
g

M
od

el
s

M
at
ch
in
g

B
ag

of
le
tt
er

tr
i-g

ra
m

M
LP

D
SS

M
(H

ua
ng

et
al

.,
20
13
)

ba
se
d
on

B
ag

of
w
or
ds

Li
ne
ar

N
V
SM

(G
ys
el

et
al

.,
20
18
)

re
pr
es
en
ta
tio

n
Se

qu
en

ce
of

w
or
ds

M
LP

SN
R
M

(Z
am

an
ie

t
al

.,
20
18
b)

le
ar
ni
ng

C
N
N

C
LS

M
(S
he

n
et

al
.,
20
14
),
A
R
C
-I

(H
u

et
al

.,
20
14
),

C
N
T
N

(Q
iu

an
d
H
ua

ng
,2

01
5)
,M

A
C
M

(N
ie

et
al

.,
20
18
),

N
R
M
-F

(Z
am

an
ie

t
al

.,
20
18
c)
,

M
ul
ti-
G
ra
nC

N
N

(Y
in

an
d
Sc
hü

tz
e,

20
15
)

R
N
N

LS
T
M
-R

N
N

(P
al
an

gi
et

al
.,
20
16
),
M
V
-L
ST

M
(W

an
et

al
.,
20
16
a)

R
N
N

+
M
A
SH

R
N
N

(J
ia
ng

et
al

.,
20
19
a)
,C

SR
A
N

(T
ay

et
al

.,
20
18
b)

A
tt
en
tio

n
C
ro
ss
-m

od
al

C
N
N

D
ee
p
C
C
A

(A
nd

re
w

et
al

.,
20
13
;Y

an
an

d
M
ik
ol
aj
cz
yk

,2
01
5)
,

A
C
M
R

(W
an

g
et

al
.,
20
17
a)
,m

-C
N
N
s
(M

a
et

al
.,
20
15
)

R
N
N

+
C
N
N

B
R
N
N

(K
ar
pa

th
y
an

d
Li
,2

01
5)

A
tt
en
tio

n
R
C
M

(W
an

g
et

al
.,
20
19
d)

C
on

tin
ue

d.

158 Deep Matching Models in Search

T
ab

le
4.

1:
C
on

tin
ue

d

In
pu

t
N

et
w

or
k

R
ep

re
se

nt
at

io
n

A
rc

hi
te

ct
ur

e
M

at
ch

in
g

M
od

el
s

M
at
ch
in
g

B
ag

of
w
or
ds

M
LP

D
R
M
M

(G
uo

et
al

.,
20
16
)

ba
se
d
on

R
B
F-
K
er
ne

l
K
-N

R
M

(X
io
ng

et
al

.,
20
17
)

m
at
ch
in
g

A
tt
en
tio

n
D
ec
om

po
sa
bl
e
A
tt
en
tio

n
M
od

el
(P

ar
ik
h

et
al

.,
20
16
),

fu
nc
tio

n
aN

M
M

(Y
an

g
et

al
.,
20
16
)

le
ar
ni
ng

Se
qu

en
ce

of
w
or
ds

C
N
N

A
R
C
-I
I
(H

u
et

al
.,
20
14
),
M
at
ch
P
yr
am

id
(P

an
g

et
al

.,
20
16
b)
,

D
ee
pR

an
k
(P

an
g

et
al

.,
20
17
a)
,P

A
C
R
R

(H
ui

et
al

.,
20
17
),

C
o-
PA

C
R
R

(H
ui

et
al

.,
20
18
)

R
N
N

E
SI
M

(C
he

n
et

al
.,
20
17
b)
,B

iM
P
M

(W
an

g
et

al
.,
20
17
c)

Sp
at
ia
lR

N
N

M
at
ch
-S
R
N
N

(W
an

et
al

.,
20
16
b)
,H

iN
T

(F
an

et
al

.,
20
18
)

A
tt
en
tio

n
B
E
RT

4M
at
ch

(N
og
ue

ira
an

d
C
ho

,2
01
9)
,M

IX
(C

he
n

et
al

.,
20
18
b)
,R

E
2
(Y

an
g

et
al

.,
20
19
a)
,A

B
C
N
N

(Y
in

et
al

.,
20
16
),

M
C
A
N

(T
ay

et
al

.,
20
18
d)
,H

C
R
N

(T
ay

et
al

.,
20
18
c)
,

M
w
A
N

(T
an

et
al

.,
20
18
),

D
II
N

(G
on

g
et

al
.,
20
18
),

H
A
R

(Z
hu

et
al

.,
20
19
)

R
B
F-
K
er
ne

l
C
on

v-
K
N
R
M

(D
ai

et
al

.,
20
18
)

C
om

bi
ne

d
Se

qu
en

ce
of

w
or
ds

C
N
N

+
M
LP

D
ue

t
(M

itr
a

et
al

.,
20
17
)

4.1. Matching Based on Representation Learning 159

for ease of explanation. The matching function learning methods also
learn and utilize word (and sentence) representations.

In the remaining of the section, we introduce the representative mod-
els based on representation learning in Subsection 4.1 and the models
based on matching function learning in Subsection 4.2. Experimental
results are also shown in each subsection.

4.1 Matching Based on Representation Learning

4.1.1 General Framework

The representation learning methods assume that queries and documents
can be represented by low-dimensional and dense vectors. There are two
key questions: (1) what kind of neural networks to use for creating the
representations of query and document, and (2) what kind of function to
use for calculating the final matching score based on the representations.

Let us suppose that there are two spaces: query space and document
space. The query space contains all the queries, and the document space
contains all the documents. The query space and document space can
be heterogeneous, and the similarities between queries and documents
across the spaces can be hard to calculate. Further, suppose that there
is a new space in which both queries and documents can be mapped
into, and a similarity function is also defined in the new space. In search,
the similarity function can be utilized to represent the matching degrees
between queries and documents. In other words, matching between
query and document is conducted in the new space after mapping.
Figure 4.1 shows the framework of query-document matching based on
representation learning.

Formally, given query q in the query space q ∈ Q and docu-
ment d in the document space d ∈ D, functions φq: Q 7→ H and
φd: D 7→ H represent mapping from the query space and mapping from
the document space to the new space H, respectively. The matching
function between q and d is defined as

f(q, d) = F (φq(q), φd(d)),

where F is the similarity function defined in the new space H.

160 Deep Matching Models in Search

Figure 4.1: Query-document matching based on representation learning.

Different neural networks can be utilized for representing the queries
and documents, as well as calculating the matching scores given the
representations, resulting in different matching models. Most of the
matching models (e.g., DSSM) use identical network structures for
queries and documents (i.e., φq = φd). They can be generalized to having
different network structures for queries and documents, respectively.

4.1.2 Representing with Feedforward Neural Networks

Feedforward neural networks are the first network architecture used to
create semantic representations of queries and documents. For example,
Huang et al. (2013) propose representing queries and documents with
deep neural networks, using a model referred to as Deep Structured
Semantic Models (DSSM). Figure 4.2 shows the architecture of DSSM.

DSSM first represents query q and its associated documents d’s
(d1, d2, . . . , dn) as vectors of terms and takes the vectors as input. To
overcome the difficulties resulting from the very large vocabulary size in
web search, DSSM maps the term vectors to letter n-gram vectors. For
example, word “good” is mapped into letter trigrams: (“#go”, “goo”,
“ood”, “od#”), where “#” denotes starting and ending marks. In this
way, the dimensions of input vectors can be reduced from 500 k to
30 k, because the number of letter n-grams in English is limited. It then
maps the letter n-gram vectors into output vectors of lower dimensions
through deep neural networks:

yq = DNN(q)
yd = DNN(d),

4.1. Matching Based on Representation Learning 161

Figure 4.2: Deep structured semantic model.

where DNN(·) is the deep neural network used in DSSM, yq and yd
are the output vectors that represent the hidden topics in query q and
document d, respectively.

Next, DSSM takes the cosine similarity between the output vector
of query (denoted as yq) and the output vector of document (denoted
as yd) as matching score:

f(q, d) = cos(yq,yd).

DSSM learns the model parameters by Maximum Likelihood Esti-
mation (MLE) on the basis of queries, associated documents, and clicks.
Specifically, given query q and a list of documents D = {d+, d−1 , . . . , d

−
k },

where d+ is a clicked document and d−1 , . . . , d
−
k are unclicked (shown but

skipped) documents. The objective of learning amounts to maximizing
the conditional probabilities of document d+ given query q:

P (d+ | q) = exp(λf(q, d+))∑
d′∈D expλf(q, d′) ,

where λ > 0 is a parameter.

162 Deep Matching Models in Search

4.1.3 Representing with Convolutional Neural Networks

Although successful in web search, researchers find that DSSM has two
shortcomings. First, Deep Neural Networks contain too many parame-
ters, which makes it difficult to train the model. Second, DSSM views a
query (or a document) as a bag of words but not a sequence of words.
As a result, DSSM is not effective in handling local context information
between words. These two drawbacks can be addressed well with CNN.
First, CNN has a smaller number of parameters than DNN, because its
parameters are shared at different input positions (shift invariance), as
shown in Figure 3.3. Second, the basic operations of convolution and
max-pooling in CNN can keep the local context information. There-
fore, CNN is a very effective architecture for representing queries and
documents in search.

Convolutional Latent Semantic Model (CLSM)

Shen et al. (2014) propose to capture local context information for latent
semantic modeling using a convolutional neural network referred to as
CLSM. As shown in Figure 4.3, CLSM makes the follow modifications
to DSSM for representing queries and documents:

• The input sentence (query or document) is represented as letter-
trigram vectors based on word n-grams, which is a concatenation
of the letter-trigram vectors of each word in a word n-gram.

• Convolutional operations are used to model context features of
word n-grams. The context features of word n-grams are projected
to vectors that are close to each other if they are semantically
similar.

• Max-pooling operations are used to capture the sentence-level
semantic features.

CLSM takes the cosine similarity between the representation vectors of
query and document as the final matching score.

Similar to DSSM, the model parameters of CLSM are learned to
maximize the likelihood of clicked documents given queries in the

4.1. Matching Based on Representation Learning 163

Figure 4.3: Convolutional latent semantic model.

training data. The method of calculating the conditional probability of
document d+ given query q is the same as that of DSSM.

Convolutional Matching Model (ARC-I)

Hu et al. (2014) propose to use convolutional architectures for matching
two sentences. The model, called ARC-I, first finds the representation
of each sentence with convolutional neural networks and then compares
the representations of the two sentences with a multi-layer perceptron.

The ARC-I model takes the sequence of embeddings of words (i.e.,
word embeddings trained beforehand with word2vec (Mikolov et al.,
2013)) as input. The input is summarized through the layers of convo-
lution and pooling to a fixed-length representation at the final layer.
To address the problem that different sentences have different lengths,
ARC-I puts zero to the elements after the last word of the sentence
until the maximum length.

Formally, given query q and document d, ARC-I represents each
of them as a sequence of embeddings of words. In this way, the word
order information is kept. It then maps the sequence of embeddings
into output vectors of lower dimensions with a 1-D convolutional neural

164 Deep Matching Models in Search

network:

yq = CNN(q)
yd = CNN(d),

where CNN(·) is the 1-D convolutional neural network, yq and yd are
the output vectors of q and d, respectively.

To calculate the matching score, ARC-I utilizes a multiple layer
perceptron:

f(q, d) = W2 · σ
(

W1

[
yq
yd

]
+ b1

)
+ b2,

where W1,b1,W2, and b2 are parameters, and σ(·) is the sigmoid
function.

Figure 4.4 illustrates ARC-I with an example of two-layer convo-
lutional neural networks. Given an input sentence, each word is first
represented with word embedding. Then, the convolution layer generates
context representations, which offer a variety of compositions of words
within a three-word window and with different confidences (gray color
indicates low confidence). The pooling layer then chooses between two
adjacent context representations for each composition type. The output

Figure 4.4: Convolutional matching model (Arc-I).

4.1. Matching Based on Representation Learning 165

of the neural network (representation of sentence) is a concatenation of
the pooling results.

Discriminative training with a large margin criterion is used in
learning of the model parameters in ARC-I. Given query q, the relevant
query-document pair (q, d) in the training data should receive a higher
score than a query-document pair in which the relevant document
is replaced with a random one, i.e., (q, d′). Thus, the ARC-I model
minimizes the following objective:

L =
∑

(q,d)∈C

∑
(q,d′)∈C′

[
1− f(q, d) + f(q, d′)

]
+ ,

where C and C′ are collections of relevant query-document pairs and
irrelevant query-document pairs, respectively.

Convolutional Neural Tensor Network (CNTN)

Neural Tensor Network (NTN) is originally proposed to explicitly model
multiple interactions of relational data (Socher et al., 2013). NTN has
powerful representation ability and can represent multiple similarity
functions, including cosine similarity, dot product, and bilinear product,
etc. To model the complex interactions between query and document,
Qiu and Huang (2015) propose to calculate the similarity between query
and document with the tensor layer in NTN.

Similar to ARC-I, given query q and document d, CNTN first
represents each of them as a sequence of word embeddings. Then each
of the sequences is processed with a 1-D convolutional neural network,
obtaining the low-dimensional representations:

yq = CNN(q)
yd = CNN(d).

As shown in Figure 4.5, in CNTN, the representations of the query
and document are fed into NTN for calculating the matching score:

f(q, d) = uTσ
(

yTq M[1:r]yd + V
[
yq
yd

]
+ b

)
,

where σ is the element-wise sigmoid function, M[1:r] is a tensor with
r slices, and V,u, and b are parameters. The bilinear tensor product

166 Deep Matching Models in Search

Figure 4.5: Convolutional neural tensor networks.

yTq M[1:r]yd returns a r-dimensional vector. One advantage of CNTN
is that it can jointly model the representations and interactions. The
representations of sentences are modeled with the convolutional layers,
and the interactions between sentences are modeled with the tensor
layer.

Similar to ARC-I, the learning of model parameters in CNTN also
relies on discriminative training with a large margin criterion. Given
the relevant pairs C and irrelevant pairs C′, the learning amounts to
minimizing:

L =
∑

(q,d)∈C

∑
(q,d′)∈C′

[γ − f(q, d) + f(q, d′)]+ + λ‖Θ‖2,

where Θ includes the parameters in word embedding, CNN, and NTN;
γ > 0 and λ > 0 are the margin and regularization hyper-parameters,
respectively.

4.1.4 Representing with Recurrent Neural Networks

Given the fact that both queries and documents are texts, it is natural
to apply RNN to represent the queries and documents (Palangi et al.,
2016). The main idea is to find a dense and low dimensional semantic
representation of query (or document) by sequentially processing each
word of the text. As shown in Figure 4.6, RNN sequentially processes

4.1. Matching Based on Representation Learning 167

Figure 4.6: RNN for query/document representation.

each word in the input text, and the semantic representation of the last
word becomes the semantic representation of the whole text.

To address the difficulty of learning long term dependency within
the sequence due to the vanishing gradient problem, LSTM-RNN makes
use of LSTM instead of the original RNN. During the scanning of the
input text, the gates in LSTM store the long term dependencies into
the cells. Specifically, the forward pass for LSTM-RNN is defined as

u(t) = tanh(W4l(t) + Wrec4y(t− 1) + b4),
i(t) = σ(W3l(t) + Wrec3y(t− 1) + Wp3c(t− 1) + b3),
f(t) = σ(W2l(t) + Wrec2y(t− 1) + Wp2c(t− 1) + b2),
c(t) = f(t)� c(t− 1) + i(t)� u(t),
o(t) = σ(W1l(t) + Wrec1y(t− 1) + Wp1c(t) + b1),
y(t) = o(t)� tanh(c(t)),

where i(t), f(t),o(t), c(t) are the input gate, forget gate, output gate,
and cell state, respectively; “�” denotes the Hadamard (element-wise)
product. Matrix W and vector b are model parameters. Vector y(t) is
the representation until the t-th word. The representation of the last
word y(m) is used as the representation of the entire text.

Given query q and document d, LSTM-RNN first creates their
representation vectors yq(|q|) and yd(|d|), where | · | denotes the length
of input. The matching score is defined as the cosine similarity between

168 Deep Matching Models in Search

the two vectors:
f(q, d) = cos(yq(|q|),yd(|d|)).

Similar to DSSM and CLSM, LSTM-RNN also learns the model
parameters by MLE on the basis of queries, associated documents, and
clicked (positive) documents. Given query q and associated documents
D = {d+, d−1 , . . . , d

−
k }, where d+ is the clicked document and d−1 , . . . , d

−
k

are the unclicked documents. The conditional probability of document
d+ given query q is

P (d+ | q) = exp(γf(q, d+))
exp(γf(q, d+)) +

∑
d−∈D\{d+} exp γf(q, d−) ,

where γ > 0 is a parameter.

4.1.5 Representation Learning with
Un-Supervision/Weak Supervision

Unsupervised learning and weakly supervised learning approaches are
employed to learn representations of queries and documents.

Neural Vector Space Model (NVSM)

Traditionally, the low-dimensional representations of words and docu-
ments can be learned with topic models and word/document embedding
methods. Gysel et al. (2018) present NVSM, which learns the low-
dimensional representations of words and documents in a corpus using
projection.

The model architecture is shown in Figure 4.7. Given a large corpus
D with |D| documents and the vocabulary V containing all words in
the documents, the goal is to learn the representations of documents
RD ∈ <|D|×kd and the representations of words RV ∈ <|V |×kv . Note
that the document representations have kd dimensions while the word
representations have kv dimensions. NVSM first samples an n-gram
with n contiguous words B = (w1, . . . , wn) from document d as a phrase.
Then, it projects the n-gram phrase into the document space as:

~h(B) = ~h(w1, . . . , wn) = (f ◦ norm ◦ g)(w1, . . . , wn),

4.1. Matching Based on Representation Learning 169

Figure 4.7: Neural vector space model.

where g(w1, . . . , wn) = 1
n

∑n
i=1

~RwiV is an average of the word represen-
tations in the phrase, “norm” is the `-2 normalization factor, and

f(~x) = W~x,

where W is a transformation matrix. The objective of learning is to
maximize the similarity between the projected phrase representation
and the document representation:

max
RD,RV ,W

∏
d∈D

∏
B:B∼d

σ(〈~RdD,~h(B)〉),

where “B∼d” means that phrase B is sampled from document d.
In online matching, given query q and document d, NVSM projects

the query to the document space, similar to that for the n-gram phrases.
The matching score is calculated as the cosine similarity between the
document representation and projected query representation:

f(q, d) = cos(~h(q), ~RdD).

Standalone Neural Ranking Model (SNRM)

Recently, researchers in the IR community propose to train
neural matching and ranking models using weak supervision

170 Deep Matching Models in Search

Figure 4.8: Standalone neural ranking model.

(Dehghani et al., 2017), where the labels are obtained automatically
without annotations by humans or exploitation of additional resources
(e.g., click data). Zamani et al. (2018b) present SNRM by introducing
sparsity into the learned latent presentations of query and document,
and constructing an inverted index for the whole collection based on
the representations. As shown in Figure 4.8, the SNRM network con-
siders both query and document as a sequence of words. After going
through an embedding layer, a word sequence becomes a sequence of
word vectors. Then, the sequence is decomposed as a set of n-grams and
processed by fully-connected layers with sparsity constraints, generating
a set of high-dimensional sparse n-gram representations. Finally, an
average pooling layer is used to aggregate the n-gram representations
and generate the final sequence representations.

More specifically, the representation of a document d is defined as

yd = 1
|d| − n+ 1

|d|−n+1∑
i=1

φngram(wi, wi+1, . . . , wi+n−1),

where w1, w2, . . . , w|d| denotes the word sequence in d and φngram de-
notes a high-dimensional and sparse representation of the n-gram
wi, wi+1, . . . , wi+n−1. That is, φ first converts the n-gram of words into
an n-gram of word vectors, and then uses multiple feed-forward layers to
generate the representation of the n-gram. Similarly, the representation

4.1. Matching Based on Representation Learning 171

of a query q is defined as

yq = 1
|q| − n+ 1

|q|−n+1∑
i=1

φngram(qi, qi+1, . . . , qi+n−1),

where qi, qi+1, . . . , q|q| denotes the word sequence in q and φngram de-
notes a high-dimensional and sparse representation of the n-gram
qi, qi+1, . . . , qi+n−1. The final matching score is defined as the dot prod-
uct of the two representations:

f(q, d) = 〈yq,yd〉.

The model parameters in SNRM are trained with weak supervision
using traditional IR models. Given a query q and a pair of documents
d1 and d2, the preference label z ∈ {−1, 1} indicates which document
is more relevant to the query. In weak supervision, z is defined by the
traditional IR model of Query Likelihood:

z = sign(pQL(q, d1)− pQL(q, d2)),

where pQL denotes the query probability with the Dirichlet prior, and
“sign” extracts the sign of a real number. Therefore, given a training
instance (q, d1, d2, z), SNRM trains its parameters by minimizing the
following loss function

minL(q, d1, d2, z) + λL1([yq,yd1 ,yd2]),

where L(q, d1, d2, z) = max{0, ε− z[f(q, d1)− f(q, d2)]} is the pairwise
hinge loss with margin, L1 is the `1 regularization over the concatenation
of the representations yq,yd1 and yd2 , and the hyper-parameter λ > 0
controls the sparsity of the learned representations.

4.1.6 Representing Multi-Modal Queries and Documents

In cross-modal search users conduct search across multiple modalities
(e.g., the query is text and the documents are images). If the queries
and documents are represented in different modalities, then there exists
a significant gap between them. Thus, the key is to create common
(modality agnostic) representations for queries and documents. Deep
learning can indeed fulfill the need, and models are proposed for the
purpose.

172 Deep Matching Models in Search

Deep CCA

One popular approach to multi-modal matching is to learn a latent
embedding space where multimedia objects (e.g., images and texts) are
uniformly represented. Canonical Correlation Analysis (CCA) (Hardoon
et al., 2004) is such a method that finds linear projections that maximize
the correlation between the projected vectors of objects from the two
original spaces.

To enhance the representation ability, Andrew et al. (2013) and Yan
and Mikolajczyk (2015) propose to extend CCA into a deep learning
framework. Deep CCA directly learns nonlinear mappings for the task of
image-text matching. Specifically, it computes representations of objects
in the two spaces (e.g., the text query and the image document) by pass-
ing them through multiple stacked layers of nonlinear transformations,
as shown in Figure 4.9.

Deep CCA represents the text (e.g., query q) as a vector of terms.
Each element of the vector is the tf-idf value of the corresponding term.
The vector is input into the text network that consists of n stacked
triplets of fully connected (FC) layer, ReLU layer, and dropout layer.
Deep CCA represents the image (e.g., image document d) as a raw
image vector. The vector is input into the image network that consists
of m stacked doubles of convolutional layer and ReLU layer, and a last
fully connected layer.

The goal of learning is to jointly estimate the parameters in the text
network and the image network so that the deep nonlinear mappings
of the two types of data are maximally correlated. Assume that (Q,D)
denotes the vectors of a text query and a relevant image document,

Figure 4.9: Deep CCA architecture. It consists of two deep networks for text and
image.

4.1. Matching Based on Representation Learning 173

respectively. Further, assume that Θ1 and Θ2 are the parameters of
the text network and image network, respectively. Thus, deep CCA
amounts to maximize the following objective function:

max
Θ1,Θ2

corr(TextNN(Q; Θ1), ImageNN(D; Θ2)),

where “corr” is the correlation of two vectors, “TextNN” and “ImageNN”
are the text network and image network, respectively.

Adversarial Cross Modal Retrieval

Adversarial learning can be employed to construct a common space in
which items in different modalities are represented and compared, as
shown in Wang et al. (2017a). The method, called Adversarial Cross
Modal Retrieval (ACMR), conducts a minimax game involving two play-
ers: a feature projector and a modality classifier. The feature projector is
responsible for generating modality-invariant representations for items
from different modalities in the common space. It has the objective of
confusing the modality classifier as an adversary. The modality classifier
is responsible for distinguishing items from their modalities. By bringing
in the modality classifier, it is expected that the learning of feature
projector can be performed more effectively, in the sense that modality
invariance is obtained. Figure 4.10 illustrates the flowchart of ACMR.

Specifically, the text branch of ACMR takes bag-of-words features as
input. A deep neural network, denoted as fT (·; θT), is used to conduct
text feature projection. The image branch of ACMR takes CNN image
features as input. A deep neural network, denoted as fV (·; θV), is used
to conduct image feature projection. θV and θT are the parameters in
the two networks.

Given a set of N training triples D = {(vi, ti, yi)}Ni=1, where vi is an
image feature vector, ti is a text feature vector, and yi is the category
of vi and ti, ACMR defines its modality classifier and feature projector
as follows.

The modality classifier D is a feed forward neural network with pa-
rameters θD that predicts the probability of modality given an instance
(image or text). The projected features of an image are assigned one-hot
vector [0, 1], while the projected features of a text are assigned one-hot

174 Deep Matching Models in Search

Figure 4.10: Flowchart of ACMR. The modality classifier tries to distinguish the
items from their modalities. The features projector manages to confuse the modality
classifier through generating modality-invariant and discriminative representations.

vector [1, 0]. The modality classifier acts as an adversary. It manages to
minimize the adversarial loss:

Ladv(ΘD) = − 1
N

N∑
i=1

(mi · (logD(fV (vi); θD)

+ log(1−D(fT (ti); θD)))),

where mi is the modality label of the i-th instance, expressed as one-hot
vector.

The feature projector conducts modality-invariant embedding of
texts and images into a common space, consisting of two parts: label
prediction and structure preservation. The label prediction minimizes a
loss function Limd to ensure that the feature representations belonging
to the same categories are sufficiently close. The structure preservation
minimizes a loss function Limi to ensure that the feature representations
belonging to the same categories are sufficiently close across modalities,
and the feature representations belonging to different categories are
sufficiently far apart within a modality. The overall generation loss,
denoted as Lemb, is a combination of label prediction loss Limd, structure
preservation loss Limi, and a regularization term Lreg:

Lemb(θV , θT , θimd) = α · Limd + β · Limi + Lreg,

4.1. Matching Based on Representation Learning 175

where α > 0 and β > 0 are trading-off coefficients.
Finally, the learning of the ACMR model is conducted by jointly

minimizing the adversarial and the generation losses, as a minimax
game:

(θ̂V , θ̂T , θ̂imd) = argmin
θV ,θT ,θimd

(Lemb(θV , θT , θimd)− Ladv(θ̂D)),

θ̂D = argmax
θD

(Lemb(θ̂V , θ̂T , θ̂imd)− Ladv(θD)).

4.1.7 Experimental Results

We present the experimental results of search relevance by the methods
of representation learning, reported in Yin and Schütze (2015) and Pang
et al. (2017b). In the experiment, the benchmark data of MSRP1 is
utilized, and Accuracy and F1 are adopted as evaluation measures. The
results in Table 4.2 indicate that the methods based on representation
learning can outperform the baseline of TF-IDF in terms of F1.

We also present the experimental results of the multi-modal search
in Table 4.3. The experiments are based on the Wikipedia dataset and
reported in Wang et al. (2017a). In the experiment, Mean Average
Precision (MAP) is used as the evaluation measure. The results indicate
that the multi-modal matching method of ACMR can significantly
outperform the baseline, especially when deep features are used.

Table 4.2: Performances of representation learning methods on MSRP dataset.

Accuracy F 1

TF-IDF (baseline) 0.7031 0.7762
DSSM 0.7009 0.8096
CLSM 0.6980 0.8042
ARC-I 0.6960 0.8027

1https://www.microsoft.com/en-us/download/details.aspx?id=52398.

https://www.microsoft.com/en-us/download/details.aspx?id=52398

176 Deep Matching Models in Search

Table 4.3: Performances of multi-modal matching method on Wikipedia dataset in
terms of MAP

Image to Text Text to Image Average

CCA (shallow feature) 0.255 0.185 0.220
CCA (deep feature) 0.267 0.222 0.245
ACMR (shallow feature) 0.366 0.277 0.322
ACMR (deep feature) 0.619 0.489 0.546

4.2 Matching Based on Matching Function Learning

4.2.1 General Framework

The matching degree between query and document can be determined
by aggregating the local and global matching signals between the query
and document. The matching signals, as well as their locations, can be
captured from the input query and document representations.

Researchers propose to use deep neural networks to automatically
learn the matching patterns between query and document, referred to
here as matching function learning. There are two critical problems in
this approach: (1) how to represent and calculate the matching signals,
and (2) how to aggregate the matching signals to calculate the final
matching score.

Figure 4.11 shows the general framework. In the framework, the
query and document are compared with each other to create matching
signals, and the matching signals are aggregated to output the matching
score, all in a single neural network.

One approach is first to let the query and document interact based
on their raw representations, yielding a number of local matching signals,
and then to aggregate the local matching signals to output the final
matching score. Another approach is to create the representations of
query and document as well as their interactions at both local and
global levels with a single neural network usually using attention.

4.2. Matching Based on Matching Function Learning 177

Figure 4.11: Query-document matching based on matching function learning.

4.2.2 Learning Matching Function with Matching Matrix

Matching matrix is used for storing word-level matching signals and their
positions. The columns and rows of the matching matrix correspond to
the words in the query and document, respectively. Each entry represents
the location of matching, and the value of each entry represents the
degree of matching. The matching matrix is input to a neural network
as a whole.

Advantages of learning with the matching matrix are as follows:

(1) The matching matrix is precise in the sense that the local match-
ing information (degree and location) is accurately represented
in it.

(2) The matching matrix is intuitive in the sense that the local
matching information can be easily visualized and interpreted.

Convolutional Matching Model (ARC-II)

The convolutional matching model (Arc-II) (Hu et al., 2014) is directly
built on the interactions between query and document. The idea is first
to let the query and document interact with their raw representations
and then capture the matching signals from the interactions.

As shown in Figure 4.12, in the first layer, ARC-II takes a sliding
window on the query and document, and models the interactions within
the window at each location using one-dimensional convolution. For
segment i of query q and segment j of document d, ARC-II constructs
the interaction representation:

z0
i,j = [qTi:i+k1−1,dTj:j+k1−1]T ,

178 Deep Matching Models in Search

Figure 4.12: Convolution matching model (ARC-II).

where k1 is the width of sliding window, and qTi:i+k1−1 = [qTi ,qTi+1, . . . ,

qTi+k1−1]T (and dTj:j+k1−1 = [dTj ,dTj+1, . . . ,dTj+k1−1]T) is the concatena-
tion of embedding vectors of k1 words in the query segment (and in the
document segment). Thus, the corresponding value in the feature map
f is

z
(1,f)
i,j = g(z0

i,j) · σ(w(1,f)z0
i,j + b(1,f)),

where σ is the activation function, w(1,f) and b(1,f) are the convolutional
parameters, and g(·) is the gating function such that g(·) = 0 if all the
elements in the input vectors equal 0, otherwise g(·) = 1. Here, g(·)
works as a zero padding function. For all possible query words and
document words, the one-dimensional convolutional layer outputs a
two-dimensional matching matrix.

The next layer conducts two-dimensional max-pooling in every non-
overlapping 2×2-window. The (i, j)-th entry in the output matrix is

z
(2,f)
i,j = max(z(1,f)

2i−1,2j−1, z
(1,f)
2i−1,2j , z

(1,f)
2i,2j−1, z

(1,f)
2i,2j).

The max-pooling layer quickly shrinks the size of matching matrix by
filtering out weak (possibly noisy) matching signals.

Then, two-dimensional convolution is applied to the output matrix
of the max-pooling layer. That is, interaction representations are created
within the sliding window of size k3 × k3 at each location on the matrix
using two-dimensional convolution. The (i, j)-th value in the feature
map f is

z
(3,f)
i,j = g(Z(2)

i,j) · σ(W(3,f)Z(2)
i,j + b(3,f)),

4.2. Matching Based on Matching Function Learning 179

where W(3,f) and b(3,f) are the convolutional parameters and Z(2)
i,j is

the input matrix. More layers of two-dimensional max-pooling and
convolutional layers could be added afterward.

In the last layer, an MLP is utilized to summarize the matching
signals and output the matching score

f(q, d) = W2σ
(
W1Z(3) + b1

)
+ b2,

where Z(3) is the last layer feature map.
To train the model parameters, ARC-II makes use of the same

discriminative strategy as in ARC-I. That is, given query q, relevant
query-document pair (q, d) and irrelevant query-document pair (q, d′).
ARC-II minimizes the objective:

L =
∑

(q,d)∈C

∑
(q,d′)∈C′

[
1− f(q, d) + f(q, d′)

]
+ ,

where C and C′ contain the relevant and irrelevant query-document
pairs, respectively.

MatchPyramid

The convolutional matching model ARC-II makes early interactions
between query and document. However, the meanings of the interac-
tions (i.e., the one-dimensional convolution) are not clear. Pang et al.
(2016b) point out that the matching matrix can be constructed more
straightforwardly. The proposed model, called MatchPyramid, rede-
fines the matching matrix as a word-level similarity matrix. Then, a
two-dimensional convolutional neural network is exploited to extract
query-document matching patterns, summarize the matching signals,
and calculate the final matching score. The main idea of MatchPyramid
is to view text matching as image recognition, by taking the matching
matrix as an image, as shown in Figure 4.13. The input to the con-
volutional neural network is matching matrix M, where element Mij

represents the basic interaction of the i-th query word qi and the j-th
document word dj . In general, Mij stands for the similarity between
qi and dj , which can have different definitions. The indicate function
Mij = 1qi=dj can be used to produce either 1 or 0 to indicate whether

180 Deep Matching Models in Search

Figure 4.13: Architecture of MatchPyramid.

the two words are identical. The embeddings of query word and docu-
ment word can also be used to represent semantic similarities between
the two words. For example, cosine similarity: Mij = cos(qi,dj) where
qi and dj are the embeddings of qi and dj respectively, and dot product:
Mij = qTi dj .

MatchPyramid is a two-dimensional convolutional neural network
with the matching matrix M as input. Let z(0) = M. The k-th kernel
w(1,k) scans the matching matrix z(0) and generates a feature map z(1,k)

whose values are

z
(1,k)
ij = σ

rk−1∑
s=0

rk−1∑
t=0

w
(1,k)
s,t z

(0)
i+s,j+t + b(1,k)

 ,
where rk is the size of the k-th kernel. Dynamic pooling is then utilized
to deal with the variability in text length. The fixed-size feature maps
outputted by dynamic pooling is:

z
(2,k)
ij = max

0≤s≤dk
max

0≤t≤d′
k

z
(1,k)
i·dk+s,j·d′

k
+t,

where dk and d′k are the width and length of the pooling kernel. With
dynamic pooling the output feature map becomes fixed-sized. More
layers of convolution and dynamic pooling can be stacked.

In the last layer, MatchPyramid utilizes an MLP to produce the
final matching score:

[s0, s1]T = f(q, d) = W2σ (W1z + b1) + b2,

where z is the input feature map and W1, W2, b1 and b2 are the
parameters.

4.2. Matching Based on Matching Function Learning 181

To learn the model parameters, MatchPyramid utilizes the softmax
function and cross entropy loss. Given a set of N training triples D =
{(qn, dn, rn)}Nn=1 where rn ∈ {0, 1} is the ground truth relevance label,
1 for relevant and 0 for irrelevant. Cross entropy loss is defined as:

L = −
∑

(q,d,r)∈D
[r log(p(rel | q, d)) + (1− r) log(1− p(rel | q, d))],

where p(rel | q, d) = es1
es0+es1 is the probability that document d is

relevant to query q, given by the softmax function.
One attractive characteristic of the two-dimensional convolution is

that it is capable to automatically extract high level (soft) matching
patterns and store them in the kernels, which is similar to visual pattern
extraction in image recognition. Figure 4.14 illustrates an example, with
a handcrafted matching matrix based on the indicator function. Given
two kernels, it is clear that the first convolutional layer can capture
both n-gram matching signals such as “down the ages” and n-term
matching signals such as “(noodles and dumplings) vs. (dumplings and
noodles)”, as shown in the feature maps of the first layer. Then, the
second convolution layer makes compositions and forms higher level
matching patterns, as shown in the feature map of the second layer.

Figure 4.14: The effects of the 2-dimensional convolution kernel. Figure from Pang
et al. (2016b).

182 Deep Matching Models in Search

Match-SRNN

Two-dimensional Recurrent Neural Networks (RNN) can also be used to
discover matching patterns in the matching matrix. Wan et al. (2016b)
propose a method to divide the matching of two texts into a series
of sub-problems of matching, and solve the sub-problems recursively.
The proposed model, called MatchSRNN, applies a two-dimensional
RNN (Graves et al., 2007) to scan the matching matrix from the top-left
to the bottom-right. The state at the last (bottom-right) position is
considered as the overall representation of matching.

As shown in Figure 4.15, Match-SRNN consists of three components:
an NTN for discovering word-level matching signals, a spatial RNN for
summarizing the sentence-level matching representation, and a linear
layer for calculating the final matching score.

First, given query q and document d, an NTN is utilized to calculate
the similarity between i-th query word qi and the j-th document word dj :

s(qi, dj) = uTσ
(

qTi M[1:r]dj + V
[

qi
dj

]
+ b

)
,

where qi and dj are the embeddings of the i-th query word and the
j-th document word.

Next, a spatial RNN (two-dimensional RNN) is employed to scan
the outputted matching matrix recursively. Specifically, to calculate the
matching representation between the query prefix q[1:i] and document

Figure 4.15: Match-SRNN model.

4.2. Matching Based on Matching Function Learning 183

prefix q[1:j], the representations of their prefixes are first calculated:

hi−1,j = SpatialRNN(q[1:i−1],d[1:j]),
hi−1,j−1 = SpatialRNN(q[1:i−1],d[1:j−1]),

hi,j−1 = SpatialRNN(q[1:i],d[1:j−1]),

where SpatialRNN(·, ·) is the two-dimensional RNN applied to the
prefixes. Then, the matching representation is calculated as

hi,j = SpatialRNN(q[1: i],d[1: j]) = f(hi−1,j ,hi,j−1,hi−1,j−1, sqi,di),

where f represents the model of two-dimensional RNN. Instead of two-
dimensional RNN more powerful models such as two-dimensional GRU
and LSTM can also be exploited.

The last representation at the right bottom corner, h|q|,|d|, reflects
the global matching representation between the query and document.
Finally, a linear function is used to calculate the final matching score:

f(q, d) = wh|q|,|d| + b,

where w and b are parameters.
To learn the model parameters, Match-SRNN utilizes the pairwise

hinge loss. Given query q, the relevant query-document pair (q, d+)
in the training data should receive a higher score than the irrelevant
query-document pair (q, d−), defined as:

`(q, d+, d−) = max(0, 1− f(q, d+) + f(q, d−)).

Given the training data, all the parameters in the Match-SRNN model
are trained by BackPropagation.

4.2.3 Learning Matching Function with Attention

A recent trend is to leverage attention, which is inspired by the attention
mechanism in human cognition. Attention is successfully applied to
tasks in NLP and IR, including query-document matching.

184 Deep Matching Models in Search

Decomposable Attention Model

Parikh et al. (2016) point out that matching signals can be captured
and represented with a decomposable attention mechanism. As shown
in Figure 4.16, the model consists of three steps: attend, compare, and
aggregate. Given a query and a document, where each word in the
query and the document is represented by an embedding vector, the
model first creates a soft alignment matrix using attention; then it uses
the (soft) alignment to decompose the task into subproblems; finally, it
merges the results of the subproblems to produce the final matching
score.

Specifically, given a query-document pair (q, d) where each word
in q is represented as an embedding vector q = (q1, . . . ,q|q|) and |q|
is the number of words in q, and each word in d is represented as an
embedding vector d = (d1, . . . ,d|d|) and |d| is the number of words in d.
In the attend step an attention matrix between each query word and
document word is constructed. The unnormalized attention weight eij
is calculated with a decomposable function:

eij = F ′(qi,dj) = F (qi)TF (dj),

Figure 4.16: Decomposable attention model for matching.

4.2. Matching Based on Matching Function Learning 185

where F is a feed-forward neural network. With the attention weights,
the whole document aligned to the i-th query word is

βi =
|d|∑
j=1

exp(eij)∑|d|
k=1 exp(eik)

dj .

Similarly, the whole query aligned to the j-th document word is

αj =
|q|∑
i=1

exp(eij)∑|q|
k=1 exp(ekj)

qi.

In the compare step, each query word and its aligned version
{(qi, βi)}|q|i=1 are compared separately with a feed-forward network G:

v1,i = G([qTi , βTi]T), ∀i = 1, . . . , |q|,

where [·, ·] concatenates two vectors. Each document word and its
aligned version {(dj , αj)}|d|j=1 are compared separately with the same
feed-forward network G:

v2,j = G([dTj , αTj]T), ∀j = 1, . . . , |d|.

Finally in the aggregate step, the two sets of comparison signals
{v1,i} and {v2,j} are summed separately:

v1 =
|q|∑
i=1

v1,i, v2 =
|d|∑
j=1

v1,j .

The two aggregated vectors are then input to a feed forward network
followed by a linear layer H, giving multiple-class scores:

ŷ = H([vT1 ,vT2]T).

The predicted class (e.g., relevant or irrelevant) is decided by ŷ =
arg maxi yi.

In training of the model, cross-entropy loss is utilized:

L = 1
N

N∑
n=1

C∑
c=1

y(n)
c log exp(ŷ(n)

c)∑C
c′=1 exp(ŷ(n)

c′)
,

where C is the number of classes,2 N is the number of instances in the
training data.

2There are two classes for the query-document matching task: relevant and
irrelevant.

186 Deep Matching Models in Search

Matching with BERT

Recently, BERT (the Bidirectional Encoder Representations from Trans-
formers) becomes the state-of-the-art model for language understanding
tasks with its better performances (Devlin et al., 2019). In pre-training
of BERT the representations of two texts are learned from a large
amount of unlabeled data through mask language modeling and next
sentence prediction. In fine-tuning the representations are further re-
fined for the downstream task with an output layer added on top of the
model and a small amount of task-specific labeled data.

When applied to search, BERT can be utilized to calculate the
matching degree between query and document, as long as training data
is provided (Nogueira and Cho, 2019). That is, a pre-trained BERT
model can be adapted to query-document matching with fine-tuning.

Figure 4.17 shows a popular method of using BERT for query-
document matching. Given a query-document pair (q, d), the input

Figure 4.17: Fine-tuning BERT for query-document matching.

4.2. Matching Based on Matching Function Learning 187

to the BERT model includes query words, document words: “[CLS],
q1, . . . ,qN , [SEP], d1, . . . ,dM , [SEP]”, where “[CLS]” is the token to
indicate whether the query-document pair is relevant or not, “[SEP]” is
the token to indicate the separation of query and document, and qi and
dj are the i-th query word and the j-th document word, respectively. The
query (and document) is padded or truncated to have N (andM) words.
Each word is represented with its embedding. The input embedding of
a word is the sum of the corresponding word embedding, the segment
embedding, and the position embedding.

The model of BERT is the encoder of Transformer (Vaswani et al.,
2017), which outputs a sequence of high level semantic representa-
tions for the special input tokens and query and document words:
“C, T1, . . . , TN , T[SEP], T

′
1, . . . , T

′
M , T

′
[SEP]”, where C is the representation

of the token [CLS], T1, . . . , TN of the query words, T ′1, . . . , T ′M of the
document words, T[SEP] and T ′[SEP] of the two separators. The represen-
tation of the [CLS] token C is fed into an output layer (e.g., single layer
neural network) to obtain p(rel | q, d), which represents the probability
of document’s being relevant to query.

The BERTLARGE model released by Google is widely used as pre-
trained model.3 It is then employed in the fine-tuning for query document
matching. Suppose that we are given a set of training triples D =
{(qn, dn, rn)}Nn=1 where rn ∈ {0, 1} is the ground truth label. The cross-
entropy loss is calculated:

L =
∑

(q,d,r)∈D
−r log(p(rel | q, d))− (1− r) log(1− p(rel | q, d)).

Compared to the existing models, BERT offers several advantages
for query-document matching. First, in BERT, the query and document
are jointly input to the model, making it possible to simultaneously
represent the intra-query, intra-document, and inter query-document
interactions. Second, in BERT, the representations of query and docu-
ment as well as query-document interaction are transformed multiple
times in the hierarchical architecture. As a result, complicated local
and global matching patterns can be represented. Third, BERT uses a
pre-training/fine-tuning framework, where a pre-trained BERT model

3https://github.com/google-research/bert.

https://github.com/google-research/bert

188 Deep Matching Models in Search

can leverage the information in a large amount of unlabeled data.
Other matching models, however, have less powerful representation
abilities and thus cannot achieve similar performances. Studies show
that pre-training of BERT can make the model favor text pairs that are
semantically similar and thus can make the model perform very well in
matching (Nogueira and Cho, 2019; Nogueira et al., 2019; Qiao et al.,
2019).

4.2.4 Learning Matching Functions in Search

There exist differences between the matching tasks in search and those
in NLP. The matching tasks in search are mainly about topic relevance,
while the matching tasks in NLP are mainly concerned with semantics.
For example, matching models in search should be able to handle exact
matching signals very well, such as query term importance and diversity
of matching (Guo et al., 2016). Several matching models tailored for
search are developed and proved to be effective.

Deep Relevance Matching Model (DRMM)

In Guo et al. (2016), a relevance matching model called DRMM is
proposed. Figure 4.18 shows the model architecture. The query q and
the document d are represented as two sets of word vectors respectively:
q = {q1, q2, . . . , q|q|} and d = {w1, w2, . . . , w|d|}, where qi and wj denote
a query word vector and a document word vector both generated
by Word2Vec. For each query word qi, a matching histogram z(0)

i is
constructed to characterize the interaction between qi and the whole
document:

z(0)
i = h(qi

⊗
d),

for i = 1, . . . , |q|, where
⊗

denotes cosine similarity calculation between
qi and all words in d, outputting a set of cosine similarity scores in
the interval of [−1, 1]. Then, function h discretizes the interval into a
set of ordered bins, counts the number of similarity scores in each bin,
and calculates the logarithm of the counts, generating the histogram
vector z(0)

i .

4.2. Matching Based on Matching Function Learning 189

The vector z(0)
i is then passed through L-layer feed-forward layers

to generate a matching score for each query word qi, denoted as z(L)
i .

Given the matching scores of individual query words, the final matching
score between q and d, f(q, d), is calculated as a weighted sum of the
matching scores:

f(q, d) =
|q|∑
i=1

giz
(L)
i ,

where the weight of query word qi, gi, is generated by a term gating
network:

gi = exp(wgxi)∑|q|
j=1 exp(wgxj)

,

where wg is the parameter vector in the term gating network and xj
(j = 1, . . . , |q|) is the feature vector to characterize the importance of
query word qi. The features can be term vector or inverse document
frequency (IDF).

The parameters in the feed-forward network and term gating network
are jointly learned. Given a training example (q, d+, d−), where d+

and d− respectively denote a relevant document and a non-relevant
document, the learning of DRMM amounts to minimizing the pairwise
hinge loss with margin:

L = max(0, 1− f(q, d+) + f(q, d−)).

The stochastic gradient descent method of Adagrad with mini-batches is
applied to conduct the minimization. Early stopping strategy is adopted
for regularization.

Kernel Based Neural Ranking Model (K-NRM)

DRMM is effective in modeling the interactions between query words
and document words. However, the histogram pooling part (i.e., counting
of similarity values in each bin) is not a differentiable function, which
hinders end-to-end learning of the matching model. To cope with the
problem, DRMM makes use of pre-trained word vectors to represent
the words in the queries and documents. Xiong et al. (2017) propose
a relevance matching model called K-NRM. In the model, instead of

190 Deep Matching Models in Search

Figure 4.18: Deep relevance matching model.

counting the similarity scores, kernel pooling is employed to characterize
the matching degree between each query word and the document. As a
result, the model can be trained end-to-end.

As shown in Figure 4.19, given the query q and the document d,
K-NRM first uses an embedding layer to map each word (in q and d)
into an embedding vector. Then, it constructs an translation matrix (i.e.,
matching matrix) M where the (i, j)-th element inMij is the embedding
similarity (cosine similarity) between the i-th query word and the j-th
document word. Then, it applies the kennel pooling operator to each row

Figure 4.19: Kernel based neural ranking model.

4.2. Matching Based on Matching Function Learning 191

of M (corresponding to each query word), generating a K-dimensional
vector ~K. Specifically, the k-th dimension of the pooling vector of the
i-th query word is defined as an RBF Kernel function:

Kk(Mi) =
∑
j

exp
(
−(Mij − µk)2

2σ2
k

)
,

where Mi is the i-th row of M, Mij is the j-th element in Mi, and µk
and σk are the mean and variance of the RBF kernel, respectively.

Given the pooling vectors of all query words, the pooling vectors
are summed to create the soft-TF features:

φ(M) =
|q|∑
i=1

log ~K(Mi),

where ~K(Mi) = [K1(Mi), . . . ,KK(Mi)] and log is applied to each di-
mension of ~K(Mi). Finally, the soft-TF features are combined together,
yielding a final matching score

f(q, d) = tanh(〈w, φ(M)〉+ b),

where w and b are weights and bias respectively.
One advantage of K-NRM is that learning can be conducted in

an end-to-end manner. Given a set of training examples D =
{(qi, d+

i , d
−
i)}Ni=1, where d+

i and d−i respectively denote a relevant docu-
ment and a non-relevant document w.r.t. qi, the learning of K-NRM
mounts to minimizing the pairwise hinge loss function:

L(w, b,V) =
N∑
i=1

max(0, 1− f(qi, d+
i) + f(qi, d−i)).

Back propagation can be employed in learning of the kernels, which
makes it possible to learn both the parameters w, b and word embeddings
V during training.

Duet

Matching based on representation learning relies on the distributed rep-
resentations of queries and documents. In contrast, matching based on

192 Deep Matching Models in Search

Figure 4.20: Model architecture of duet.

matching function learning relies on the local matching representations
of queries and documents. In the matching model called Duet (Mitra
et al., 2017), a hybrid approach is taken and the advantages of the two
approaches are both leveraged.

As shown in Figure 4.20, Duet consists of two separate deep neural
networks, one that matches the query and the document using local
representations, and the other that matches the query and the document
using distributed representations. Given the query q and the document d,
the final Duet matching score f(q, d) is defined as

f(q, d) = fl(q, d) + fd(q, d),

where fl(q, d) and fd(q, d) respectively denote the local and distributed
matching scores.

In the model of fl(q, d), each query word (and each document word)
is represented by a one-hot vector. The model then creates a binary
matching matrix X ∈ {0, 1}|d|×|q| where the (i, j)-th entry represents the
exact matching relation of the i-th document word and the j-th query
word. The matching matrix X is first passed through a convolutional
layer. The output is then passed through two fully-connected layers, a
dropout layer, and a fully-connected layer to produce a single matching
score.

In the model of fd(q, d), (similar to DSSM Huang et al., 2013),
the words in q and d are respectively represented as frequency vectors

4.2. Matching Based on Matching Function Learning 193

of letter n-grams. Then, the vector of query q is passed through a
convolution layer, a max-pooling layer, and a fully-connected layer,
yielding a query representation of vector Q. Similarly, the vector of
document d is passed through a convolution layer, a max-pooling layer,
and a fully-connected layer, yielding a document representation of
matrix D. Next, element-wise product is calculated between D and an
extended Q. The resulting matrix is passed through fully connected
layers, and a dropout layer to produce a single matching score.

The two networks in Duet are jointly trained as a single neural
network. Given a training example which consists of the query q, the
relevant document d+, and the set of non-relevant documents D =
{d−1 , . . . , d

−
k }, the objective of learning is defined as the conditional

probability of document d+ given query q:

P (d+ | q) = exp(f(q, d+))∑
d′∈D exp f(q, d′) .

Stochastic gradient descent is utilized to maximize the log likelihood
logP (d+ | q).

4.2.5 Experimental Results

We present the experimental results by matching function learning
methods, reported in Wan et al. (2016b). In the experiment, the
benchmark of Yahoo! Answers is utilized, and P@1 and Mean Recipro-
cal Rank (MRR) are adopted as evaluation measures. The results in
Table 4.4 indicate that both the approach of representation learning
and the approach of matching function learning can outperform the
baseline of BM25. The matching function learning methods, in general,
perform better than the representation learning methods. Table 4.5
presents some experimental results of the matching methods on ad hoc
retrieval. The results are based on the experiments conducted in Dai
et al. (2018) and Mitra et al. (2017). We also represent the experimental
results of BERT reported in Nogueira and Cho (2019), for the task of
passage ranking. In the experiment, the benchmark of MS MARCO
is utilized, and MRR@10 is adopted as the evaluation measure. The
results in Table 4.6 indicate that fine-tuned BERTLARGE significantly
outperforms the state-of-the-art passage ranking models.

194 Deep Matching Models in Search

Table 4.4: Performances of some representation learning methods and matching
function learning methods on Yahoo! answers

P@1 MRR

BM25 (baseline) 0.579 0.726
Representation ARC-I 0.581 0.756
learning CNTN 0.626 0.781

LSTM-RNN 0.690 0.822
Matching function ARC-II 0.591 0.765
learning MatchPyramid 0.764 0.867

Match-SRNN 0.790 0.882

Table 4.5: Performances of matching function learning methods on ad hoc retrieval,
based on bing search log and Sogou log

Bing Search Log Sogou Log

NDCG@1 NDCG@10 NDCG@1 NDCG@10

DSSM 0.258 0.482 – –
Duet 0.322 0.530 – –
DRMM 0.243 0.452 0.137 0.315
MatchPyramid – – 0.218 0.379
K-NRM – – 0.264 0.428

Table 4.6: Performances of the fine-tuned BERTLARGE and other methods on MS
MARCO

MRR@10 (Dev) MRR@10 (Eval)

BM25 0.167 0.165
K-NRM (Xiong et al., 2017) 0.218 0.198
Conv-KNRM (Dai et al., 2018) 0.290 0.271
BERTLARGE 0.365 0.358

4.3 Discussions and Further Reading

In this subsection, we discuss the characteristics of the two matching
approaches and give more references for further reading.

4.3. Discussions and Further Reading 195

4.3.1 Discussions

Both the approach of representation learning and the approach of
matching function learning have been intensively studied. The two
approaches have both advantages and limitations and have strong
connections to traditional matching and ranking models in IR.

Representation learning gives the final matching score based on the
semantic representations of query and document, which are respectively
learned from the raw representations of query and document. The
semantic representations of query and document are embedding vectors
(real-valued vectors), which means that we represent the query and
the document in a common semantic space. This approach is natural
and has a strong connection with the conventional latent space models.
The approach can effectively address the term mismatch problem if the
semantics of query and document are represented very well. However,
there also exist limitations in the approach. The queries and documents
are represented independently before the final step of matching score
calculation. The underlying assumption is that there exist universal
representations for queries and documents, and the representations
can be compared for determination of relevance. However, queries and
documents usually have semantics at multiple levels (e.g., local and
global levels). It is better, therefore, if queries and the documents can
be compared at different levels. In other words, the representations of
queries and documents and the interactions of queries and documents
at multiple levels are better to be modeled.

Traditional latent space matching models for search (e.g., PLS,
RMLS) and matching methods using topic models (e.g., LSI, PLSA,
LDA) (Li and Xu, 2014) also learn the semantic representations of
queries and documents. From this viewpoint, the approach of represen-
tation learning has similarities with the traditional approaches. However,
the deep learning models have advantages, because (1) they employ deep
neural networks to map the queries and documents into the semantic
space and thus can obtain richer representations; and (2) the mapping
functions and embeddings of words in the queries and documents can
be jointly learned in an end-to-end fashion.

196 Deep Matching Models in Search

Matching function learning, on the other hand, generates the final
matching score on the basis of both representations and interactions
of query and document. Since the basic matching signals are modeled
with both high-level representations (e.g., semantic representations) and
low-level representations (e.g., term-level representations), the approach
has the ability to conduct more accurate matching.

Traditional IR models (e.g., VSM, BM25, and LM4IR) also compare
query words and document words and aggregate the matching signals.
From this viewpoint, the approach of matching function learning has
similarities with the traditional IR approach. The deep learning models
are superior to the traditional IR models, however, because (1) they
can capture matching signals not only at the local level (e.g., term
level) but also at the global level (e.g., semantic level); (2) they can
naturally keep and take into consideration the positions of matching;
(3) it is possible to conduct end-to-end learning and achieve better
performance; and (4) they can more easily leverage weak-supervision
data (e.g., clickthrough logs).

Representation learning and matching function learning are not
mutually exclusive. Matching models have also been developed that can
take the advantages of both approaches. Some methods directly combine
the scores from the representation learning and the matching function
learning, as in Mitra et al. (2017). Other methods utilize the attention
mechanism to alternatively construct the representations of queries and
documents and make interactions between the representations (Yang
et al., 2019a).

4.3.2 Further Reading

Semantic matching in search is a very active research topic. Here we
list other related work on text matching and cross-modal matching and
the benchmark datasets and open-source software packages.

Papers

A large number of models are proposed for conducting matching in
search. One research direction is to learn more sophisticated representa-
tions. For the representation learning approach, Yin and Schütze (2015)

4.3. Discussions and Further Reading 197

propose the CNN-based Multi-GranCNN model, which learns query
representations and document representations at multiple levels, in-
cluding words, phrases, and the entire text. Wan et al. (2016a) present
MV-LSTM, an LSTM-based model to achieve multiple positional sen-
tence representations, for capturing the local information as well as
the global information in the sentences. Nie et al. (2018) point out
that different levels of matching, from low-level term matching to high-
level semantic matching, are required due to the nature of natural
language. A Multi-level Abstraction Convolutional Model (MACM) is
proposed for generating multi-levels of representations and aggregating
the multi-levels of matching scores. Huang et al. (2017) also present an
approach that combines CNN and LSTM to exploit from character-level
to sentence-level features for performing matching. Jiang et al. (2019a)
present MASH RNN for matching of long documents. In the method,
bidirectional GRU and the attention mechanism are adopted as the
encoders for constructing the document representations at the sentence
level, passage level, and document level. Liu et al. (2019a) propose
to encode news articles with a concept interaction graph and conduct
matching based on the sentences that enclose the same concept vertices.

For the matching function learning approach, the attention mecha-
nism is intensively used. For example, Attention Based Convolutional
Neural Network (ABCNN) (Yin et al., 2016) integrates the attention
mechanism into CNNs for general sentence pair modeling. In the model,
the representation of each sentence can take its counterpart into con-
sideration. The Bilateral Multi-Perspective Matching (BiMPM) (Wang
et al., 2017c) model matches the two encoded sentences in two directions.
In each matching direction, each position of one sentence is matched
against (attended to) all positions of the other sentence from multi-
ple perspectives. Multi-Cast Attention Networks (MCAN) (Tay et al.,
2018d) performs a series of soft attention operations for question-answer
matching. One advantages of MCAN is that it allows an arbitrary num-
ber of attention mechanisms to be casted, and allows multiple attention
types (e.g., co-attention, intra-attention) and attention variants (e.g.,
alignment-pooling, max-pooling, mean-pooling) to be executed simulta-
neously. Also, Tay et al. (2018c) argue that the co-Attention models
in asymmetrical matching tasks require different treatments to the

198 Deep Matching Models in Search

attentions for symmetrical tasks. They propose Hermitian Co-Attention
Recurrent Network (HCRN) in which the attention mechanism is based
on the complex-valued inner product (Hermitian products). Tan et al.
(2018) propose the Multiway Attention Networks (MwAN) in which
multiple attention functions are employed to match sentence pairs under
the matching-aggregation framework. Chen et al. (2018b) propose the
Multi-channel Information Crossing (MIX) model to compare the query
and document at various granularities, forming a series of matching
matrices. Attention layers are then imposed for capturing the interac-
tions and producing the final matching score. Attention-based Neural
Matching Model (aNMM) (Yang et al., 2016) is another attention-based
neural matching model. Given the matching matrix, for each query
word, a value-shared weighting scheme instead of the position-shared
weighting scheme is used for calculating the matching signals for the
word. The signals of different query words are aggregated with an at-
tention network. Nogueira et al. (2019) propose a three-stage ranking
architecture for search. The first stage is implemented with BM25,
and the second stage and the third stage are respectively implemented
with pointwise and pairwise BERT based on learning to rank. Yang
et al. (2019b) and Qiao et al. (2019) also apply the BERT model to
ad-hoc retrieval and passage retrieval. Reimers and Gurevych (2019)
propose Sentence-BERT for reducing the computational overhead for
text matching. For the task of natural language inference, Chen et al.
(2017b) propose a sequential inference models based on chain LSTMs,
called Enhanced Sequential Inference Model (ESIM). ESIM explicitly
considers recursive architectures in both local inference modeling and
inference composition. Gong et al. (2018) propose the Interactive In-
ference Network (IIN) which hierarchically extracts semantic features
from interaction space and performs high-level understanding of the
sentence pair. It is shown that the interaction tensor (attention weight)
can capture the semantic information to solve the natural language
inference task.

For unsupervised matching models, Van Gysel et al. (2017) propose
to adapt NVSM to the entity space, which can be used for product
search (Van Gysel et al., 2016a, 2018) and expert search (Van Gysel et al.,
2016b). Zamani and Croft (2017) also present an approach to learning

4.3. Discussions and Further Reading 199

the word and query representations in an unsupervised manner. Weakly
supervised models are also proposed in the IR community for the tasks
of text representation, matching, and ranking. As for training models
using weak supervision, Zamani and Croft (2016) propose a framework
in which the queries can be represented based on the individual word
embedding vectors. The parameters are estimated using pseudo-relevant
documents as training signals. Zamani and Croft (2017) propose to
train a neural ranking model using weak supervision. Still, the labels are
obtained automatically from pseudo-relevance feedback and without the
need of using human annotation or external resource. Dehghani et al.
(2017) propose to use the output of BM25 as a weak supervision signal
to train neural ranking models. Haddad and Ghosh (2019) suggest to
leverage multiple unsupervised rankers to generate soft training labels
and then learn neural ranking models based on the generated data.
Zamani et al. (2018a) propose to train the query performance prediction
model with multiple weak supervision signals. Zamani and Croft (2018b)
provides a theoretical justification for weak supervision for information
retrieval.

Usually, the matching models assume that query and document are
homogeneous (e.g., short texts4), and symmetric matching functions
are utilized. Pang et al. (2016a) study matching between short queries
and long documents, on the basis of the aforementioned MatchPyramid
model (Pang et al., 2016b). The results show that queries and docu-
ments in web search are heterogeneous in nature: queries are short while
documents are long, and thus learning an asymmetric matching model
is a better choice. Convolutional Kernel-based Neural Ranking Model
(Conv-KNRM) (Dai et al., 2018) extends the K-NRM model, makes
use of CNNs to represent n-grams of various lengths, and performs soft
matching of the n-grams in a unified embedding space. Researchers
also observe that a long document consists of multiple passages and
matching with the query can be determined by some of them. Thus,
the document can be split into multiple passages and matched individ-
ually for capturing fine-grained matching signals. In DeepRank (Pang
et al., 2017a), the document is split into term-centric contexts, each

4For documents, only the titles, anchors, or clicked queries are used.

200 Deep Matching Models in Search

corresponding to a query term. The local relevance between each (query,
term-centric context) pair is calculated with the MatchPyramid model.
The local relevance scores are then aggregated as the query-document
matching score.

Similarly, Position-Aware Convolutional-Recurrent Relevance Match-
ing (PACRR) (Hui et al., 2017) splits the document with a sliding
window. The focused region can be the first-k words in the document
or the most similar context positions in the document (k-window). The
context-aware PACRR (Co-PACRR) (Hui et al., 2018) extends PACRR
by incorporating the components that can model the context informa-
tion of the matching signals. Fan et al. (2018) propose the Hierarchical
Neural maTching model (HiNT) model in which the document is also
split into passages. The local relevance signals are calculated between
the query and the passages of the document. The local signals are
accumulated into different granularities and finally combined into the
final matching score. Commercial Web search engines need to consider
more than just one document field. Incorporating different sources of
document description (e.g., title, URL, body, anchor, etc.) is useful to
determine the relevance of the document to the query (Robertson et al.,
2004). To address the problem of leveraging multiple fields, Zamani et al.
(2018c) propose NRM-F which introduces a masking method to handle
missing information from one field, and a field-level dropout method to
avoid relying too much on one field. In Hierarchical Attention Retrieval
Model (HAR) (Zhu et al., 2019), word-level cross-attention is conducted
to identify the words that most relevant for a query, and hierarchical
attention is conducted at the sentence and document levels.

As for cross-modal query-document matching, CCA (Hardoon et al.,
2004) and semantic correlation matching (Rasiwasia et al., 2010) are tra-
ditional models. Both of the models aim to learn linear transformations
to project two objects in different modalities into a common space such
that their correlation is maximized. To extend the linear transformations
into non-linear transformations, Kernel Canonical Correlation Analysis
(KCCA) (Hardoon and Shawe-Taylor, 2003) is proposed, which finds
maximally correlated projections in the reproducing kernel Hilbert space
using a kernel function. A method is introduced in Karpathy et al. (2014)
to embed fragments of images (objects in an image) and fragments of

4.3. Discussions and Further Reading 201

sentences into a common space, and calculate their similarities as dot
products. The final image-sentence matching score is defined as the
average thresholded score of their pairwise fragment matching scores.
Multimodal Convolutional Neural Networks (m-CNNs) (Ma et al., 2015)
adopts CNN to compute the multi-modal matching scores at the word-
level, phrase-level, and sentence-level. To better uniformly represent
multi-media objects with embeddings, a variety of multi-modal deep
neural networks are developed, including the models proposed in Wang
et al. (2016), Eisenschtat and Wolf (2017), Liu et al. (2017), Wang et al.
(2018b), Huang et al. (2018), Balaneshin-Kordan and Kotov (2018), and
Guo et al. (2018).

Benchmark Datasets

A number of publicly available benchmark datasets are used for train-
ing and testing semantic matching models. For example, the tradi-
tional information retrieval datasets such as the TREC collections5
(e.g., Robust, ClueWeb, and Gov2 etc.), the NTCIR collections,6 and
Sogou-QCL (Zheng et al., 2018b) are suitable for experiments on
query-document matching. Question Answering (QA) (and community-
based QA) collections such as TREC QA,7 WikiQA (Yang et al.,
2015), WikiPassageQA (Cohen et al., 2018), Quora’s 2017 question
dataset,8 Yahoo! Answers collection (Surdeanu et al., 2011), and MS
MARCO (Nguyen et al., 2016) are also used for research on deep match-
ing models as well. Other natural language processing datasets such as
MSRP (Dolan and Brockett, 2005) and SNLI (Bowman et al., 2015)
are also exploited.

Open Source Packages

A number of open-source packages for matching are available on the
web. MatchZoo9 is an open-source project dedicated to research on deep

5https://trec.nist.gov/data.html.
6http://research.nii.ac.jp/ntcir/data/data-en.html.
7https://trec.nist.gov/data/qamain.html.
8https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs.
9https://github.com/NTMC-Community/MatchZoo.

https://trec.nist.gov/data.html
http://research.nii.ac.jp/ntcir/data/data-en.html
https://trec.nist.gov/data/qamain.html
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://github.com/NTMC-Community/MatchZoo

202 Deep Matching Models in Search

text matching (Guo et al., 2019a). TensorFlow Ranking10 is a subproject
of TensorFlow that aims at solving large-scale search ranking problems
in a deep learning framework (Pasumarthi et al., 2019). Anserini11
is an open-source information retrieval toolkit built on Lucene that
aims at bridging the gap between academic research and real-world
applications (Yang et al., 2018).

10https://github.com/tensorflow/ranking.
11https://github.com/castorini/Anserini.

https://github.com/tensorflow/ranking
https://github.com/castorini/Anserini

5
Deep Matching Models in Recommendation

In this section, we introduce representative deep matching methods
in recommendation. As in Section 4, we categorize the methods into
two groups: (1) methods of representation learning, and (2) methods of
matching function learning. In the first category, neural networks are
employed to create representations of users and items to make a compar-
ison between them and generate a final matching score. In the second
category, neural networks are utilized to conduct interactions between
users and items (and possibly contexts) to generate matching signals and
aggregate them to a final matching score. Table 5.1 shows a taxonomy
of the representative deep matching models in recommendation.

5.1 Matching Based on Representation Learning

Matching models based on representation learning adopt the general
framework of latent space model as described in Figure 4.1. In short,
given user u in the user space u ∈ U and item i in the item space i ∈ I,
functions φu: U 7→ H and φi: I 7→ H stand for mappings from the
user space U and from the item space I to a new space H, respectively.

203

204 Deep Matching Models in Recommendation
T

ab
le

5.
1:

D
ee
p
m
at
ch
in
g
m
od

el
s
in

re
co
m
m
en

da
tio

n

In
pu

t
T

ec
hn

iq
ue

R
ep

re
se

nt
at

io
n

C
at

eg
or

iz
at

io
n

M
od

el
s

M
et
ho

ds
B
as
ed

on
R
ep
re
se
nt
at
io
n

Le
ar
ni
ng

U
no

rd
er
ed

In
te
ra
ct
io
ns

M
LP

-b
as
ed

D
ee
pM

F
(X

ue
et

al
.,
20
17
),
Y
ou

Tu
be

D
N
N

(C
ov
in
gt
on

et
al

.,
20
16
),
M
V
-D

N
N

(E
lk
ah

ky
et

al
.,
20
15
)

A
ut
oe
nc
od

er
-b
as
ed

A
ut
oR

ec
(S
ed
ha

in
et

al
.,
20
15
),
C
D
A
E

(W
u

et
al

.,
20
16
b)
,M

ul
t-
VA

E
(L

ia
ng

et
al

.,
20
18
)

A
tt
en
ti
on

-b
as
ed

N
A
IS

(H
e

et
al

.,
20
18
a)
,A

C
F
(C

he
n

et
al

.,
20
17
a)
,

D
IN

(Z
ho

u
et

al
.,
20
18
)

Se
qu

en
ti
al

In
te
ra
ct
io
ns

R
N
N
-b
as
ed

G
R
U
4R

ec
(H

id
as
ie

t
al

.,
20
16
),

N
A
R
M

(L
ie

t
al

.,
20
17
),
R
R
N

(W
u

et
al

.,
20
17
),

La
te
nt

C
ro
ss

(B
eu
te
le

t
al

.,
20
18
)

C
N
N
-b
as
ed

C
as
er

(T
an

g
an

d
W
an

g,
20
18
),
N
ex
tI
tN

et
(Y

ua
n

et
al

.,
20
19
),
G
R
ec

(Y
ua

n
et

al
.,
20
20
)

A
tt
en
ti
on

-b
as
ed

SA
SR

ec
(K

an
g
an

d
M
cA

ul
ey
,2

01
8)
,B

er
t4
R
ec

(S
un

et
al

.,
20
19
)

M
ul
ti
-m

od
al

C
on

te
nt

C
at
eg
or
ic
al

A
tt
ri
bu

te
s

N
SC

R
(W

an
g

et
al

.,
20
17
b)
,D

ee
pC

F
(L

ie
t

al
.,
20
15
)

U
se
r
R
ev
ie
w
s

D
ee
pC

oN
N

(Z
he
ng

et
al

.,
20
17
),
N
A
R
R
E

(C
he
n

et
al

.,
20
18
a)
,C

A
R
P

(L
ie

t
al

.,
20
19
)

M
ul
ti
m
ed
ia

C
on

te
nt

V
B
P
R

(H
e
an

d
M
cA

ul
ey
,2

01
6a
),
C
D
L
(L

ei
et

al
.,

20
16
),
A
C
F
(C

he
n

et
al

.,
20
17
a)
,M

M
G
C
N

(W
ei

et
al

.,
20
19
),
P
in
Sa

ge
(Y

in
g

et
al

.,
20
18
)

G
ra
ph

D
at
a

U
se
r-
it
em

G
ra
ph

N
G
C
F
(W

an
g

et
al

.,
20
19
b)
,P

in
Sa

ge
(Y

in
g

et
al

.,
20
18
),
Li
gh

tG
C
N

(H
e

et
al

.,
20
20
)

K
no

w
le
dg

e
G
ra
ph

K
G
A
T

(W
an

g
et

al
.,
20
19
a)
,R

ip
pl
eN

et
(W

an
g

et
al

.,
20
18
a)
,K

P
R
N

(W
an

g
et

al
.,
20
19
c)

So
ci
al

N
et
w
or
k

D
iff
N
et

(W
u

et
al

.,
20
19
b)
,G

ra
ph

R
ec

(F
an

et
al

.,
20
19
)

C
on

tin
ue

d.

5.1. Matching Based on Representation Learning 205

T
ab

le
5.

1:
C
on

tin
ue

d

In
pu

t
T

ec
hn

iq
ue

R
ep

re
se

nt
at

io
n

C
at

eg
or

iz
at

io
n

M
od

el
s

M
et
ho

ds
B
as
ed

on
M
at
ch
in
g
Fu

nc
ti
on

Le
ar
ni
ng

Tw
o-
w
ay

M
at
ch
in
g

Si
m
ila

ri
ty

Le
ar
ni
ng

N
C
F
(H

e
et

al
.,
20
17
c)
,C

on
vN

C
F
(H

e
et

al
.,
20
18
b)
,

D
ee
pI
C
F
(X

ue
et

al
.,
20
19
),
N
N
C
F
(B

ai
et

al
.,
20
17
)

M
et
ri
c
Le

ar
ni
ng

C
M
L
(H

si
eh

et
al

.,
20
17
),
Tr

an
sR

ec
(H

e
et

al
.,
20
17
a)
,

LR
M
L
(T

ay
et

al
.,
20
18
a)

M
ul
ti
-w

ay
M
at
ch
in
g

Im
pl
ic
it
In
te
ra
ct
io
n
M
od

el
in
g

Y
ou

Tu
be

D
N
N

(C
ov
in
gt
on

et
al

.,
20
16
),

W
id
e&

D
ee
p
(C

he
ng

et
al

.,
20
16
),
D
ee
p

C
ro
ss
in
g
(S
ha

n
et

al
.,
20
16
),
D
IN

(Z
ho

u
et

al
.,
20
18
)

E
xp

lic
it
In
te
ra
ti
on

M
od

el
in
g

N
F
M

(H
e
an

d
C
hu

a,
20
17
),
A
F
M

(X
ia
o

et
al

.,
20
17
),

H
oA

F
M

(T
ao

et
al

.,
20
19
),
C
IN

(L
ia
n

et
al

.,
20
18
),

Tr
an

sF
M

(P
as
ri
ch
a
an

d
M
cA

ul
ey
,2

01
8)

C
om

bi
na

ti
on

of
E
xp

lic
it
an

d
Im

pl
ic
it
In
te
ra
ct
io
n
M
od

el
in
g

W
id
e&

D
ee
p
(C

he
ng

et
al

.,
20
16
),
D
ee
pF

M
(G

uo
et

al
.,

20
17
),
xD

ee
pF

M
(L

ia
n

et
al

.,
20
18
)

206 Deep Matching Models in Recommendation

The matching model between u and i is defined as

f(u, i) = F (φu(u), φi(i)), (5.1)

where F is the similarity function over H, such as inner product or
cosine similarity. Different neural networks can be used to realize the
representation functions φu and φi, depending on the forms of input
data and the data properties of interest. We further categorize the
methods into four types based on the forms of input data: (1) unordered
interactions, (2) sequential interactions, (3) multi-modal content, and
(4) linked graph.

The remainder of this subsection is organized to present each type
of the methods in one subsection. In Subsection 5.1.1, we describe
methods that represent a user with his/her unordered interactions with
the system, such as deep matrix factorization and auto-encoder based
methods. In Subsection 5.1.2, we explain methods that represent a user
with the sequence of his/her interactions (ordered interactions), such
as RNN-based and CNN-based sequential recommendation methods.
In Subsection 5.1.3, we present methods that incorporate multi-modal
content into the learning of representations, such as user/item attributes,
texts, and images. In Subsection 5.1.4, we introduce recently developed
methods that perform the learning of representations on graph data,
such as user-item graph and knowledge graph.

5.1.1 Representation Learning from Unordered Interactions

The traditional matrix factorization model utilizes a one-hot ID vector
to represent a user (an item), and performs one-layer linear projection
to obtain a user (item) representation. As a one-hot vector only contains
an ID information, it is not meaningful to perform multiple layers of
non-linear transformation on the vector. Given that an abundance of
user-item interaction data is available at the recommendation system,
a natural idea is to represent a user with his/her interaction history,
which encodes richer information. If we ignore the order of user-item
interactions, an interaction history can be considered as an unordered
set of interactions. Each interaction can be represented as a multi-hot
vector denoting the interacted items by the user, where each dimension

5.1. Matching Based on Representation Learning 207

corresponds to an item. We next review three types of methods that
learn a user representation from unordered interactions: MLP-based,
Auto-Encoder-based, and attention-based methods.

MLP-Based Methods

Deep Matrix Factorization (DeepMF) (Xue et al., 2017) adopts the
architecture of DSSM (Huang et al., 2013). It has a two-tower structure,
where one tower is for learning user representation, and the other is for
learning item representation. In each tower, an MLP is employed to
learn a representation from a multi-hot vector. The expectation is that
the multi-layer nonlinear transformations on the interaction history can
learn better representations to bridge the semantic gap between the
user and item. Figure 5.1 illustrates the architecture of the DeepMF
model.

Let the user-item interaction matrix be Y ∈ RM×N whereM and N
denote the number of users and items, respectively; for explicit feedback,
each entry yui is a rating score, and the score of 0 means that user u
has not rated on item i before; for implicit feedback, each entry is a
binary value, and the values of 1 and 0 denote whether or not user u
has interacted with item i before. Let yu∗ ∈ RN denote the u-th row
of Y, i.e., the multi-hot history vector of user u, and y∗i ∈ RM denote

Figure 5.1: Model architecture of DeepMF.

208 Deep Matching Models in Recommendation

the i-th column of Y, i.e., the multi-hot history vector of item i. Then,
we can express the matching function of DeepMF as:

pu = MLP1(yu∗), qi = MLP2(y∗i),

f(u, i) = cosine(pu,qi) = pTuqi
||pu||2||qi||2

.
(5.2)

As the spaces of users and items are different, DeepMF uses two MLPs
with different parameters to represent users and items. Note that due
to the sparse nature of yu∗ and y∗i, the overall complexity of the model
is acceptable if we omit the zero entries in Y in implementation. It is
also worth mentioning that it is not compulsory to use two towers —
one can use MLP1 only to obtain pu and use simple embedding lookup
for qi. Such a simplification is essentially equivalent to the auto-encoder
based architecture, which is introduced next.

Auto-Encoder Based Methods

Auto-encoder is another choice to build a recommender model from
the interaction history. Auto-encoder transforms the input data into a
hidden representation, such that from a good hidden representation, one
is almost able to recover the input data. In item-based AutoRec (Sedhain
et al., 2015), the input is the user history vector yu∗ ∈ RN , and the
reconstruction of the input is:

ŷu∗ = σ2(W · σ1(Vyu∗ + b1) + b2), (5.3)

where σ2 and σ1 are activation functions, V ∈ Rd×N and W ∈ RN×d
are weight matrices, b1 ∈ Rd and b1 ∈ RN are bias vectors. The
reconstruction vector ŷu∗ is a N -dimension vector which stores the
predicted matching scores of all items for user u. To learn parameters
θ = {V,W,b1,b2}, AutoRec minimizes the total loss over all inputs
(users) with L2 regularization:

L =
M∑
u=1
||yu∗ − ŷu∗||2 + λ||θ||2.

Given that recommendation is essentially a matching plus ranking task,
other loss functions like cross-entropy, hinge loss and pairwise loss can
also be employed here, as demonstrated by Wu et al. (2016b).

5.1. Matching Based on Representation Learning 209

In fact, we can view the AutoRec model as one using MLP on
interaction history to learn a user representation, and using embedding
lookup to obtain an item representation. To be more specific, we can
reformulate Equation (5.3) to get the element-wise matching function:

f(u, i) = ŷu∗,i = σ2(wi∗︸︷︷︸
qi

· σ1(Vyu∗ + b1)︸ ︷︷ ︸
=⇒ pu=MLP(yu∗)

+b2), (5.4)

where wi∗ denotes the i-th row of W, which can be seen as the ID
embedding of item i, and user representation pu is equivalent to the
output of a one-layer MLP with yu∗ as input. The matching score is
essentially the inner product of user representation pu and item ID
embedding qi, which falls into the latent space framework defined in
Equation (5.1). If multiple hidden layers are used to build a “deep”
auto-encoder, we can interpret it as replacing one-layer MLP with multi-
layer MLP to obtain the user representation. As such, the auto-encoder
architecture can be seen as a simplified variant of DeepMF.

Some later variants of AutoRec include Collaborative Denoising
Auto-Encoder (CDAE) (Wu et al., 2016b), which extends AutoRec
by corrupting the input yu∗ with random noises to prevent the model
from learning a simple identity function and to discover a more ro-
bust representation. Liang et al. (2018) propose extending variational
auto-encoder for recommendation, solving the representation learning
problem from the perspective of generative probabilistic modeling.

Attention-Based Methods

One observation in the learning of user representation is that histor-
ical items may not equally contribute to the modeling of the user’s
preference. For example, a user may choose a trendy item based on its
high popularity rather than his/her own interest. Although, in principle,
an MLP learned from interaction history may be able to capture the
complicated relationships (c.f. the universal approximation theorem of
neural networks (Hornik, 1991)), the process is too implicit and there is
no guarantee for that. To solve the problem, the Neural Attentive Item
Similarity (NAIS) model (He et al., 2018a) employs a neural attention

210 Deep Matching Models in Recommendation

Figure 5.2: Model architecture of NAIS.

network to explicitly learn the weight of each historical item. Figure 5.2
shows the architecture of the model.

In short, NAIS is an extension of FISM by using a learnable weight
on each interacted item of a user. Let Yu be the set of interacted items
of user u, and each item i is associated with two ID embedding vectors
pi and qi to represent its role as a target item and a historical item,
respectively. The matching function in NAIS is formulated as

f(u, i) =
(∑
j∈Yu\{i}

aijqj
)T

pi,

aij = exp(g(pi,qj))
[
∑

j∈Yu\{i}
exp(g(pi,qj))]β

,

(5.5)

where aij is an attention weight that controls the weight of the historical
item j in estimation of the user u’s matching score on the target item i.
The attention network g is typically implemented as a one-layer MLP
which outputs a scalar value (e.g., the MLP takes concatenation or
element-wise product of pi and qj as input). The output of g is further
processed by a smoothed softmax function where β is in (0, 1) to
smooth the weighted sum of active users (the default value of β is

5.1. Matching Based on Representation Learning 211

0.5). By explicitly learning the weight of each interacted item with an
attention network, the interpretability of representation learned from
interaction history can also be improved. One can further enhance
the non-linearity of representation learning by stacking an MLP above
the sum pooling, such as in the deep neural network architecture for
YouTube recommendation (Covington et al., 2016).

It is worth highlighting that the NAIS attention is aware of the target
item i when estimating the weight of a historical item j. This purposeful
design is to address the limitation of static user representation when
interacting with different items. For example, when a user considers
whether to purchase a clothing item, the historical behaviors on the
fashion category are more reflective of his/her aesthetic preference than
the historical behaviors on the electronic category. The Deep Interest
Network (DIN) model (Zhou et al., 2018), which is independently
proposed by the Alibaba team at the same time, adopts the same way
of dynamic (target item-aware) user representation. It is shown to be
useful to distill useful signals from user behavior history in large-scale
e-commerce CTR prediction.

5.1.2 Representation Learning from Sequential Interactions

User-item interactions are naturally associated with timestamps, which
record when an interaction happens. If the order of user-item interactions
is considered, an interaction history becomes a sequence of item IDs.
Modeling such a sequence can be useful for prediction of user behavior in
the future, for example, purchase transition patterns from one item (e.g.,
phone) to another item (e.g., phone case) exist and recent purchases
are more predictive of next purchases. Next, we present two types
of sequential order based recommendation methods: RNN-based and
CNN-based methods.

RNN-Based Methods

As one of the pioneering work on RNN for session-based recommenda-
tion, Hidasi et al. (2016) propose a GRU-based RNN for summarizing
the sequential interactions (e.g., the sequence of the clicked items) in
a session and making recommendation, called GRU4Rec. The input

212 Deep Matching Models in Recommendation

Figure 5.3: Model architecture of GRURec. It processes one item of the item
sequence at once.

to the GRU4Rec model is a sequence of r clicked items in a session
x = (x1, . . . , xr−1, xr), where each item is represented as a one-hot
N -dimensional vector and N is the number of items. The output is
the next event (clicked item) in the session. More specifically, at each
position i in the sequence x, the input is the state of the session, which
can be a one-hot representation of the current item, or a weighted sum
of representations of items so far, as shown in Figure 5.3. As the core of
the network, a multi-layer GRU is used to receive the embeddings of the
input representations, and the output of each GRU layer is the input
to the next layer. Finally, feedforward layers are added between the
last GRU layer and the output layer. The output is an N -dimensional
vector, each representing the probability of the corresponding item being
clicked in the next event of the session.

During training, pairwise ranking loss is utilized to learning the
model parameters. Two types of loss functions are used. The BPR loss
compares the score of a positive (preferred) item with those of several

5.1. Matching Based on Representation Learning 213

sampled negative items. Thus, the BPR loss at a position is defined as:

Ls = − 1
Ns
·
Ns∑
j=1

log(σ(r̂s,i − r̂s,j)),

where Ns is the number of sampled negative items, r̂s,i (or r̂s,j) is the
predicted score of item i (or j), i is the positive item, and j is the
negative item. The other type of loss called TOP1 is also devised, which
is the ratio of correctly ranked pairs with regularization. The TOP1
loss at a position is defined as:

Ls = 1
Ns
·
Ns∑
j=1

σ(r̂s,j − r̂s,i) + σ(r̂2
s,j).

To address the problem that the lengths of sessions vary, GRU4Rec
employs session-parallel mini-batches for the optimization. In training,
it uses popularity-based negative sampling, which assumes that the
more popular an item is, the more likely the user knows about it, for
generating the negative items.

One problem with the RNN-based models (including the above
introduced GRU4Rec) is that they only consider the user’s sequential
behaviors (short-term interest) in the current session, and do not put
enough emphasis on the user’s general interest. To address the issue,
Li et al. (2017) propose to combine the attention mechanism with
RNN, called Neural Attentive Recommendation Machine (NARM). As
shown in Figure 5.4, NARM employs an encoder-decoder framework for
session-based sequential recommendation. Given a user’s click sequence
x = (x1, x2, . . . , xt) consisting of t clicked items, the global encoder
in NARM scans the input sequence with a GRU, and uses the final
hidden state cgt = ht as the representation of the user’s sequential
behavior. The local encoder in NARM also scans the input sequence
with another GRU, and takes the weighted sum of the hidden states as
the representation of the user’s main intent:

clt =
t∑

j=1
αtjhj ,

214 Deep Matching Models in Recommendation

Figure 5.4: Model architecture of NARM.

where αtj is the attention between the positions j and t. The unified
sequence representation is formed as a combination of cgt and clt:

ct =
[
cgt
clt

]
.

The unified sequence representation at position t, as well as embed-
ding of candidate item, are fed into the decoder. The similarity between
the sequence representation at position t and embedding of candidate
item i is calculated as a bilinear function:

si = eTi Bct,

where B is the matrix to be learned. A softmax layer is further imposed
on the m item scores to generate a distribution (of click) over all
candidate items, where m is the number of candidates.

To learn the model parameters, cross-entropy loss is used. Specifically,
given a training sequence, at the position t NARM first predicts the
probability distribution over the m items qt. From the log we know
that the ground-truth probability distribution at t is pt. Thus, the
cross-entropy loss is defined as

L =
m∑
i=1

pit log qit,

5.1. Matching Based on Representation Learning 215

where pit and qit are the predicted probability and ground-truth proba-
bility for item i, respectively. The loss function can be optimized with
the standard mini-batch SGD.

CNN-Based Methods

A representative CNN-based sequential recommendation method is
Caser (Convolutional Sequence Embedding Recommendation Model)
(Tang and Wang, 2018). The basic idea is to treat the interacted items
in the embedding space as an “image”, and then perform 2D convolution
on the image. Figure 5.5 shows the structure of the Caser model.

Let E ∈ <t×k be the embedding matrix of interacted items, where
t is the number of interacted items (length) and k is the dimension of
embeddings (width). Each row of the matrix is the embedding vector of
an item. Unlike a real image in computer vision, there are two difficulties
in applying convolution operations into E for sequential recommendation.
First, the “image” length t can be different for different users. Second,
E may not have spatial relations like real images in terms of the width
of embedding space. Hence, it is not suitable to employ the standard
2D CNN filters, such as 3× 3 or 5× 5.

To solve the two issues, Caser introduces “full-width” CNN filters
and max-pooling operations. Specifically, the convolutional operations

Figure 5.5: Architecture of caser.

216 Deep Matching Models in Recommendation

in Caser cover the full columns of the sequence “image”. That is, the
width of the filter has the same size as the embedding dimension, and
the height of the filter varies (see the different colors of Figure 5.5(a)).
As a result, filters of different sizes produce feature maps with different
lengths. To ensure all feature maps having the same size, a max-pooling
operation is then performed on each feature map by extracting only
the largest value. As shown in Figure 5.5(b), a number of 1× 1 feature
maps are produced after max pooling. Following the concatenation
operation (Figure 5.5(c)) and softmax layer (5.5(d)), Caser outputs the
probabilities of next items. Note that in addition to the horizontal filter,
Caser also utilizes a vertical filter with the size of t, which is omitted
in Figure 5.5. The feature maps 1× k are concatenated together with
other feature maps.

In fact, due to the max-pooling operations, Caser is not well-suited
to model long-range sequences or repeated sequences. To alleviate the
problem, Caser employs a data augmentation method by sliding a
window over the original sequence to create a set of subsequences. For
example, assume that the original sequence is {x1, . . . , x10} and the
sliding window size is 5, and then the subsequences are generated as
{x1, . . . , x5}, {x2, . . . , x6}, . . . , {x6, . . . , x10}, which are fed into model
training together with the original sequence.

After Caser is proposed, several methods are developed to improve
the CNN framework for long-range sequential recommendation. A rep-
resentative method is NextItNet (Yuan et al., 2019), which differs from
Caser in two ways: (1) NextItNet models the user sequence in an au-
toregressive manner, i.e., sequence-to-sequence (seq2seq); (2) NextItNet
exploits the stacked dilated CNN layers to increase the model receptive
field, and thus omits the use of max-pooling. Let p(x) be the joint
distribution of item sequence {x0, . . . , xt}. According to the chain rule,
p(x) can be modeled as:

p(x) =
t∏
i=1

p(xi | x0, . . . , xi−1, θ)p(x0), (5.6)

where θ denotes the model parameters, and
∏t
i=1 p(xi | x0, . . . , xi−1, θ)

denotes the probability of the i-th item xi conditioned on all preced-
ing items {x0, . . . , xi−1}. For clarity, we make a comparison between

5.1. Matching Based on Representation Learning 217

(a) (b)

Figure 5.6: Dilated residual blocks (a), (b).

NextItNet and Caser in the generative process:

Caser: {x0, x1, . . . , xi−1}︸ ︷︷ ︸
input

⇒ xi︸︷︷︸
output

NextItNet: {x0, x1, . . . , xi−1}︸ ︷︷ ︸
input

⇒ {x1, x2, . . . , xi}︸ ︷︷ ︸
output

(5.7)

where ⇒ represents “predict”. In fact, the final objective function of
NextItNet is a combination of all losses of tokens in the entire output
sequence. Hence, NextItNet is usually not sensitive to the batch size.

Moreover, NextItNet introduces two types of dilated residual blocks,
as illustrated in Figure 5.6. The dilation factors are doubled for every
convolution layer and then repeated, e.g., {1, 2, 4, 8, 16, . . . , 1, 2, 4, 8, 16}.
The design allows an exceptional increase of receptive fields. Hence,
NextItNet is well-suited to model long-range user sequences and capture

218 Deep Matching Models in Recommendation

long-distance item dependencies. In addition, unlike the RNN models,
the CNN models based on the seq2seq framework face the data leakage
issue because the future data can be observed by the higher-layers
of the network. To overcome this problem, NextItNet introduces the
masking technique, by which the predicted item itself and future items
are hidden to the higher-layers. Masking can be simply implemented by
padding the input sequence.

Attention-Based Methods

Attention is also used for learning representations from sequential in-
teractions. A well-known method is the Self-Attention based Sequential
Recommender (SASRec) (Kang and McAuley, 2018) model. It is in-
spired by the Transformer (Vaswani et al., 2017), taking the core design
of self-attention to assign a weight to an item in the sequence adaptively.
Figure 5.7 shows the structure of the SASRec model.

Let E = V + P ∈ Rt×k be the embedding matrix of the input
sequence, where each row represents an interacted item. The two con-
stituent matrices, V denotes the embeddings of the items and P de-
notes the embeddings of the positions of the corresponding items in
the sequence. The reason for injecting P is to augment the attention
mechanism with the sequential order of the items, since the attention
mechanism by nature is not aware of the sequential order. Then, E is
fed into a stack of self-attention blocks, where each block has two parts:
a Self-Attention (SA) layer and a point-wise Feed-Forward Network
(FFN):

S(l) = SA(F(l−1)), F(l) = FFN(S(l)), (5.8)

where F(0) = E. The SA layer is defined as:

SA(F) = Attention(FWQ,FWK ,FWV)

Attention(Q,K,V) = softmax
(

QKT
√
d

)
V

(5.9)

where WQ, WK and WV are the weight matrices of queries, keys and
values, respectively. The SA layer uses the same objects F as quires,
keys, and values, which are projected by different weight matrices to
improve model flexibility. Intuitively, the attention calculates a weighted

5.1. Matching Based on Representation Learning 219

Figure 5.7: The structure of SASRec.

sum of all value vectors, where the weight between query i and value j
relates to the interaction between query i and key j, i.e., the result of
softmax(·). The denominator

√
d is to avoid overly large values of the

inner products that may cause gradient problems.
Point-wise Feed-Forward Network has the following form:

FFN(S) = Relu(SW1 + b1)W2 + b2 (5.10)

where W1,W2 and b1, b2 are weights and bias, and Relu is activation
function. FFN is used to enable nonlinearity and consider the interac-
tions between different latent dimensions.

Another issue to be noted is that when recommending the next item
of one sequence, only the previous items are known (see Figure 5.7).
This is achieved by forbidding the link between Qi (the i-th query) and
Kj (the j-th key) for j > i, i.e., setting the corresponding attention
weights to 0. When the network goes deeper, the model becomes more
difficult to train. To solve the problem, SASRec employs layer normal-
ization (Ba et al., 2016), dropout (Srivastava et al., 2014), and residual
connection (He et al., 2016a) on each SA layer and FFN layer:

S(l) = F(l−1) +Dropout(SA(LayerNorm(F(l−1)))),
F(l) = S(l) +Dropout(FFN(LayerNorm(S(l)))). (5.11)

At last, the output of the last Self-attention block is used for predic-
tion. Given the historical item sequence {v1, v2, . . . , vt}, the next item

220 Deep Matching Models in Recommendation

need be predicted based on F(L)
t , where L is the number of blocks. The

predicted score of the target item i is:

r̂i = NT
j F(L)

i , (5.12)

N ∈ R(|I|×d) is the embedding matrix of target items, which can either
be trained end-to-end, or the same as the item embeddings in the
input layer. The authors show that sharing the item embeddings could
be beneficial. The objective function is pointwise cross-entropy loss,
which is similar to Caser: predicting v2 based on the sub-sequence {v1},
predicting v3 based on the sub-sequence {v1, v2}, and so on.

In addition to SASRec, another representative attention-based
method for learning the representation of sequential interactions is
BERT4Rec (Sun et al., 2019). The main difference is that it takes a
bi-directional self-attention model to process the sequence, which can
utilize both left (previous) and right (future) interactions. The future
interactions are arguably useful for prediction (Yuan et al., 2020) be-
cause they also reflect the preference of the user, and the rigid order
of interactions may not be so important (the order is derived from the
interaction timestamp). To this end, they revise SASRec in two ways:
(1) revise self-attention to remove the zero constraints on the attention
weights of Qi and Kj for j > i, and (2) randomly mask some items in
the sequence and predict the masked items based on the left and right
interactions, to avoid information leakage.

5.1.3 Representation Learning from Multi-Modal Content

In addition to user-item interactions, users and items are often associated
with descriptive features such as categorical attributes (e.g., age, gender,
product category) and texts (e.g., product description, user reviews).
Besides, in a recommender system for multi-modal items like images,
videos, and music, their multi-modal descriptive features are readily
available. Leveraging such side information is beneficial for learning
better representations, especially for sparse users and items that have
few interactions. In this subsection, we review neural recommendation
models that integrate multi-modal side information for representation

5.1. Matching Based on Representation Learning 221

learning. The representation learning component can be abstracted as:
φu(u) = COMBINE(pu, f(Fu)),
φi(i) = COMBINE(qi, g(Gi)),

(5.13)

where pu denotes the embedding of user u that is learned from historical
interactions (e.g., the ID embedding and the embeddings from the
previous subsections can be used), Fu denotes the side features of user
u that can be a matrix or a vector, and f(·) is the representation
learning function for side features; similar notations apply to qi,Gi,

and g(·) for the item side. COMBINE(·, ·) is a function that combines
the embedding from historical interactions and the side features. The
functions f(·), g(·), and COMBINE(·, ·) can all be realized as a deep
neural network. In the next, we introduce specific methods and divide
them into three types: learning from categorical attributes, user reviews,
and multimedia content such as image and video.

Learning from Categorical Attributes

Wang et al. (2017b) propose an attribute-aware deep CF model, which
is illustrated in Figure 5.8. It projects each categorical feature into an
embedding vector and then performs bi-interaction pooling (He and
Chua, 2017) with the user (item) ID embedding. Finally, the pooled
user vector and item vector are combined into an MLP to obtain the
prediction score:

φu(u) = BI-Interaction(pu, {fut }Vut=1) =
Vu∑
t=1

pu � fut +
Vu∑
t=1

Vu∑
t′=t+1

fut � fut′ ,

φi(i) = BI-Interaction(qi, {git}
Vi
t=1) =

Vi∑
t=1

qu � git +
Vi∑
t=1

Vi∑
t′=t+1

git � git′ ,

ŷui = MLP(φu(u)� φi(i)),
(5.14)

where fut and git respectively denote the embeddings of user attribute
and item attribute, Vu and Vi denote the numbers of attributes for
user u and item i, respectively. The bi-interaction pooling operation
considers all pairwise interactions among user ID embedding and at-
tribute embeddings. The combined user representation φu(u) and item

222 Deep Matching Models in Recommendation

Figure 5.8: Model architecture of attribute-aware deep CF model.

representation φi(i) are interacted by element-wise product, followed
by a MLP for the final prediction. The MLP is a learnable matching
function (more details will be introduced in Subsection 5.2), which
can also be replaced with simple inner product. The advantage of this
architecture is that the interactions between user (item) attributes and
the cross-interactions between user attributes and item attributes are
well captured.

Li et al. (2015) propose a regularization-based approach to incorpo-
rate attributes into recommendation. The idea is to first learn represen-
tations from user features and item features with two auto-encoders,
respectively, and then jointly train the representations within the recom-
mendation task. The auto-encoder loss can be treated as a regularization
term for recommendation. Figure 5.9 shows the model architecture.
The left auto-encoder is built from user feature X with the hidden
layer U as user representation and L(X,U) as loss function; the right

5.1. Matching Based on Representation Learning 223

Figure 5.9: Model architecture of attribute-aware deep CF model.

auto-encoder is built from item feature Y with the hidden layer V as
item representation and L(Y, V) as the loss function. Then U and V
are used to reconstruct the user-item rating matrix R for recommen-
dation with l(R,U, V) as loss function. The whole model is trained by
joint optimization of the three loss functions L(X,U), L(Y, V), and
l(R,U, V).

Learning from User Reviews

The reviews given by other users often significantly influence the users’
online purchasing decisions in a recommender system. Recent studies
find that leveraging the information in the reviews can help the system
to not only improve the accuracy but also enhance the explainability in
recommendation.

As one of the representative works, Zheng et al. (2017) propose a deep
learning model to jointly learn item properties and user opinions from
the reviews, called Deep Cooperative Neural Networks (DeepCoNN).
As shown in Figure 5.10, DeepCoNN consists of two parallel neural
networks. One focuses on learning of user opinions from the reviews
(called Netu), and the other learning of item properties from the reviews

224 Deep Matching Models in Recommendation

Figure 5.10: Model architecture of DeepCoNN.

(called Neti). The two networks are coupled together in their last layers
and jointly learned. Given all the reviews written by a user u, Netu first
merges the reviews into a single document du1:n with n words. Then, the
document is represented as a matrix of word vectors V u

1:n:

V u
1:n = [φ(du1), φ(du2), . . . , φ(dun)],

where duk denotes the k-th word in the document du1:n, the look-up
function φ(duk) returns the embedding of the input word duk , and c is the
dimension of embeddings. Then, a one-dimensional CNN is employed
to summarize the reviews into a representation vector xu:

xu = Netu(du1:n) = CNN(V u
1:n).

Similarly, given all the reviews for an item i, Neti also merges the
reviews into a single document di1:m of m words, creates a matrix of
word vectors V i

1:m, and employs a one-dimensional CNN to summarize
the reviews into a representation vector:

xi = Neti(di1:m) = CNN(V i
1:m).

The final matching score of user u and item i is calculated on the basis of
the two representation vectors. Specifically, xu and xi are concatenated

5.1. Matching Based on Representation Learning 225

into one vector z = [xTu ,xTi]T and a factorization machine (FM) is used
to calculate the score:

yui = w0 +
|z|∑
k=1

wkzk +
|z|∑
k=1

|z|∑
l=k+1

wklzkzl,

where w0, wk, wkl’s are parameters of FM.
Chen et al. (2018a) point out that simple concatenation of reviews as

in DeepCoNN means equal treatments of informative reviews and non-
informative reviews. To address the problem, they propose the Neural
Attention Regression with Review-level Explanation (NARRE) in which
reviews are assigned weights and informative reviews are emphasized.

The model architecture of NARRE is shown in Figure 5.11. Specifi-
cally, given all the m reviews written for an item i, the reviews are first
transformed into matrices Vi,1, Vi,2, . . . , Vi,m. The matrices are then sent
to a convolutions layer obtaining the feature vectors Oi,1, Oi,2, . . . , Oi,m.
After that, an attention-based pooling layer is exploited to aggregate
informative reviews to characterize the item i. The attention weight for
item i’s l-th review is defined as

ai,l = exp(a∗il)∑m
k=1 exp(a∗ik)

,

where a∗il is the attention weight

a∗il = hTReLU(WOOi,l + Wuuil + b1) + b2,

where uil is the embedding of the user who writes the l-th review;
WO,Wu,h,b1, and b2 are model parameters. The final representation
of item i is written as

xi = W0

m∑
l=1

ai,lOi,l + b0,

where W0 and b0 are model parameters. Given all them reviews written
by a user u, its representation, denoted as xu, is calculated similarly.

In NARRE, an extended latent factor model is used as the prediction
layer for calculating the final user-item matching score:

yui = wT
1 ((qu + xu)� (pi + xi)) + bu + bi + µ,

226 Deep Matching Models in Recommendation

Figure 5.11: Model architecture of NARRE.

where � denotes element-wise product, qu and pi respectively represent
the user preferences and item features, w1 is the weight vector, bu, bi
and µ are the user bias, item bias, and global bias, respectively.

Learning from Multimedia Content

CNN is known to be an effective feature extractor from multimedia
content such as image and video and is widely used in multimedia
recommendation. An early work is Visual Bayesian Personalized Rank-
ing (VBPR) (He and McAuley, 2016a), which uses a Deep CNN to
extract a 4096-dimension feature vector gi from each product i’s image.
As the dimension of gi is higher than the dimension of embeddings in
collaborative filtering, which is typically in order of hundreds, VBPR
projects gi into the embedding space with a feature transformation
matrix E, that is, θi = Egi. It then concatenates θi with the item ID

5.1. Matching Based on Representation Learning 227

embedding qi to form the final item representation. Finally, it interacts
the item representation with the user representation with inner product
to obtain the prediction score, that is, ŷui = φu(u)T [qi,Egi]. Note that
the bias terms are omitted for clarity. The model is learned with the
pairwise BPR loss.

It is worth noting that in VBPR, the Deep CNN is pre-trained as a
feature extractor, which is not updated during recommendation training.
Since Deep CNN is typically trained from a general image corpus like
ImageNet, it may not be suitable for the recommendation tasks like
clothing recommendation. To address the problem, three solutions are
proposed:

• Lei et al. (2016) propose the Comparative Deep Learning (CDL)
method for content-based image recommendation. Instead of fixing
the parameters of Deep CNN, it also updates them in training. The
objective function is tailored for recommendation, more specifically,
a variant of the pairwise BPR loss based on user interactions. As
the whole model is trained in an end-to-end fashion, the features
extracted by Deep CNN is more suitable for the recommendation
task. A recent work employs adversarial training and learns both
Deep CNN parameters and recommendation parameters in a
similar way (Tang et al., 2020). However, as the number of user-
item interactions is typically much larger than the number of
labeled instances in an image corpus, this solution may suffer from
long training time.

• Ying et al. (2018) propose PinSage for image recommendation and
Wei et al. (2019) propose MMGCN for micro-video recommenda-
tion, which share the same idea — refining the extracted image
representations on the user-item interaction graph with a graph
convolution network. The extracted image representations are
treated as the initial features of item nodes, which are propagated
on the interaction graph with the graph convolution operation.
Since the interaction graph structure contains user preference on
items especially the collaborative filtering signals, this method can
make the refined visual features more suitable for personalized

228 Deep Matching Models in Recommendation

recommendation. In the next subsection (Representation Learning
from Graph Data), we will introduce details of how it works.

• Different from the above two solutions that learn the whole image
representation with a Deep CNN, the Attentive Collaborative
Filtering (ACF) method (Chen et al., 2017a) cuts an image into
49 (7 × 7) regions. It employs a pre-trained Deep CNN to extract
features from each region and an attention network to learn the
weight of it, where the underlying assumption is that different
users may be interested in different regions of an image. The 49
regions are finally pooled to obtain the image representation. As
the attention network is trained based on user-item interactions,
the image representation is adapted for the recommendation task.
The framework of ACF is also applied to video recommendation
by the authors, where a region is replaced with a frame sampled
from the video.

5.1.4 Representation Learning from Graph Data

The above-mentioned representation learning methods have a draw-
back — learning from the information of a user (an item) separately,
while the relations among users and items are ignored. A user-item
interaction graph provides rich information on user and item relations,
and an item knowledge graph provides rich information on item rela-
tions, and thus learning representations from such graphs can overcome
the drawback and has the potential to improve the accuracy of rec-
ommendation. Several recent works try to leverage this information
and developed graph representation learning based recommender sys-
tems (Wang et al., 2019a,b,c; Ying et al., 2018). User-item interactions
are organized as a bipartite graph, social relations among users are
presented in social networks, and item knowledge (e.g., item attributes
and relations) is represented in the form of knowledge graph (aka. het-
erogeneous information network). Such a graph structure connects users
and items, opening up possibilities to exploit high-order relationships
among them, captures meaningful patterns on them (e.g., collaborative
filtering, social influence effect, and knowledge-based reasoning), and
improves the representation learning of them.

5.1. Matching Based on Representation Learning 229

We can categorize existing work into two groups: (1) two-stage
learning approach (Gao et al., 2018; Wang et al., 2019c), which first
extracts relations as triples or paths, and then learns node representa-
tions using the relations, and (2) end-to-end learning approach (Wang
et al., 2019a,b) which directly learns representations of nodes where
propagation of information is carried out among nodes.

End-to-End Modeling: Neural Graph Collaborative Filtering (NGCF)

Since user-item interactions can be represented in a bipartite graph,
Neural Graph Collaborative Filtering (NGCF) (Wang et al., 2019b)
revisits collaborative filtering (CF) by defining CF signals as high-order
connectivities in the graph. Intuitively, direct connections explicitly
characterize users and items — a user’s interacted items give supporting
evidence on the user’s preference, while an item’s associated users can
be viewed as features of the item. Furthermore, high-order connectivities
reflect more complex patterns — the path u1 ← i1 ← u2 indicates the
behavioral similarity between users u1 and u2, as both have interacted
with item i1; the longer path u1 ← i1 ← u2 ← i2 suggests u1’s preference
on i2, since his/her similar user u2 has adopted i2. Figure 5.12 shows an
example of such high-order connectivities, which reflect the user–user
and item–item dependencies. NGCF aims to inject such signals into the
representations of users and items.

Figure 5.12: An example of high-order connectivity revealed in user-item interaction
graph. The figure is taken from Wang et al. (2019b).

230 Deep Matching Models in Recommendation

Inspired by the recent success of graph neural networks (GNNs) (Ying
et al., 2018), which are built upon information propagation (or messag-
ing passing) on graphs, NGCF performs embedding propagation on the
bipartite user-item interaction graph. Figure 5.13 shows its framework.

Formally, a graph convolutional layer of GNN is composed of two
components: (1) message construction, which defines the message being
propagated from a neighbor node to the current node, and (2) mes-
sage aggregation, which aggregates the messages propagated from the
neighbor nodes to update the representation of the current node. One
widely-used implementation at the l-th layer is as follows:

p(l)
u = ρ(m(l)

u←u +
∑
j∈Nu

m(l)
u←j), m(l)

u←j = αujW(l)q(l−1)
j , (5.15)

where p(l)
u denotes the representation of user u after l-layer propagation,

ρ(·) is the nonlinear activation function, and Nu is the neighbor set of
u; m(l)

u←j is the message being propagated, αuj is the decay factor for
propagation on edge (u, j) which is heuristically set as 1/

√
|Nu||Nj |,

and W(l) is a learnable transformation matrix at the l-th layer. As such,
the L-order connectivity is encoded into the updated representation.
Thereafter, NGCF concatenates representations from different layers

Figure 5.13: Model architecture of NGCF.

5.1. Matching Based on Representation Learning 231

which reflect varying contributions to user preferences and performs
prediction as:

f(u, i) = p∗>u q∗i , p∗u = p(0)|| · · · ||p(L), q∗i = q(0)|| · · · ||q(L), (5.16)

where || denotes the concatenation operation.
It is worth mentioning that MF and SVD++ can be viewed as

special cases of NGCF with no and one-order propagation layer, re-
spectively. Moreover, one can implement the graph convolutional layer
in different ways. For example, SpectralCF (Zheng et al., 2018a) uses
a spectral convolution operation to perform information propagation;
GC-MC (Berg et al., 2017) combines MLP with Equation (5.15) to
capture nonlinear and complex patterns.

While NGCF has demonstrated the strengths of using the interaction
graph structure for representation learning, a recent research (He et al.,
2020) (LightGCN) shows that many designs in NGCF are redundant,
especially the nonlinear feature transformations. The main argument is
that in the user-item interaction graph, each node (user or item) is only
described by a one-hot ID, which has no semantics besides being an
identifier. In such a case, performing multiple layers of nonlinear feature
transformation, which is the standard operation of neural networks, will
bring no benefit. To validate this argument, they propose a simple model
named LightGCN, which retains only the neighborhood aggregation in
graph convolution:

p(l)
u =

∑
i∈Nu

1√
|Nu|

√
|Ni|

q(l−1)
i ,

q(l)
i =

∑
u∈Ni

1√
|Ni|

√
|Nu|

p(l−1)
u ,

(5.17)

where p(0)
u and q(0)

i are the model parameters of ID embeddings. We can
see that in the light graph convolution, nonlinear feature transformations
and self-connections are removed. After L such layers to aggregate high-
order neighborhood, LightGCN sums up the representations of all layers
as the final representation for a user/item:

p∗u =
L∑
l=0

αlp(l)
u ; q∗i =

L∑
l=0

αlq
(l)
i , (5.18)

232 Deep Matching Models in Recommendation

where αl denotes the importance of the representation of the l-th
layer, which is pre-defined. The authors prove in theory that the sum
aggregator subsumes the self-connections in graph convolution. Thus,
the self-connections can be safely removed from graph convolution. With
the same data and evaluation method of NGCF, LightGCN obtains
about 15% relatively improvements, which are very significant.

End-to-End Modeling: Knowledge Graph Attention Network (KGAT)

In addition to user-item interactions, more recent works also take
into consideration the relations among items in a knowledge graph.
Knowledge graph (KG) is a powerful resource which provides rich side
information on items (i.e., item attributes and item relations), where
nodes are entities and edges represent the relations between them.
Usually KG organizes facts or beliefs in a heterogeneous directed graph
G = {(h, r, t) | h, t ∈ E , r ∈ R}, where the triplet (h, r, t) indicates that
there is a relationship r from head entity h to tail entity t. For example,
(Hugh Jackman, ActorOf, Logan) states the fact that Hugh Jackman is
an actor of the movie Logan.

The use of the knowledge graph can enhance the learning of item
representations and modeling of user-item relationships. In particular,
direct connections of an entity —more specifically its associated triples —
profile its features. For example, a movie can be characterized by its
director, actors, and genres. Moreover, the connections between entities,
especially multi-hop paths, stand for complex relationships, and capture
complex association patterns. In movie recommendation, for example,
users are connected to Logan because they like The Greatest Showman
acted by the same actor Hugh Jackman. Obviously, such connections
can help to reason about unseen user-item interactions (i.e., a potential
recommendation).

Towards the end, Knowledge Graph Attention Network (KGAT)
(Wang et al., 2019a) extends NGCF by adaptively extracting information
from the neighborhood of high-order connectivity. Different from NGCF
where the decay factor αht on propagation of information on edge
(h, t) is fixed, KGAT employs a relational attention mechanism taking
into consideration the relation r of edge (h, r, t). Figure 5.14 shows the

5.1. Matching Based on Representation Learning 233

Figure 5.14: Model architecture of KGAT. The left subfigure illustrates the overall
model framework, and the right subfigure illustrates the graph convolution operation
in KGAT.

framework. The attentive embedding propagation layer is formulated as:

p(l)
h = f1(p(l−1)

h , {m(l)
(h,r,t) | (h, r, t) ∈ Nh}), (5.19)

m(l)
(h,r,t) = f2(q(l−1)

t , α(h,r,t)), α(h,r,t) = exp g(ph, er,qt)∑
(h,r′,t′) exp g(ph, er′ ,qt′)

,

where f1(·) denotes the message aggregation function, which updates
the representation of the head entity h, f2(·) is the attention message
construction function, yielding messages from tail entity t to head
entity h, α(h,r,t) is the attentive decay factor derived from the atten-
tion network g(·), indicating how much information is propagated and
identifying importance of neighbors with regard to relation r. After
establishing the representations, KGAT uses the same prediction model
as Equation (5.16) to estimate how likely a user would adopt an item.

Two-Stage Modeling: Knowledge Path Recurrent Network (KPRN)

Besides end-to-end modeling to enhance representation learning with
high-order connectivity, some works (Gao et al., 2018; Wang et al.,
2019c) introduce meta-paths or paths to directly refine the similarities
between users and items. In particular, the models first either define
meta-path patterns (Gao et al., 2018) or extract qualified paths (Wang
et al., 2019c), and then feed them into a supervised learning model to
predict the score. Such an approach can be formulated as follows. Given

234 Deep Matching Models in Recommendation

Figure 5.15: Model architecture of KPRN.

the user u, the target item i, and a set of paths P(ui) = {p1, . . . , pK}
connecting u and i, their matching score is calculated as f(u, i | P(u, i)).

Among them, Knowledge Path Recurrent Network (KPRN) (Wang
et al., 2019c) is a representative model, which is shown in Figure 5.15.
Given a path among entities, KPRN employs recurrent networks like
LSTM to encode the elements on the path to capture the compositional
semantics of entities and relations. Thereafter, KPRN exploits a pooling
layer to combine multiple path representations into a single vector, and
then feeds it into an MLP to obtain the final score for the user-item
pair. Formally, the prediction model is defined as:

xk = LSTM([ph1 ||er1 , . . . ,phL ||erL]),

f(u, i) = MLP
(∑
k∈P(u,i)

xk
)
,

(5.20)

where pk = [h1, r1, . . . , hL, rL] is the k-th path, (hl, rl, hl+1) is the l-th
triplet in pk, and L denotes the triplet number. As such, KPRN can
employ an LSTM model to leverage the sequential information on the
knowledge graph and to enhance the recommender model’s explanation
ability, revealing why a recommendation is made.

5.2. Matching Based on Matching Function Learning 235

5.2 Matching Based on Matching Function Learning

The matching function outputs a matching score between the user
and the item, with user-item interaction information as input, along
with possible side information including user attributes, item attributes,
contexts, and others. We categorize the methods into two types based
on the inputs to the matching function — two-way matching (only
user information and item information are provided) and multi-way
matching (other side information is also provided).

5.2.1 Two-Way Matching

Traditional latent space models calculate inner product or cosine simi-
larity between user and item to obtain the matching score. However,
such a simple way of matching has limitations in model expressiveness.
For example, (He et al., 2017c) show that it may incur a large ranking
loss due to their inability of maintaining the triangle inequality (Hsieh
et al., 2017). Therefore, it is necessary to develop more complicated and
expressive matching functions. We categorize existing work along this
line into two types: similarity learning methods and metric learning
methods.

Similarity Learning Methods

Neural Collaborative Filtering (NCF) (He et al., 2017c) exploits a
general neural network framework for collaborative filtering. The idea
is to place a multi-layer neural network above user embedding and item
embedding to learn their interaction score:

f(u, i) = F (φu(u), φi(i)),

where F is the interaction neural network to be specified, φu(u) and
φi(i) denote the embeddings of user u and item i, respectively. Several
instances are proposed under the NCF framework:

• Multi-Layer Perception (MLP). A straightforward way is to stack
an MLP above the concatenation of user embedding and item
embedding, leveraging the non-linear modeling capability of MLP

236 Deep Matching Models in Recommendation

to learn the interaction function: F (φu(u), φi(i)) = MLP([φu(u),
φi(i)]). Although theoretically sound (since MLP can approximate
any continuous function in theory), this method does not perform
well in practice and underperforms the simple MF model most of
the time (for evidence see He et al., 2017c). As revealed in Beutel
et al. (2018), the key reason is that it is practically difficult for
MLP to learn the multiplication operation, which is, however,
very important for modeling of interaction in CF (corresponding
to the low-rank assumption of user-item interaction matrix). It is
important, therefore, to explicitly express the multiplication or
similar effect in the matching network.

• Generalized Matrix Factorization (GMF). To generalize MF un-
der the NCF framework, the authors of NCF first calculate
element-wise product on user embedding and item embedding,
then output the prediction score with a fully connected layer:
F (φu(u), φi(i)) = σ(wT ([φu(u)�φi(i)])). w is the trainable weight
vector of the layer, which assigns different weights to interactions
of different dimensions. Fixing w as an all-one vector 1 can fully
recover the MF model. Thus, in principle, GMF can achieve better
performance than MF (note that the choices of loss function may
affect the results). It is also reasonable to further stack an MLP
above the element-wise product in GMF, which is a natural way
to address the inability of multiplication learning by MLP. This
method appears in Zhang et al. (2017) and demonstrates good
performance.

• Neural Matrix Factorization (NeuMF). The use of MLP can endow
the interaction function with non-linearity. To complement GMF
with MLP and combine their strengths, the authors of NCF
propose an ensemble model, as illustrated in Figure 5.16. It uses
separated embedding sets for GMF and MLP, concatenating the
last hidden layers of the two models before projecting to the final
matching score. This model has higher representation capability.
However, it is also hard to train if training is conducted from the
scratch. Empirically, initializing the parameters with pre-trained
GMF and MLP leads to better performance, which is highly

5.2. Matching Based on Matching Function Learning 237

Figure 5.16: Model architecture of NeuMF.

encouraged in practice. Moreover, sharing the embedding layer
is also reasonable to reduce the number of parameters, which is
subjected to design (Guo et al., 2017).

• Convolutional NCF (ConvNCF) (He et al., 2018b). To explicitly
model the correlations (interactions) between embedding dimen-
sions, He et al. (2018b) propose to use outer product on user
embedding and item embedding, followed by a CNN to aggregate
the interactions hierarchically. Figure 5.17 illustrates the model.
The output of the outer product is a 2D matrix, where the (k, t)-th
entry is (pu ⊗ qi)kt = puk · qit, capturing the interaction between
the k-th dimension and the t-th dimension (pu and qi denote user
embedding and item embedding). As the 2D matrix encodes pair-
wise interactions between embedding dimensions, stacking a CNN
above it can capture high-order interactions among embedding
dimensions, because each higher layer has a larger receptive field
on the matrix. Moreover, CNN has fewer parameters than MLP,
which could be difficult to train and is not encouraged.

238 Deep Matching Models in Recommendation

Figure 5.17: Model architecture of ConvNCF.

Metric Learning Methods

Metric learning methods aim to learn and utilize distance metrics to
quantitatively measure the relationships among data instances. Math-
ematically, a distance metric needs to satisfy several conditions, and
among them the triangle inequality is an important one for general-
ization (Kulis et al., 2013). An early and representative work that
introduces metric learning into recommendation is Collaborative Metric
Learning (CML) (Hsieh et al., 2017), which points out several limita-
tions of using the inner product for collaborative filtering because of the
dissatisfaction of triangle inequality. As a result, it is not able to capture
finer-grained user preferences and user–user and item–item relations
(because the similarity relation cannot be properly propagated with the
inner product). They then formulate a basic metric learning framework
for collaborative filtering, which is extended by some later work like (He
et al., 2017a; Tay et al., 2018a). Next, we briefly introduce the methods.

• Collaborative Metric Learning (CML) (Hsieh et al., 2017). The
user-item metric in CML is defined as the Euclidean distance
between user embedding and item embedding:

d(u, i) = ||pu − qi||, (5.21)

5.2. Matching Based on Matching Function Learning 239

where pu is the user embedding vector, qi is the item embedding
vector, and d(u, i) is the distance between user u and item i, the
smaller, the more similar. An advantage of learning and utilizing
the metric is that the similarity among instances can be prop-
agated. For example, if it is known that “pu is similar to both
qi and qj”, then the learned metric will not only make pu get
closer to qi and qj , but also make qi and qj themselves closer.
This property is fairly useful to capture user–user and item–item
relationships from user-item interactions. The intuition is that an
item that a user likes is close to the user than the other items
that the user does not like. Thus, a margin-based pairwise loss is
defined as:

L =
∑

(u,i)∈D+

∑
(u,j)∈D−

wui[δ + d(u, i)2 − d(u, j)2]+, (5.22)

where i denotes an item that u likes, j denotes an item that
u does not like, δ > 0 is the predefined margin size, [z]+ =
max(z, 0) denotes the hinge loss function, and wui is the weight of
training instance which is predefined. The authors propose several
additional constraints to improve the quality of the learned metrics,
including a bound of user embedding and item embedding within
a unit sphere (i.e., ||p∗|| ≤ 1 and ||q∗|| ≤ 1), and a regularizer to
de-correlate the dimensions of the learned metric. We refer the
readers to the original paper for more details (Hsieh et al., 2017).

• Translation-based Recommendation (TransRec) (He et al., 2017a).
TransRec can be seen as an extension of CML for next-item rec-
ommendation, which accounts for user sequential behavior by
modeling the third-order interaction among the user, the pre-
viously visited item, and the next item to visit (Rendle et al.,
2010). The idea is that, the user is represented as a “translation
vector”, which translates the previous item to the next item, i.e.,
qj + pu ≈ qi. The distance metric to realize the translation is:

d(qj + pu,qi) = ||qj + pu − qi||, (5.23)

where all embedding vectors are re-scaled in the unit length.
The authors then estimate the likelihood that the user makes a

240 Deep Matching Models in Recommendation

transition from item j to item i as:

prob(i | u, j) = βi − d(qj + pu,qi), (5.24)

where βi is a bias term to capture the item popularity. The Tran-
sRec model is learned with the pairwise BPR loss. Compared
with CML, TransRec considers the previous item and the tran-
sition relation between it and the next item. Recently, Wu et al.
(2019a) extend TransRec by modeling multiple previous items and
high-order interactions with them.

• Latent Relational Metric Learning (LRML) (Tay et al., 2018a).
LRML advances TransRec by further learning the relation between
the user and the next item. An advantage is that the metric is
more geometrically flexible. The metric of LRML is:

d(u, i) = ||pu + r− qi||, (5.25)

where r is the latent relation vector to be learned. Instead of
learning a uniform r for all user-item pairs, LRML parameterizes
it as an attentive sum over external memory vectors. Figure 5.18
shows the model architecture. Let the external memory vectors be
{mt}Tt=1, and the keys of the memory vectors be {kt}Tt=1, and both
of which are model free parameters to be learned. The relation
vector r is parameterized as:

r =
M∑
t=1

atmt,

at = softmax((pu � qi)Tkt),
(5.26)

where at is the attentive weight of memory mt generated by an
attention network that takes the interaction between user embed-
ding and item embedding as input. In this way, the relation vector
is user-item interaction aware, which increases the geometrical
flexibility of the metric. The model is learned by optimizing the
pairwise hinge loss which is the same as that in CML.

5.2. Matching Based on Matching Function Learning 241

Figure 5.18: Model architecture of LRML.

5.2.2 Multi-Way Matching

Methods of multi-way matching are generic feature-based methods, just
like the FM model which takes features as input and incorporates feature
interactions in the matching function. The methods allow the utilization
of any kind of side information and context. However, they may have
higher complexity compared to two-way matching and representation
learning-based methods. As such, they are more often used in the
ranking stage rather than in the candidate retrieval stage, such as
Click-Through Rate (CTR) prediction.

Feature interaction modeling aims to capture cross-feature effects,
i.e., signals from multiple features. For example, users of age 20–25
(feature 1) and gender female (feature 2) are more likely to purchase
iPhones of pink color (feature 3). A naive solution for capturing such
effects is to manually construct cross features, feeding them into a
linear model that can learn and memorize the importance of the cross
features (Cheng et al., 2016). The issue is that it can only memorize the
seen cross features (in training data), and cannot generalize to unseen
cross features. Moreover, the number of cross features increases polyno-
mially with the order of crossing. Thus it requires domain knowledge to

242 Deep Matching Models in Recommendation

select useful cross features instead of using all cross features. Therefore,
we need more effective and efficient techniques for feature interaction
modeling.

We categorize existing work into three types based on how feature
interactions are modeled: implicit interaction modeling, explicit interac-
tion modeling, and the combination of implicit and explicit interaction
modeling.

Implicit Interaction Modeling

At Recsys 2016, the YouTube team presented a deep neural network
model for YouTube recommendation (Covington et al., 2016). It projects
each categorical feature as an embedding vector (for sequence features
like watched items, it performs average pooling to obtain a sequence
embedding vector). It then concatenates all embeddings, feeding the con-
catenated vector into a three-layer MLP to obtain the final prediction.
The MLP is expected to learn the interactions among feature embed-
dings, because of its strong representation capability in approximating
any continuous function. However, the feature interaction modeling
is rather an implicit process since the interactions are encoded in the
hidden units of MLP, and there is no way to identify which interactions
are important for a prediction after the model is trained. Moreover, it is
practically difficult for MLP to learn multiplication effect (Beutel et al.,
2018), which is important to capture cross features.

This simple architecture becomes a pioneer work of utilizing deep
neural networks for recommendation, and many later works make exten-
sions on it. For example, Wide&Deep (Cheng et al., 2016) ensembles the
deep model (i.e., the deep part) with a linear regression model (i.e., the
wide part), which contains sophisticated features including manually
constructed cross features. Deep Crossing (Shan et al., 2016) deepens
the MLP to ten layers with residual connections between layers. As will
be introduced next, many ensemble models like DeepFM (Guo et al.,
2017) and xDeepFM (Lian et al., 2018) integrate the deep architecture
into a shallow architecture to augment implicit interaction modeling
with explicit interaction modeling.

5.2. Matching Based on Matching Function Learning 243

Explicit Interaction Modeling

FM is a traditional model that performs second-order interaction mod-
eling (we have introduced the model in Subsection 2.4.3). Specifically,
it projects each non-zero feature xi into an embedding vi, performs
inner product on each pair of non-zero feature embeddings, and sums
over all inner products (the first-order linear regression part is omitted
for clarity). Due to its effectiveness, FM is extended under the neural
network framework for explicit interaction modeling.

Figure 5.19 shows the Neural Factorization Machine (NFM) model
(He and Chua, 2017). The idea is to replace the inner product with the
element-wise product, which outputs a vector rather than a scalar, and
then stacks an MLP above the sum of element-wise products. The core
operation in NFM is called Bi-Interaction Pooling, defined as:

fBI(Vx) =
n∑
i=1

n∑
j=i+1

xivi � xjvj , (5.27)

where xi denotes the value of feature i, Vx denotes the set of embeddings
of non-zero features, and n denotes the number of non-zero features.
The vector obtained by Bi-Interaction pooling encodes second-order
interactions. By stacking an MLP above it, the model has the ability to
learn high-order feature interactions.

One issue with FM and NFM is that all second-order interactions
are considered equally important, and they contribute evenly to the

Figure 5.19: Model architecture of NFM.

244 Deep Matching Models in Recommendation

prediction. To address this issue, Attentional Factorization Machine
(AFM) (Xiao et al., 2017) is proposed to differentiate the importance
of interactions with an attention network. Figure 5.20 shows the ar-
chitecture of AFM. The input and embedding layers are the same as
those in the standard FM. The pair-wise interaction layer performs the
element-wise product on each pair of feature embeddings to obtain the
interaction vectors; this step is equivalent to those of FM and NFM.
The attention network takes each interaction vector vi � vj as input
and outputs the importance weight aij with a two-layer MLP. Then,
the model uses the importance weight to re-weight each interaction
vector and sum up all interaction vectors to obtain the final score. The
equation of AFM is:

ŷAFM (x) = pT
n∑
i=1

n∑
j=i+1

aij(vi � vj)xixj ,

where aij = softmax(hTMLP (vi � vj)).
(5.28)

The attention weight aij can be used to interpret the importance of
each second-order interaction for the prediction. It is straightforward
to further leverage the strengths of NFM in high-order interaction
modeling and AFM in second-order interaction modeling, by appending
an MLP onto the attention-based pooling layer. This naturally leads to
Deep AFM, which has better representation ability and may yield better
performance. A recent work (Tao et al., 2019) proposes a high-order
attentive FM (HoAFM), which has linear complexity in order size.

Orthogonal to the work of FM, Lian et al. (2018) propose Com-
pressed Interaction Network (CIN), which explicitly models high-order
feature interactions in a recursive way. Let the embeddings of non-zero
input features be a matrix V0 ∈ Rn×D, where n is the number of
nonzero features and D is the embedding size; the i-th row in V0 is the
embedding vector of the i-th nonzero feature: V0

i,∗ = vi. Let the output
of the k-th layer in CIN be a matrix Xk ∈ RHk×D, where Hk denotes
the number of embedding vectors in the k-th layer and is an architecture
choice to specify (note that H0 = n). The recursive definition of CIN

5.2. Matching Based on Matching Function Learning 245

Figure 5.20: Model architecture of AFM.

that can capture high-order feature interaction is defined as:

Vk
h,∗ =

Hk−1∑
i=1

n∑
j=1

Wk,h
ij (Vk−1

i,∗ �V0
j,∗), (5.29)

where 1 ≤ h ≤ Hk,Wk,h ∈ RHk−1×n is the parameter matrix for the
h-th feature vector. As Vk is derived via the interaction between Vk−1

and V0, the order of feature interactions increases with the layer depth.
Assuming that the model stacks K such layers, the final prediction
is based on the output matrix Xk of all K layers, which unifies the
feature interactions up to K orders. Note that the time complexity of
high-order interaction modeling increases linearly with the number of
orders, which is smaller than that of high-order FM. However, CIN
introduces more parameters to train — for layer k, it has Hk trainable
weight matrices of size Hk−1 × n, which amounts to a parameter tensor
of size Hk ×Hk−1 × n.

Combination of Explicit and Implicit Interaction Modeling

As implicit interaction modeling and explicit interaction modeling work
in different ways, integrating them into a unified framework has the
potential to improve the performance. In the recent literature, the
reported best performances are obtained by hybrid models that combine

246 Deep Matching Models in Recommendation

multiple interaction models (Guo et al., 2017; Lian et al., 2018). We
briefly review the ensemble methods in this subsection.

Wide&Deep (Cheng et al., 2016) ensembles a linear regression model
which utilizes manually constructed cross features (the wide part) and
an MLP model which implicitly uses the interactions of features (the
deep part). The wide part is to memorize the seen cross features, and
the deep part is to generalize to unseen cross features. Let x be the
original input features and φ(x) be the constructed cross features. Then
the model for predicting the click-through rate is:

p(click | x) = σ(wT
wide[x, φ(x)] + wT

deepa(L) + b), (5.30)

where σ(·) is the sigmoid function to output a probability value, wwide

denotes the weights of the wide part, wdeep denotes the weights of the
deep part, a(L) denotes the last hidden layer of the MLP model, and b
is the bias term.

The work of Wide&Deep inspired many later works to employ similar
ensembles, but on different models. For example, DeepFM (Guo et al.,
2017) ensembles FM and MLP via: ŷDeepFM = σ(ŷFM + ŷMLP), where
ŷFM and ŷMLP denote the predictions of FM and MLP, respectively. The
FM model learns second-order feature interactions explicitly, and the
MLP model learns high-order feature interactions implicitly. In addition,
DeepFM shares the embedding layer of FM and MLP to reduce model
parameters. xDeepFM (Lian et al., 2018) further ensembles DeepFM
with CIN, which explicitly models high-order feature interactions. There
are other ensemble models. We do not describe them here due to
space limitations. The general observation is that combining models
that account for different types of interactions usually yields better
performances.

5.3 Further Reading

Recommendation remains to be an important and hot topic in informa-
tion retrieval and data mining. New techniques are constantly developed,
and new methods are evolving fast. Here we give more references for
further reading.

5.3. Further Reading 247

5.3.1 Papers

With regard to learning representations from user sequential interactions,
some recent work (Sun et al., 2019; Yuan et al., 2020) argues that user
behaviors may not be strictly formalized as sequences of interactions.
That is, a sequence of interactions does not necessarily encode strong
semantics as a sentence of words, and a recorded sequence only reflects
the user’s one choice and other choices may also be possible. As a
result, the “left-to-right” training paradigm, such as RNN, may not be
optimal because the future interactions are ignored in the prediction of
interactions. Such information is also indicative of user’s preference and
should be leveraged. The key question in utilization of future information
is how to avoid information leakage. To address this challenge, (Sun
et al., 2019; Yuan et al., 2020) employ the fill-in-the-blank training
paradigm inspired by BERT, which randomly masks some interactions
in the encoder with the aim of predicting the masked interactions either
by the encoder itself (Sun et al., 2019) or by an additional decoder (Yuan
et al., 2020).

For learning representations from multi-modal content, some recent
work exploits an interaction graph to propagate multimedia features
on the graph with graph convolution network (Wei et al., 2019; Ying
et al., 2018). In this way, the multimedia features are smoothed and
become more useful for recommendation. For example, the multi-modal
GCN (MMGCN) (Wei et al., 2019) constructs a modality-aware GCN
on the user-item graph with features of each modality (visual, textual,
and acoustic), and fuses the output of each modality to get the final
representation of a micro-video. With regard to representation learning
on graph data, besides the user-item graph and knowledge graph as we
have described, social network (Wu et al., 2019b) and session graph (Qiu
et al., 2019; Wu et al., 2019c) are also used for learning of GCN. As
a graph provides a formal way of describing different types of entities
and their relations, matching based on a heterogeneous graph is a
promising solution for recommender systems in different applications.
As for learning dynamic representations of users with respect to different
items, attention networks are designed to learn user’s specific preferences

248 Deep Matching Models in Recommendation

to different aspects of items by leveraging reviews and images (Cheng
et al., 2018; Liu et al., 2019b).

Due to the diversity of recommendation scenarios in practice, re-
searchers develop neural recommender models from different perspec-
tives. For example, (Gao et al., 2019b) model multiple cascading user
behaviors like click, add-to-cart, and purchase, in a sequential multi-task
framework. Li et al. (2019) develop a capsule network to recognize sen-
timent from user reviews for recommendation. Xin et al. (2019b) takes
into account relations of multiple items (e.g., same category, shared
attribute, etc.) for item-based CF. Gao et al. (2019a) develop a privacy-
preserving method for cross-domain recommendation by transferring
user embeddings rather than raw behavior data. Pan et al. (2019) tailor
the learning of embedding parameters for item cold-start recommenda-
tion via meta-learning.

All the above-discussed neural network models are offline recommen-
dation methods, which exploit the offline historical data to estimate user
preference. Another thriving area is online recommendation, for which
the bandit-based methods are prevalent (Li et al., 2010; Wu et al., 2016a;
Zhang et al., 2020). They aim to pursue the exploitation-exploration
trade-off when interacting with users in online recommendations. Two
common types of bandit methods are Upper Confidence Bound (UCB)-
based and Thompson Sampling (TS)-based, and both methods have pros
and cons. Besides interacting with users with item recommendations,
recent work (Zhang et al., 2020) considers asking attribute preference,
which can find the most related items more effectively. Neural networks
can serve as the exploitation component for the bandit-based methods,
and more investigations remain to be done towards combining offline
deep models with online exploration strategies.

5.3.2 Benchmark Datasets

There are a number of benchmark datasets available for training and test-
ing recommender models in different scenarios. For instance, the Movie-
Lens collection,1 Amazon product collection2 (He and McAuley, 2016),

1https://grouplens.org/datasets/movielens.
2http://jmcauley.ucsd.edu/data/amazon/.

https://grouplens.org/datasets/movielens
http://jmcauley.ucsd.edu/data/amazon/

5.3. Further Reading 249

and Gowalla3 (Liang et al., 2016) are benchmark datasets that consist
of user-item interaction data. Yelp,4 Ciao,5 and Epinions6 (Richard-
son et al., 2003) are datasets that additionally include social relations
among users which are useful for social recommendation. Yoochoose7
and Diginetica8 contain streams of user clicks in e-commerce, and thus
are suitable for session-based (sequential) recommendation. Criteo,9
Avazu,10 and Frappe11 (Baltrunas et al., 2015) are comprised of context
information of interactions, and are widely used in CTR prediction
and feature-based recommendation. Moreover, as Amazon, Yelp, and
TripAdvisor12 (Wang et al., 2018c) provide rich reviews and comments
on items, they are widely utilized in review-based recommender models.
Besides, there are several datasets presenting a knowledge graph for rec-
ommendation, such as KB4Rec13 (Zhao et al., 2019) and KGAT14 (Wang
et al., 2019a).

5.3.3 Open Source Packages

Several open-source packages or libraries for recommendation are pub-
licly available, with the aim of facilitating related research. Microsoft
Recommenders15 offers tens of example models for building recommen-
dation systems. NeuRec16 is an open-source library that includes a
large number of state-of-the-art recommender models, ranging from
collaborative filtering and social recommendation to sequential recom-
mendation. It is worthwhile highlighting that NeuRec is a modular
framework in which a model can be built upon reusable modules with

3https://snap.stanford.edu/data/loc-gowalla.html.
4https://www.yelp.com/dataset.
5http://www.ciao.co.uk.
6https://snap.stanford.edu/data/soc-Epinions1.html.
7https://2015.recsyschallenge.com/.
8https://competitions.codalab.org/competitions/11161.
9http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset.

10https://www.kaggle.com/c/avazu-ctr-prediction/data.
11http://baltrunas.info/research-menu/frappe.
12https://github.com/xiangwang1223/tree_enhanced_embedding_model.
13https://github.com/RUCDM/KB4Rec.
14https://github.com/xiangwang1223/knowledge_graph_attention_network.
15https://github.com/microsoft/recommenders.
16https://github.com/NExTplusplus/NeuRec.

https://snap.stanford.edu/data/loc-gowalla.html
https://www.yelp.com/dataset
http://www.ciao.co.uk
https://snap.stanford.edu/data/soc-Epinions1.html
https://2015.recsyschallenge.com/
https://competitions.codalab.org/competitions/11161
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset
https://www.kaggle.com/c/avazu-ctr-prediction/data
http://baltrunas.info/research-menu/frappe
https://github.com/xiangwang1223/tree_enhanced_embedding_model
https://github.com/RUCDM/KB4Rec
https://github.com/xiangwang1223/knowledge_graph_attention_network
https://github.com/microsoft/recommenders
https://github.com/NExTplusplus/NeuRec

250 Deep Matching Models in Recommendation

standard interfaces. Thus it allows users to build their own models
easily. Similarly, OpenRec17 is an open-source project that contains
several recommendation methods.

17https://github.com/ylongqi/openrec.

https://github.com/ylongqi/openrec

6
Conclusion and Future Directions

6.1 Summary of the Survey

How to bridge the semantic gap between two matching entities is the
most fundamental and challenging issue in search and recommendation.
In search, the searchers and the authors of documents may use differ-
ent expressions to represent the same meanings, resulting in the most
undesirable outcomes in which relevant documents exist but cannot be
found. In recommendation, the users and the items belong to different
types of entities and are represented by different superficial features,
making it difficult to conduct matching between the features and thus
offer satisfactory recommendations on items to users. To bridge the
semantic gap, researchers in both search and recommendation have pro-
posed to construct and utilize matching models with machine learning
techniques.

In recent years, deep learning has been applied to search and rec-
ommendation, and great success has been achieved. In this survey, we
have first introduced a unified view on matching in search and rec-
ommendation. Under this view, we have then categorized the learning
solutions to query-document matching in search and user-item matching
in recommendation into two types: methods of representation learning

251

252 Conclusion and Future Directions

and methods of matching function learning. After that, representative
traditional matching methods, as well as deep matching methods, have
been explained with details. Experimental results, benchmarks, and
software packages have also been introduced.

The unified view of matching provides a new means to compare and
analyze the machine learning approaches, particularly deep learning
approaches, developed for search and recommendation. Although exist-
ing matching models for search and for recommendation are developed
for different purposes within different communities (e.g., SIGIR and
RecSys), they bear similar design principles and model properties. This
survey can be beneficial for people in communities with its unified view.
In fact, the boundary between search and recommendation becomes
blurry, and there emerges a trend to unify the two paradigms (Schedl
et al., 2018; Zhang et al., 2018). The unified view provides a new angle
to devise novel models for search and recommendation.

One can see that deep learning for matching has made and is
making significant progress in search and recommendation. One can
also foresee that it has the potential to make impact on similar problems
in other fields, including online advertising, question answering, image
annotation, and drug design.

6.2 Matching in Other Tasks

Semantic matching is a fundamental issue in other tasks beyond search
and recommendation. Since matching is conducted between two sets
of objects, it can be categorized as text matching and entity matching.
In text matching, there exists an order between the elements within
each object (e.g., words in a sentence). Query-document matching is a
typical example of text matching. In entity matching, there is no order
exits between the objects. User-item matching in recommendation is
an example of entity matching. Other matching tasks have also been
studied. We list some of them here.

Paraphrase detection Determining whether two sentences are with
the same meaning is an important topic of semantic matching in

6.3. Open Questions and Future Directions 253

natural language processing. The matching is conducted at the
semantic level, and the learned matching function is symmetric.

Community QA Given a question, the goal is to find questions with
the same meaning from the knowledge-base in community QA.
The task is similar to paraphrase detection, while the two sentences
are questions. The matching between two questions is conducted
at the semantic level.

Text entailment Text entailment refers to the problem of determining
implication or none-implication relation between two statements.
Though similar, entailment is different from paraphrase detection
in that it focuses on determining the logical relation between two
texts. The matching should also be conducted at the semantic
level, and the matching function is not symmetric.

Retrieval-based dialogue One key issue in retrieval-based dialogue
is to find the most suitable response given utterances in the
context of the conversation. The response is usually a sentence
while the utterance can be, for example, one single utterance or
all utterances in the context (in multi-turn dialog). It is obvious
that the matching is conducted between texts at the semantic
level.

Online advertising In search ads, how to match a user’s search query
to advertisers’ keywords greatly affects the probability that the
user will see and click the ads. In contextual ads, matching is
conducted between the keywords and the contents of webpages.
In both cases, semantic matching is helpful in choosing right ads
and constructing a right order by which the ads are displayed.

6.3 Open Questions and Future Directions

There are many open questions with regard to deep matching for search
and recommendation. Here, we only list some of them.

1. Lack of training data (i.e., supervised learning data) is still one of
the key challenges. In contrast, deep matching models need a large

254 Conclusion and Future Directions

amount of data to train. How to leverage unsupervised learning,
weakly-supervised learning, semi-supervised learning, and distant
supervised learning techniques to deal with the problem is an
important question.

2. A large fraction of deep matching models are trained with click
data. Existing studies show that directly using click data as train-
ing signals often yields suboptimal results. In learning to rank, the
counterfactual inference framework is proposed to derive unbiased
learning to rank models (Joachims et al., 2017). How to overcome
the bias problem in deep matching is an exciting future direction.

3. The learning of existing deep matching models is purely data-
driven. Sometimes, rich prior knowledge does exist (e.g., domain
knowledge, knowledge-base, matching rules), and the use of it
should be helpful in improving the performances of matching. How
to integrate prior knowledge into matching models is an important
direction to explore.

4. Matching models are usually learned with one single objective,
i.e., “similarity”. There may need to exploit multiple objectives in
learning (e.g., induction ability, fairness) according to applications.
How to add other criteria into the learning of matching models is
another important issue to investigate.

5. To a large extent, current deep matching models are black boxes.
In real search and recommender systems, however, it is often
required that the matching models not only achieve high accuracy,
but also give intuitive explanations of the results. Such explain-
ability is helpful to improve the transparency, persuasiveness, and
trustworthiness of the system. How to create the explanation
ability in deep matching models is still an open question.

6. Most deep matching models only learn correlations from the data.
However, correlation is not causality, and it falls short in revealing
the reasons behind the data (e.g., the reasons that a user prefers
an item over another one). To enhance a matching model with
causal reasoning ability, we need to introduce the mechanisms of

6.3. Open Questions and Future Directions 255

intervention and counterfactual reasoning into the model (Pearl,
2019). Moreover, the collected data is usually biased by many
factors, like the position bias, exposure bias, and so on. It is an
emerging direction to develop causal methods for matching, which
are robust to the various data bias and able to reveal the reasons
behind the data.

7. In search and recommender systems, the processes of matching
and ranking are usually separated: first matching and then ranking.
Therefore, the results of matching are naturally used as features
of ranking. However, the separation of ranking and matching may
not be necessary sometimes. One natural question is whether it
is possible to build an end-to-end system in which the matching
and ranking models are jointly learned.

8. Search and recommender systems are becoming more and more
interactive, which can help users to find relevant or interesting
information in an exploratory way. For example, some search
engines let the users to refine the queries after checking the ini-
tial results. Similarly, some recommendation systems recommend
items based on what the users have chosen, or through asking users
what kind of item attributes they prefer (Lei et al., 2020). There-
fore, how to structure the user-system interactions and conduct
query-document (or user-item) matching in the interactive and
conversational scenarios is an important and interesting research
topic.

Acknowledgements

We thank the editors and the three anonymous reviewers for their
valuable comments to improve the manuscript. We thank Dr. Wang
Xiang and Dr. Yuan Fajie for providing materials for the writing of
the survey. The work is supported by the National Natural Science
Foundation of China (61872338, 61972372, U19A207, 61832017), Beijing
Academy of Artificial Intelligence (BAAI2019ZD0305), and Beijing
Outstanding Young Scientist Program (BJJWZYJH012019100020098).

256

References

Adomavicius, G. and A. Tuzhilin (2005). “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions”. IEEE Transactions on Knowledge and Data Engineering.
17(6): 734–749.

Ai, Q., K. Bi, J. Guo, and W. B. Croft (2018). “Learning a deep listwise
context model for ranking refinement”. In: The 41st International
ACM SIGIR Conference on Research & Development in Informa-
tion Retrieval. SIGIR ’18. Ann Arbor, MI, USA: Association for
Computing Machinery. 135–144.

Andrew, G., R. Arora, J. Bilmes, and K. Livescu (2013). “Deep canoni-
cal correlation analysis”. In: Proceedings of the 30th International
Conference on International Conference on Machine Learning – Vol-
ume 28. ICML’13. Atlanta, GA, USA: JMLR.org. III-1247–III-1255.
url: http://dl.acm.org/citation.cfm?id=3042817.3043076.

Ba, J. L., J. R. Kiros, and G. E. Hinton (2016). “Layer normalization”.
CoRR. abs/1607.06450. arXiv: 1607.06450.

Bahdanau, D., K. Cho, and Y. Bengio (2015). “Neural machine transla-
tion by jointly learning to align and translate”. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA. url: http://arxiv.org/abs/1409.0473.

257

http://dl.acm.org/citation.cfm?id=3042817.3043076
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473

258 References

Bai, B., J. Weston, D. Grangier, R. Collobert, K. Sadamasa, Y. Qi, O.
Chapelle, and K. Weinberger (2009). “Supervised semantic indexing”.
In: Proceedings of the 18th ACM Conference on Information and
Knowledge Management. CIKM ’09. Hong Kong, China: ACM. 187–
196.

Bai, B., J. Weston, D. Grangier, R. Collobert, K. Sadamasa, Y. Qi,
O. Chapelle, and K. Weinberger (2010). “Learning to rank with
(a lot of) word features”. Information Retrieval. 13(3): 291–314.

Bai, T., J.-R. Wen, J. Zhang, and W. X. Zhao (2017). “A neural
collaborative filtering model with interaction-based neighborhood”.
In: Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management. CIKM ’17. Singapore, Singapore: ACM.
1979–1982.

Balaneshin-Kordan, S. and A. Kotov (2018). “Deep neural architecture
for multi-modal retrieval based on joint embedding space for text
and images”. In: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining. WSDM ’18. Marina
Del Rey, CA, USA: ACM. 28–36.

Baltrunas, L., K. Church, A. Karatzoglou, and N. Oliver (2015). “Frappe:
Understanding the usage and perception of mobile app recommen-
dations in-the-wild”. CoRR. abs/1505.03014. arXiv: 1505.03014.

Bast, H., B. Björn, and E. Haussmann (2016). “Semantic search on
text and knowledge bases”. Foundations and Trends in Information
Retrieval. 10(2–3): 119–271.

Batmaz, Z., A. Yurekli, A. Bilge, and C. Kaleli (2019). “A review on
deep learning for recommender systems: Challenges and remedies”.
Artificial Intelligence Review. 52(1): 1–37.

Belkin, N. J. and W. B. Croft (1992). “Information filtering and infor-
mation retrieval: Two sides of the same coin?” Communications of
the ACM. 35(12): 29–38.

Bello, I., S. Kulkarni, S. Jain, C. Boutilier, E. H. Chi, E. Eban, X.
Luo, A. Mackey, and O. Meshi (2018). “Seq2Slate: Re-ranking and
slate optimization with RNNs”. In: Proceedings of the Workshop on
Negative Dependence in Machine Learning at the 36th International
Conference on Machine Learning. Long Beach, CA. PMLR 97, 2019.

http://arxiv.org/abs/1505.03014

References 259

Bendersky, M., W. B. Croft, and D. A. Smith (2011). “Joint annotation
of search queries”. In: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language
Technologies – Volume 1. HLT ’11. Portland, OR, USA: Association
for Computational Linguistics. 102–111. url: http://dl.acm.org/
citation.cfm?id=2002472.2002486.

Berg, R. van den, T. N. Kipf, and M. Welling (2017). “Graph convolu-
tional matrix completion”. CoRR. abs/1706.02263. arXiv: 1706.022
63.

Berger, A. and J. Lafferty (1999). “Information retrieval as statistical
translation”. In: Proceedings of the 22nd Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’99. Berkeley, CA, USA: ACM. 222–229.

Bergsma, S. and Q. I. Wang (2007). “Learning noun phrase query
segmentation”. In: Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning (EMNLP-CoNLL). Prague, Czech
Republic: Association for Computational Linguistics. 819–826. url:
https://www.aclweb.org/anthology/D07-1086.

Beutel, A., P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, and E. H. Chi
(2018). “Latent cross: Making use of context in recurrent recom-
mender systems”. In: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining. WSDM ’18. Marina
Del Rey, CA, USA: ACM. 46–54.

Bowman, S. R., G. Angeli, C. Potts, and C. D. Manning (2015). “A large
annotated corpus for learning natural language inference”. In: Pro-
ceedings of the 2015 Conference on Empirical Methods in Natu-
ral Language Processing. Lisbon, Portugal: Association for Com-
putational Linguistics. 632–642. url: https://www.aclweb.org/
anthology/D15-1075.

Brill, E. and R. C. Moore (2000). “An improved error model for noisy
channel spelling correction”. In: Proceedings of the 38th Annual
Meeting on Association for Computational Linguistics. ACL ’00.
Hong Kong: Association for Computational Linguistics. 286–293.

http://dl.acm.org/citation.cfm?id=2002472.2002486
http://dl.acm.org/citation.cfm?id=2002472.2002486
http://arxiv.org/abs/1706.02263
http://arxiv.org/abs/1706.02263
https://www.aclweb.org/anthology/D07-1086
https://www.aclweb.org/anthology/D15-1075
https://www.aclweb.org/anthology/D15-1075

260 References

Burges, C. J. (2010). “From RankNet to LambdaRank to LambdaMART:
An overview”. Technical report. MSR-TR-2010-82. https://www.mi
crosoft.com/en-us/research/publication/from-ranknet-to-lambdar
ank-to-lambdamart-an-overview/.

Cao, Y., J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon (2006).
“Adapting ranking SVM to document retrieval”. In: Proceedings
of the 29th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval. SIGIR ’06. Seattle,
Washington, DC, USA: ACM. 186–193.

Chen, J., H. Zhang, X. He, L. Nie, W. Liu, and T.-S. Chua (2017a).
“Attentive collaborative filtering: Multimedia recommendation with
item- and component-level attention”. In: Proceedings of the 40th
International ACM SIGIR Conference on Research and Development
in Information Retrieval. SIGIR ’17. Shinjuku, Tokyo, Japan: ACM.
335–344.

Chen, Q., X. Zhu, Z.-H. Ling, S. Wei, H. Jiang, and D. Inkpen (2017b).
“Enhanced LSTM for natural language inference”. In: Proceedings
of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Vancouver, Canada: Asso-
ciation for Computational Linguistics. 1657–1668. url: https://
www.aclweb.org/anthology/P17-1152.

Chen, C., M. Zhang, Y. Liu, and S. Ma (2018a). “Neural attentional
rating regression with review-level explanations”. In: Proceedings of
the 2018 World Wide Web Conference. WWW ’18. Lyon, France.
1583–1592.

Chen, H., F. X. Han, D. Niu, D. Liu, K. Lai, C. Wu, and Y. Xu (2018b).
“MIX: Multi-channel information crossing for text matching”. In:
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. KDD ’18. London, UK: ACM.
110–119.

Cheng, H.-T., L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L.
Hong, V. Jain, X. Liu, and H. Shah (2016). “Wide & deep learning
for recommender systems”. In: Proceedings of the 1st Workshop on
Deep Learning for Recommender Systems. DLRS 2016. Boston, MA,
USA: ACM. 7–10.

https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://www.aclweb.org/anthology/P17-1152
https://www.aclweb.org/anthology/P17-1152

References 261

Cheng, Z., Y. Ding, X. He, L. Zhu, X. Song, and M. S. Kankanhalli
(2018). “A3NCF: An adaptive aspect attention model for rating
prediction”. In: Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence. 3748–3754.

Cohen, D., L. Yang, and W. B. Croft (2018). “WikiPassageQA: A bench-
mark collection for research on non-factoid answer passage retrieval”.
In: The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. SIGIR ’18. Ann Arbor, MI,
USA: ACM. 1165–1168.

Costa, A. and F. Roda (2011). “Recommender systems by means of in-
formation retrieval”. In: Proceedings of the International Conference
on Web Intelligence, Mining and Semantics. WIMS ’11. Sogndal,
Norway: ACM. 57:1–57:5.

Covington, P., J. Adams, and E. Sargin (2016). “Deep neural networks
for youtube recommendations”. In: Proceedings of the 10th ACM
Conference on Recommender Systems. 191–198.

Croft, W. B., D. Metzler, and T. Strohman (2009). Search Engines:
Information Retrieval in Practice. 1st Edn. USA: Addison-Wesley
Publishing Company. I–XXV, 1–524.

Dai, Z., C. Xiong, J. Callan, and Z. Liu (2018). “Convolutional neural
networks for soft-matching N-grams in ad-hoc search”. In: Proceed-
ings of the Eleventh ACM International Conference on Web Search
and Data Mining. WSDM ’18. Marina Del Rey, CA, USA: ACM.
126–134.

Dehghani, M., H. Zamani, A. Severyn, J. Kamps, and W. B. Croft (2017).
“Neural ranking models with weak supervision”. In: Proceedings of
the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR ’17. Shinjuku, Tokyo,
Japan: Association for Computing Machinery. 65–74.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2019). “BERT:
Pre-training of deep bidirectional transformers for language un-
derstanding”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers).
Minneapolis, Minnesota: Association for Computational Linguistics.
4171–4186. url: https://www.aclweb.org/anthology/N19-1423.

https://www.aclweb.org/anthology/N19-1423

262 References

Dolan, B. and C. Brockett (2005). “Automatically constructing a corpus
of sentential paraphrases”. In: Third International Workshop on
Paraphrasing (IWP2005). Asia Federation of Natural Language
Processing. url: https ://www.microsoft .com/en-us/research/
publication/automatically-constructing-a-corpus-of-sentential-par
aphrases/.

Eisenschtat, A. and L. Wolf (2017). “Linking image and text with 2-way
nets”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 1855–1865.

Eksombatchai, C., P. Jindal, J. Z. Liu, Y. Liu, R. Sharma, C. Sugnet, M.
Ulrich, and J. Leskovec (2018). “Pixie: A system for recommending
3+ Billion items to 200+ Million users in real-time”. In: Proceedings
of the 2018 World Wide Web Conference on World Wide Web,
WWW 2018, Lyon, France. 1775–1784.

Elkahky, A. M., Y. Song, and X. He (2015). “A multi-view deep learn-
ing approach for cross domain user modeling in recommendation
systems”. In: Proceedings of the 24th International Conference on
World Wide Web. Republic and Canton of Geneva, CHE. 278–288.

Fan, Y., J. Guo, Y. Lan, J. Xu, C. Zhai, and X. Cheng (2018). “Mod-
eling diverse relevance patterns in ad-hoc retrieval”. In: The 41st
International ACM SIGIR Conference on Research & Development
in Information Retrieval. SIGIR ’18. Ann Arbor, MI, USA: ACM.
375–384.

Fan, W., Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin (2019).
“Graph neural networks for social recommendation”. In: The World
Wide Web Conference. WWW ’19. San Francisco, CA, USA: Associ-
ation for Computing Machinery. 417–426.

Gao, J., J.-Y. Nie, G. Wu, and G. Cao (2004). “Dependence language
model for information retrieval”. In: Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval. SIGIR ’04. Sheffield, UK: ACM. 170–177.

Gao, L., H. Yang, J. Wu, C. Zhou, W. Lu, and Y. Hu (2018). “Rec-
ommendation with multi-source heterogeneous information”. In:
Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI-18. International Joint Conferences
on Artificial Intelligence Organization. 3378–3384.

https://www.microsoft.com/en-us/research/publication/automatically-constructing-a-corpus-of-sentential-paraphrases/
https://www.microsoft.com/en-us/research/publication/automatically-constructing-a-corpus-of-sentential-paraphrases/
https://www.microsoft.com/en-us/research/publication/automatically-constructing-a-corpus-of-sentential-paraphrases/

References 263

Gao, C., X. Chen, F. Feng, K. Zhao, X. He, Y. Li, and D. Jin (2019a).
“Cross-domain recommendation without sharing user-relevant data”.
In: The World Wide Web Conference. WWW’19. New York, NY,
USA: Association for Computing Machinery. 491–502.

Gao, C., X. He, D. Gan, X. Chen, F. Feng, Y. Li, and T.-S. Chua
(2019b). “Neural multi-task recommendation from multi-behavior
data”. In: Proceedings of IEEE 35th International Conference on
Data Engineering (ICDE), Macao, China. 1554–1557.

Garcia-Molina, H., G. Koutrika, and A. Parameswaran (2011). “In-
formation seeking: Convergence of search, recommendations, and
advertising”. Communications of the ACM. 54(11): 121–130.

Gong, Y., H. Luo, and J. Zhang (2018). “Natural language inference over
interaction space”. In: 6th International Conference on Learning
Representations, ICLR 2018.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. MIT
Press. http://www.deeplearningbook.org.

Graves, A., S. Fernández, and J. Schmidhuber (2007). “Multi-dimensional
recurrent neural networks”. In: Artificial Neural Networks – ICANN
2007. Berlin, Heidelberg: Springer Berlin Heidelberg. 549–558.

Guo, J., G. Xu, H. Li, and X. Cheng (2008). “A unified and discrimina-
tive model for query refinement”. In: Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval. SIGIR ’08. Singapore, Singapore: ACM.
379–386.

Guo, J., Y. Fan, Q. Ai, and W. B. Croft (2016). “A deep relevance
matching model for ad-hoc retrieval”. In: Proceedings of the 25th
ACM International on Conference on Information and Knowledge
Management. CIKM ’16. Indianapolis, IN, USA: ACM. 55–64.

Guo, H., R. Tang, Y. Ye, Z. Li, and X. He (2017). “DeepFM: A fac-
torization-machine based neural network for CTR prediction”. In:
Proceedings of the 26th International Joint Conference on Artificial
Intelligence. IJCAI’17. Melbourne, Australia: AAAI Press. 1725–
1731.

Guo, Y., Z. Cheng, L. Nie, X. Xu, and M. S. Kankanhalli (2018). “Multi-
modal preference modeling for product search”. In: Proceedings of
the 26th ACM International Conference on Multimedia. 1865–1873.

http://www.deeplearningbook.org

264 References

Guo, J., Y. Fan, X. Ji, and X. Cheng (2019a). “MatchZoo: A learn-
ing, practicing, and developing system for neural text matching”.
In: Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR’19.
Paris, France: ACM. 1297–1300.

Guo, J., Y. Fan, L. Pang, L. Yang, Q. Ai, H. Zamani, C. Wu, W. B. Croft,
and X. Cheng (2019b). “A deep look into neural ranking models
for information retrieval”. Information Processing and Management:
102067. url: https://doi.org/10.1016/j.ipm.2019.102067.

Gysel, C. V., M. de Rijke, and E. Kanoulas (2018). “Neural vector
spaces for unsupervised information retrieval”. ACM Transactions
on Information Systems. 36(4): 38:1–38:25.

Haddad, D. and J. Ghosh (2019). “Learning more from less: Towards
strengthening weak supervision for ad-hoc retrieval”. In: Proceedings
of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR’19. Paris, France:
Association for Computing Machinery. 857–860.

Hardoon, D. R. and J. Shawe-Taylor (2003). “KCCA for different level
precision in content-based image retrieval”. Event Dates: 22–24
September 2004. url: https://eprints.soton.ac.uk/259596/.

Hardoon, D. R., S. R. Szedmak, and J. R. Shawe-Taylor (2004). “Canon-
ical correlation analysis: An overview with application to learning
methods”. Neural Computation. 16(12): 2639–2664.

He, R. and J. McAuley (2016a). “VBPR: Visual Bayesian personalized
ranking from implicit feedback”. In: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence. AAAI’16. Phoenix, AZ:
AAAI Press. 144–150. url: http://dl.acm.org/citation.cfm?id=301
5812.3015834.

He, R. and J. J. McAuley (2016b). “Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering”. In:
Proceedings of the 25th International Conference on World Wide
Web, WWW 2016, Montreal, Canada. 507–517.

He, X. and T.-S. Chua (2017). “Neural factorization machines for sparse
predictive analytics”. In: Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’17. Shinjuku, Tokyo, Japan: ACM. 355–364.

https://doi.org/10.1016/j.ipm.2019.102067
https://eprints.soton.ac.uk/259596/
http://dl.acm.org/citation.cfm?id=3015812.3015834
http://dl.acm.org/citation.cfm?id=3015812.3015834

References 265

He, X., M.-Y. Kan, P. Xie, and X. Chen (2014). “Comment-based
multi-view clustering of web 2.0 items”. In: Proceedings of the 23rd
International Conference on World Wide Web. WWW ’14. Seoul,
Korea: ACM. 771–782.

He, K., X. Zhang, S. Ren, and J. Sun (2016a). “Deep residual learning
for image recognition”. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 770–778.

He, X., H. Zhang, M.-Y. Kan, and T.-S. Chua (2016b). “Fast matrix
factorization for online recommendation with implicit feedback”.
In: Proceedings of the 39th International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR ’16.
Pisa, Italy: ACM. 549–558.

He, R., W.-C. Kang, and J. McAuley (2017a). “Translation-based rec-
ommendation”. In: Proceedings of the Eleventh ACM Conference on
Recommender Systems. RecSys ’17. Como, Italy: ACM. 161–169.

He, X., M. Gao, M.-Y. Kan, and D. Wang (2017b). “BiRank: Towards
ranking on bipartite graphs”. IEEE Transactions on Knowledge and
Data Engineering. 29(1): 57–71.

He, X., Z. He, J. Song, Z. Liu, Y. Jiang, and T. Chua (2018a). “NAIS:
Neural attentive item similarity model for recommendation”. IEEE
Transactions on Knowledge and Data Engineering. 30(12): 2354–
2366.

He, X., X. Du, X. Wang, F. Tian, J. Tang, and T.-S. Chua (2018b).
“Outer product-based neural collaborative filtering”. In: Proceedings
of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18. International Joint Conferences on Artificial
Intelligence Organization. 2227–2233.

He, X., L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua (2017c).
“Neural collaborative filtering”. In: Proceedings of the 26th Interna-
tional Conference on World Wide Web. WWW ’17. Perth, Australia.
173–182.

He, X., K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang (2020).
“LightGCN: Simplifying and powering graph convolution network for
recommendation”. In: The 43rd International ACM SIGIR Confer-
ence on Research & Development in Information Retrieval. SIGIR
’20. New York, NY, USA.

266 References

Hidasi, B., A. Karatzoglou, L. Baltrunas, and D. Tikk (2016). “Session-
based recommendations with recurrent neural networks”. In: 4th
International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico. url: http://arxiv.org/abs/1511.06939.

Hinton, G. E. and R. R. Salakhutdinov (2006). “Reducing the dimen-
sionality of data with neural networks”. Science. 313(5786): 504–507.
url: https://science.sciencemag.org/content/313/5786/504.

Hofmann, T. (1999). “Probabilistic latent semantic indexing”. In: Pro-
ceedings of the 22nd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR ’99.
Berkeley, CA, USA: ACM. 50–57.

Hornik, K. (1991). “Approximation capabilities of multilayer feedforward
networks”. Neural Networks. 4(2): 251–257. url: http://www.scien
cedirect.com/science/article/pii/089360809190009T.

Hsieh, C.-K., L. Yang, Y. Cui, T.-Y. Lin, S. Belongie, and D. Estrin
(2017). “Collaborative metric learning”. In: Proceedings of the 26th
International Conference on World Wide Web. WWW ’17. Perth,
Australia. 193–201.

Hu, B., Z. Lu, H. Li, and Q. Chen (2014). “Convolutional neural
network architectures for matching natural language sentences”.
In: Advances in Neural Information Processing Systems 27. Curran
Associates, Inc. 2042–2050. url: http :// papers . nips . cc / paper
/5550-convolutional-neural-network-architectures-for-matching-n
atural-language-sentences.pdf.

Huang, P.-S., X. He, J. Gao, L. Deng, A. Acero, and L. Heck (2013).
“Learning deep structured semantic models for web search using
clickthrough data”. In: Proceedings of the 22nd ACM International
Conference on Information & Knowledge Management. CIKM ’13.
San Francisco, CA, USA: ACM. 2333–2338.

Huang, J., S. Yao, C. Lyu, and D. Ji (2017). “Multi-granularity neural
sentence model for measuring short text similarity”. In: Database
Systems for Advanced Applications. Cham: Springer International
Publishing. 439–455.

Huang, Y., Q. Wu, W. Wang, and L. Wang (2018). “Image and sen-
tence matching via semantic concepts and order learning”. IEEE
Transactions on Pattern Analysis and Machine Intelligence: 1–1.

http://arxiv.org/abs/1511.06939
https://science.sciencemag.org/content/313/5786/504
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://papers.nips.cc/paper/5550-convolutional-neural-network-architectures-for-matching-natural-language-sentences.pdf
http://papers.nips.cc/paper/5550-convolutional-neural-network-architectures-for-matching-natural-language-sentences.pdf
http://papers.nips.cc/paper/5550-convolutional-neural-network-architectures-for-matching-natural-language-sentences.pdf

References 267

Hui, K., A. Yates, K. Berberich, and G. de Melo (2017). “PACRR:
A position-aware neural IR model for relevance matching”. In: Pro-
ceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. Copenhagen, Denmark: Association for Compu-
tational Linguistics. 1049–1058. url: http://aclweb.org/anthology/
D17-1110.

Hui, K., A. Yates, K. Berberich, and G. de Melo (2018). “Co-PACRR:
A context-aware neural IR model for ad-hoc retrieval”. In: Proceed-
ings of the Eleventh ACM International Conference on Web Search
and Data Mining. WSDM ’18. Marina Del Rey, CA, USA: ACM.
279–287.

Jiang, J.-Y., M. Zhang, C. Li, M. Bendersky, N. Golbandi, and M.
Najork (2019a). “Semantic text matching for long-form documents”.
In: The World Wide Web Conference. WWW ’19. San Francisco,
CA, USA: Association for Computing Machinery. 795–806.

Jiang, R., S. Gowal, Y. Qian, T. A. Mann, and D. J. Rezende (2019b).
“Beyond greedy ranking: Slate optimization via list-CVAE”. In: 7th
International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA. OpenReview.net. url: https://openreview.
net/forum?id=r1xX42R5Fm.

Joachims, T. (2002). “Optimizing search engines using clickthrough
data”. In: Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’02.
Edmonton, Alberta, Canada: ACM. 133–142.

Joachims, T., A. Swaminathan, and T. Schnabel (2017). “Unbiased
learning-to-rank with biased feedback”. In: Proceedings of the Tenth
ACM International Conference on Web Search and Data Mining.
WSDM ’17. Cambridge, UK. 781–789.

Kabbur, S., X. Ning, and G. Karypis (2013). “FISM: Factored item
similarity models for top-N recommender systems”. In: Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’13. Chicago, IL, USA: ACM.
659–667.

Kang, W. and J. J. McAuley (2018). “Self-attentive sequential recom-
mendation”. In: IEEE International Conference on Data Mining
(ICDM), Singapore. 197–206.

http://aclweb.org/anthology/D17-1110
http://aclweb.org/anthology/D17-1110
https://openreview.net/forum?id=r1xX42R5Fm
https://openreview.net/forum?id=r1xX42R5Fm

268 References

Karatzoglou, A., X. Amatriain, L. Baltrunas, and N. Oliver (2010).
“Multiverse recommendation: N-dimensional tensor factorization for
context-aware collaborative filtering”. In: Proceedings of the Fourth
ACM Conference on Recommender Systems. RecSys ’10. Barcelona,
Spain: ACM. 79–86.

Karpathy, A. and F. Li (2015). “Deep visual-semantic alignments for
generating image descriptions”. In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA.
IEEE Computer Society. 3128–3137.

Karpathy, A., A. Joulin, and L. Fei-Fei (2014). “Deep fragment embed-
dings for bidirectional image sentence mapping”. In: Proceedings of
the 27th International Conference on Neural Information Processing
Systems – Volume 2. NIPS’14. Montreal, Canada: MIT Press. 1889–
1897. url: http://dl.acm.org/citation.cfm?id=2969033.2969038.

Kenter, T., A. Borisov, C. Van Gysel, M. Dehghani, M. de Rijke, and
B. Mitra (2017). “Neural networks for information retrieval”. In:
Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’17.
Shinjuku, Tokyo, Japan: ACM. 1403–1406.

Kingma, D. P. and M. Welling (2014). “Auto-encoding variational
Bayes”. In: 2nd International Conference on Learning Representa-
tions, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Confer-
ence Track Proceedings. url: http://arxiv.org/abs/1312.6114.

Koren, Y. (2008). “Factorization meets the neighborhood: A multi-
faceted collaborative filtering model”. In: Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’08. Las Vegas, NV, USA: ACM. 426–434.

Koren, Y., R. Bell, and C. Volinsky (2009). “Matrix factorization tech-
niques for recommender systems”. Computer. 42(8): 30–37.

Kulis, B. (2013). “Metric learning: A survey”. Foundations and Trends
in Machine Learning. 5(4): 287–364.

Le, Q. and T. Mikolov (2014). “Distributed representations of sentences
and documents”. In: Proceedings of the 31st International Conference
on International Conference on Machine Learning – Volume 32.
ICML’14. Beijing, China: JMLR.org. II–1188–II–1196.

http://dl.acm.org/citation.cfm?id=2969033.2969038
http://arxiv.org/abs/1312.6114

References 269

Lei, C., D. Liu, W. Li, Z. Zha, and H. Li (2016). “Comparative deep
learning of hybrid representations for image recommendations”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA. 2545–2553.

Lei, W., X. He, Y. Miao, Q. Wu, R. Hong, M.-Y. Kan, and T.-S. Chua
(2020). “Estimation-action-reflection: Towards deep interaction be-
tween conversational and recommender systems”. In: Proceedings of
the 13th ACM International Conference on Web Search and Data
Mining. WSDM ’20. New York, NY, USA: ACM.

Li, H. (2011). “Learning to rank for information retrieval and natu-
ral language processing”. Synthesis Lectures on Human Language
Technologies. 4(1): 1–113.

Li, H. and J. Xu (2014). “Semantic matching in search”. Foundations
and Trends in Information Retrieval. 7(5): 343–469.

Li, H. and Z. Lu (2016). “Deep learning for information retrieval”. In:
Proceedings of the 39th International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’16.
Pisa, Italy: ACM. 1203–1206.

Li, L., W. Chu, J. Langford, and R. E. Schapire (2010). “A contextual-
bandit approach to personalized news article recommendation”. In:
Proceedings of the 19th International Conference on World Wide
Web. WWW ’10. Raleigh, NC, USA: Association for Computing
Machinery. 661–670.

Li, S., J. Kawale, and Y. Fu (2015). “Deep collaborative filtering via
marginalized denoising auto-encoder”. In: Proceedings of the 24th
ACM International on Conference on Information and Knowledge
Management. CIKM ’15. Melbourne, Australia: ACM. 811–820.

Li, J., P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma (2017). “Neural
attentive session-based recommendation”. In: Proceedings of the 2017
ACM on Conference on Information and Knowledge Management.
CIKM ’17. Singapore, Singapore: ACM. 1419–1428.

Li, C., C. Quan, L. Peng, Y. Qi, Y. Deng, and L. Wu (2019). “A capsule
network for recommendation and explaining what you like and
dislike”. In: Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval,
SIGIR 2019, Paris, France, July 21–25, 2019. 275–284.

270 References

Lian, J., X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun (2018).
“xDeepFM: Combining explicit and implicit feature interactions for
recommender systems”. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.
KDD ’18. London, UK: ACM. 1754–1763.

Liang, D., L. Charlin, J. McInerney, and D. M. Blei (2016). “Modeling
user exposure in recommendation”. In: Proceedings of the 25th In-
ternational Conference on World Wide Web, WWW 2016, Montreal,
Canada, April 11–15, 2016. 951–961.

Liang, D., R. G. Krishnan, M. D. Hoffman, and T. Jebara (2018).
“Variational autoencoders for collaborative filtering”. In: Proceedings
of the 2018 World Wide Web Conference. WWW ’18. Lyon, France:
International World Wide Web Conferences Steering Committee.
689–698.

Liu, B., D. Niu, H. Wei, J. Lin, Y. He, K. Lai, and Y. Xu (2019a).
“Matching article pairs with graphical decomposition and convolu-
tions”. In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. Florence, Italy: Association for Com-
putational Linguistics. 6284–6294. url: https://www.aclweb.org/
anthology/P19-1632.

Liu, F., Z. Cheng, C. Sun, Y. Wang, L. Nie, and M. S. Kankanhalli
(2019b). “User diverse preference modeling by multimodal attentive
metric learning”. In: Proceedings of the 27th ACM International
Conference on Multimedia. 1526–1534.

Liu, T.-Y. (2009). “Learning to rank for information retrieval”. Foun-
dations and Trends in Information Retrieval. 3(3): 225–331.

Liu, Y., Y. Guo, E. M. Bakker, and M. S. Lew (2017). “Learning a
recurrent residual fusion network for multimodal matching”. In:
2017 IEEE International Conference on Computer Vision (ICCV).
4127–4136.

Ma, L., Z. Lu, L. Shang, and H. Li (2015). “Multimodal convolutional
neural networks for matching image and sentence”. In: Proceedings
of the 2015 IEEE International Conference on Computer Vision
(ICCV). ICCV ’15. Washington, DC, USA: IEEE Computer Society.
2623–2631.

https://www.aclweb.org/anthology/P19-1632
https://www.aclweb.org/anthology/P19-1632

References 271

Masci, J., U. Meier, D. Cireşan, and J. Schmidhuber (2011). “Stacked
convolutional auto-encoders for hierarchical feature extraction”. In:
Proceedings of the 21th International Conference on Artificial Neural
Networks – Volume Part I. ICANN’11. Espoo, Finland: Springer-
Verlag. 52–59. url: http://dl.acm.org/citation.cfm?id=2029556.202
9563.

Mikolov, T., I. Sutskever, K. Chen, G. Corrado, and J. Dean (2013).
“Distributed representations of words and phrases and their compo-
sitionality”. In: Proceedings of the 26th International Conference on
Neural Information Processing Systems – Volume 2. NIPS’13. Lake
Tahoe, Nevada: Curran Associates Inc. 3111–3119. url: http://
dl.acm.org/citation.cfm?id=2999792.2999959.

Mitra, B. and N. Craswell (2018). “An introduction to neural information
retrieval”. Foundations and Trends in Information Retrieval. 13(1):
1–126.

Mitra, B. and N. Craswell (2019). “Duet at Trec 2019 deep learn-
ing track”. In: Proceedings of the Twenty-Eighth Text REtrieval
Conference, TREC 2019, Gaithersburg, MD, USA. url: https://
trec.nist.gov/pubs/trec28/papers/Microsoft.DL.pdf.

Mitra, B., F. Diaz, and N. Craswell (2017). “Learning to match using
local and distributed representations of text for web search”. In:
Proceedings of the 26th International Conference on World Wide
Web. WWW ’17. Perth, Australia. 1291–1299.

Nallapati, R. (2004). “Discriminative models for information retrieval”.
In: Proceedings of the 27th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval.
SIGIR ’04. Sheffield, UK: ACM. 64–71.

Naumov, M., D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman, J.
Park, X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L.
Xiong, and M. Smelyanskiy (2019). “Deep learning recommendation
model for personalization and recommendation systems”. CoRR.
abs/1906.00091. arXiv: 1906.00091.

http://dl.acm.org/citation.cfm?id=2029556.2029563
http://dl.acm.org/citation.cfm?id=2029556.2029563
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://trec.nist.gov/pubs/trec28/papers/Microsoft.DL.pdf
https://trec.nist.gov/pubs/trec28/papers/Microsoft.DL.pdf
http://arxiv.org/abs/1906.00091

272 References

Nguyen, T., M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder,
and L. Deng (2016). “MS MARCO: A human generated MAchine
Reading COmprehension dataset”. In: Proceedings of the Work-
shop on Cognitive Computation: Integrating Neural and Symbolic
Approaches 2016 Co-Located with the 30th Annual Conference on
Neural Information Processing Systems (NIPS 2016), Barcelona,
Spain.

Nie, Y., A. Sordoni, and J.-Y. Nie (2018). “Multi-level abstraction
convolutional model with weak supervision for information retrieval”.
In: The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. SIGIR ’18. Ann Arbor, MI,
USA: ACM. 985–988.

Nogueira, R. and K. Cho (2019). “Passage re-ranking with BERT”.
CoRR. abs/1901.04085. arXiv: 1901.04085.

Nogueira, R., W. Yang, K. Cho, and J. Lin (2019). “Multi-stage docu-
ment ranking with BERT”. CoRR. abs/1910.14424. arXiv: 1910.144
24.

Onal, K. D., Y. Zhang, I. S. Altingovde, M. M. Rahman, P. Karagoz,
A. Braylan, B. Dang, H.-L. Chang, H. Kim, Q. Mcnamara, A.
Angert, E. Banner, V. Khetan, T. Mcdonnell, A. T. Nguyen, D. Xu,
B. C. Wallace, M. Rijke, and M. Lease (2018). “Neural information
retrieval: At the end of the early years”. Information Retrieval
Journal. 21(2–3): 111–182. issn: 1573-7659.

Palangi, H., L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song,
and R. Ward (2016). “Deep sentence embedding using long short-
term memory networks: Analysis and application to information
retrieval”. IEEE/ACM Transactions on Audio, Speech, and Language
Processing. 24(4): 694–707.

Pan, F., S. Li, X. Ao, P. Tang, and Q. He (2019). “Warm up cold-start
advertisements: Improving CTR predictions via learning to learn ID
embeddings”. In: Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval,
SIGIR 2019, Paris, France. 695–704.

Pang, L., Y. Lan, J. Guo, J. Xu, and X. Cheng (2016a). “A study of
MatchPyramid models on ad-hoc retrieval”. CoRR. abs/1606.04648.
arXiv: 1606.04648.

http://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1910.14424
http://arxiv.org/abs/1910.14424
http://arxiv.org/abs/1606.04648

References 273

Pang, L., Y. Lan, J. Guo, J. Xu, S. Wan, and X. Cheng (2016b). “Text
matching as image recognition”. In: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence. AAAI’16. Phoenix, AZ:
AAAI Press. 2793–2799. url: http://dl.acm.org/citation.cfm?id=3
016100.3016292.

Pang, L., Y. Lan, J. Guo, J. Xu, J. Xu, and X. Cheng (2017a). “Deep-
Rank: A new deep architecture for relevance ranking in informa-
tion retrieval”. In: Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management. CIKM ’17. Singapore,
Singapore: ACM. 257–266.

Pang, L., Y. Lan, J. Xu, J. Guo, S.-X. Wan, and X. Cheng (2017b).
“A survey on deep text matching”. Chinese Journal of Computers.
40(4): 985–1003. url: http://cjc.ict.ac.cn/online/onlinepaper/
pl-201745181647.pdf.

Pang, L., J. Xu, Q. Ai, Y. Lan, X. Cheng, and J.-R. Wen (2020). “Se-
tRank: Learning a permutation-invariant ranking model for informa-
tion retrieval”. In: The 43rd International ACM SIGIR Conference
on Research & Development in Information Retrieval. SIGIR ’20.
Association for Computing Machinery.

Parikh, A., O. Täckström, D. Das, and J. Uszkoreit (2016). “A decompos-
able attention model for natural language inference”. In: Proceedings
of the 2016 Conference on Empirical Methods in Natural Language
Processing. Austin, TX: Association for Computational Linguistics.
2249–2255. url: http://www.aclweb.org/anthology/D16-1244.

Pasricha, R. and J. McAuley (2018). “Translation-based factorization
machines for sequential recommendation”. In: Proceedings of the 12th
ACM Conference on Recommender Systems. RecSys ’18. Vancouver,
British Columbia, Canada: Association for Computing Machinery.
63–71.

Pasumarthi, R. K., S. Bruch, X. Wang, C. Li, M. Bendersky, M. Najork,
J. Pfeifer, N. Golbandi, R. Anil, and S. Wolf (2019). “TF-ranking:
Scalable TensorFlow library for learning-to-rank”. In: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. KDD ’19. Anchorage, AK, USA: ACM.
2970–2978.

http://dl.acm.org/citation.cfm?id=3016100.3016292
http://dl.acm.org/citation.cfm?id=3016100.3016292
http://cjc.ict.ac.cn/online/onlinepaper/pl-201745181647.pdf
http://cjc.ict.ac.cn/online/onlinepaper/pl-201745181647.pdf
http://www.aclweb.org/anthology/D16-1244

274 References

Pearl, J. (2019). “The seven tools of causal inference, with reflections
on machine learning”. Communications of the ACM. 62(3): 54–60.

Pei, C., Y. Zhang, Y. Zhang, F. Sun, X. Lin, H. Sun, J. Wu, P. Jiang,
J. Ge, W. Ou, and D. Pei (2019). “Personalized re-ranking for rec-
ommendation”. In: Proceedings of the 13th ACM Conference on
Recommender Systems. RecSys ’19. Copenhagen, Denmark: Associ-
ation for Computing Machinery. 3–11.

Pennington, J., R. Socher, and C. Manning (2014). “Glove: Global vec-
tors for word representation”. In: Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics. 1532–1543.
url: https://www.aclweb.org/anthology/D14-1162.

Peters, M., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L.
Zettlemoyer (2018). “Deep contextualized word representations”. In:
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). New Orleans, LA: Association
for Computational Linguistics. 2227–2237. url: https://www.aclwe
b.org/anthology/N18-1202.

Qiao, Y., C. Xiong, Z. Liu, and Z. Liu (2019). “Understanding the
behaviors of BERT in ranking”. CoRR. abs/1904.07531. arXiv:
1904.07531.

Qiu, R., J. Li, Z. Huang, and H. Yin (2019). “Rethinking the item order
in session-based recommendation with graph neural networks”. In:
Proceedings of the 28th ACM International Conference on Infor-
mation and Knowledge Management, CIKM 2019, Beijing, China,
November 3–7, 2019. 579–588.

Qiu, X. and X. Huang (2015). “Convolutional neural tensor network
architecture for community-based question answering”. In: Proceed-
ings of the 24th International Conference on Artificial Intelligence.
IJCAI’15. Buenos Aires, Argentina: AAAI Press. 1305–1311. url:
http://dl.acm.org/citation.cfm?id=2832415.2832431.

Radford, A., K. Narasimhan, T. Salimans, and I. Sutskever (2018). “Im-
proving language understanding by generative pre-training”. Tech-
nical report, OpenAI. url: https://cdn.openai.com/research-covers/
language-unsupervised/language_understanding_paper.pdf.

https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/N18-1202
http://arxiv.org/abs/1904.07531
http://dl.acm.org/citation.cfm?id=2832415.2832431
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

References 275

Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever
(2019). “Language models are unsupervised multitask learners”.
Technical report, OpenAI. url: https://cdn.openai.com/better-lang
uage-models/language_models_are_unsupervised_multitask_le
arners.pdf.

Ranzato, M. A., Y.-L. Boureau, and Y. LeCun (2007). “Sparse feature
learning for deep belief networks”. In: Proceedings of the 20th In-
ternational Conference on Neural Information Processing Systems.
NIPS’07. Vancouver, British Columbia, Canada: Curran Associates
Inc. 1185–1192. url: http://dl.acm.org/citation.cfm?id=2981562.2
981711.

Rasiwasia, N., J. Costa Pereira, E. Coviello, G. Doyle, G. R. Lanckriet,
R. Levy, and N. Vasconcelos (2010). “A new approach to cross-modal
multimedia retrieval”. In: Proceedings of the 18th ACM International
Conference on Multimedia. MM ’10. Firenze, Italy: ACM. 251–260.

Reimers, N. and I. Gurevych (2019). “Sentence-BERT: Sentence embed-
dings using siamese BERT-networks”. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language
Processing, Hong Kong, China. Association for Computational Lin-
guistics. 3982–3992. url: http://arxiv.org/abs/1908.10084.

Rendle, S. (2010). “Factorization machines”. In: Proceedings of the
2010 IEEE International Conference on Data Mining. ICDM ’10.
Washington, DC, USA: IEEE Computer Society. 995–1000.

Rendle, S., C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme
(2009). “BPR: Bayesian personalized ranking from implicit feedback”.
In: Proceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence. UAI ’09. Montreal, Quebec, Canada: AUAI
Press. 452–461. url: http://dl.acm.org/citation.cfm?id=1795114.1
795167.

Rendle, S., C. Freudenthaler, and L. Schmidt-Thieme (2010). “Factoriz-
ing personalized Markov chains for next-basket recommendation”.
In: Proceedings of the 19th International Conference on World Wide
Web. WWW ’10. Raleigh, NC, USA: ACM. 811–820.

Ricci, F., L. Rokach, and B. Shapira (2015). Recommender Systems
Handbook. 2nd Edn. Springer Publishing Company, Incorporated.

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://dl.acm.org/citation.cfm?id=2981562.2981711
http://dl.acm.org/citation.cfm?id=2981562.2981711
http://arxiv.org/abs/1908.10084
http://dl.acm.org/citation.cfm?id=1795114.1795167
http://dl.acm.org/citation.cfm?id=1795114.1795167

276 References

Richardson, M., R. Agrawal, and P. M. Domingos (2003). “Trust man-
agement for the semantic web”. In: The Semantic Web - ISWC 2003,
Second International Semantic Web Conference, Sanibel Island, FL,
USA. 351–368.

Robertson, S., H. Zaragoza, and M. Taylor (2004). “Simple BM25 exten-
sion to multiple weighted fields”. In: Proceedings of the Thirteenth
ACM International Conference on Information and Knowledge Man-
agement. CIKM ’04. Washington, D.C., USA: ACM. 42–49.

Rosipal, R. and N. Krämer (2006). “Overview and recent advances
in partial least squares”. In: Proceedings of the 2005 International
Conference on Subspace, Latent Structure and Feature Selection.
SLSFS’05. Bohinj, Slovenia: Springer-Verlag. 34–51.

Salakhutdinov, R. and A. Mnih (2007). “Probabilistic matrix factor-
ization”. In: Proceedings of the 20th International Conference on
Neural Information Processing Systems. NIPS’07. Vancouver, British
Columbia, Canada: Curran Associates Inc. 1257–1264. url: http://
dl.acm.org/citation.cfm?id=2981562.2981720.

Sarwar, B., G. Karypis, J. Konstan, and J. Riedl (2001). “Item-based
collaborative filtering recommendation algorithms”. In: Proceedings
of the 10th International Conference on World Wide Web. WWW
’01. Hong Kong, Hong Kong: ACM. 285–295.

Schedl, M., H. Zamani, C.-W. Chen, Y. Deldjoo, and M. Elahi (2018).
“Current challenges and visions in music recommender systems re-
search”. International Journal of Multimedia Information Retrieval.
7(2): 95–116.

Sedhain, S., A. K. Menon, S. Sanner, and L. Xie (2015). “AutoRec:
Autoencoders meet collaborative filtering”. In: Proceedings of the
24th International Conference on World Wide Web. WWW ’15
Companion. Florence, Italy: ACM. 111–112.

Shan, Y., T. R. Hoens, J. Jiao, H. Wang, D. Yu, and J. Mao (2016).
“Deep crossing: Web-scale modeling without manually crafted com-
binatorial features”. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
KDD ’16. San Francisco, CA, USA: ACM. 255–262.

http://dl.acm.org/citation.cfm?id=2981562.2981720
http://dl.acm.org/citation.cfm?id=2981562.2981720

References 277

Shen, Y., X. He, J. Gao, L. Deng, and G. Mesnil (2014). “A latent
semantic model with convolutional-pooling structure for information
retrieval”. In: Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management. CIKM
’14. Shanghai, China: ACM. 101–110.

Shi, Y., M. Larson, and A. Hanjalic (2014). “Collaborative filtering
beyond the user-item matrix: A survey of the state of the art and
future challenges”. ACM Computing Surveys. 47(1): 3:1–3:45.

Socher, R., D. Chen, C. D. Manning, and A. Y. Ng (2013). “Reason-
ing with neural tensor networks for knowledge base completion”.
In: Proceedings of the 26th International Conference on Neural In-
formation Processing Systems – Volume 1. NIPS’13. Lake Tahoe,
Nevada: Curran Associates Inc. 926–934. url: http://dl.acm.org/
citation.cfm?id=2999611.2999715.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov (2014). “Dropout: A simple way to prevent neural networks
from overfitting”. Journal of Machine Learning Research. 15(1):
1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.html.

Sun, F., J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang (2019).
“BERT4Rec: Sequential recommendation with bidirectional encoder
representations from transformer”. In: Proceedings of the 28th ACM
International Conference on Information and Knowledge Manage-
ment. CIKM ’19. Beijing, China: ACM. 1441–1450.

Surdeanu, M., M. Ciaramita, and H. Zaragoza (2011). “Learning to
rank answers to non-factoid questions from web collections”. Com-
putational Linguistics. 37(2): 351–383.

Tan, C., F. Wei, W. Wang, W. Lv, and M. Zhou (2018). “Multiway
attention networks for modeling sentence pairs”. In: Proceedings of
the 27th International Joint Conference on Artificial Intelligence.
IJCAI’18. Stockholm, Sweden: AAAI Press. 4411–4417.

Tang, J., X. Du, X. He, F. Yuan, Q. Tian, and T. Chua (2020). “Ad-
versarial training towards robust multimedia recommender system”.
IEEE Transactions on Knowledge and Data Engineering. 32(5): 855–
867.

http://dl.acm.org/citation.cfm?id=2999611.2999715
http://dl.acm.org/citation.cfm?id=2999611.2999715
http://jmlr.org/papers/v15/srivastava14a.html

278 References

Tang, J. and K. Wang (2018). “Personalized top-N sequential recom-
mendation via convolutional sequence embedding”. In: Proceedings
of the Eleventh ACM International Conference on Web Search and
Data Mining. WSDM ’18. Marina Del Rey, CA, USA: Association
for Computing Machinery. 565–573.

Tao, Z., X. Wang, X. He, X. Huang, and T.-S. Chua (2019). “HoAFM:
A High-Order Attentive Factorization Machine for ctr Prediction”.
Information Processing & Management: 102076. url: http://
www.sciencedirect.com/science/article/pii/S0306457319302389.

Tay, Y., L. Anh Tuan, and S. C. Hui (2018a). “Latent relational metric
learning via memory-based attention for collaborative ranking”. In:
Proceedings of the 2018 World Wide Web Conference. WWW ’18.
Lyon, France. 729–739.

Tay, Y., A. T. Luu, and S. C. Hui (2018b). “Co-stack residual affinity
networks with multi-level attention refinement for matching text
sequences”. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Brussels, Belgium: As-
sociation for Computational Linguistics. 4492–4502. url: https://
www.aclweb.org/anthology/D18-1479.

Tay, Y., A. T. Luu, and S. C. Hui (2018c). “Hermitian co-attention net-
works for text matching in asymmetrical domains”. In: Proceedings
of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18. International Joint Conferences on Artificial
Intelligence Organization. 4425–4431.

Tay, Y., L. A. Tuan, and S. C. Hui (2018d). “Multi-cast attention
networks”. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. KDD ’18. New
York, NY, USA: Association for Computing Machinery. 2299–2308.

Van Gysel, C., M. de Rijke, and E. Kanoulas (2016a). “Learning la-
tent vector spaces for product search”. In: Proceedings of the 25th
ACM International on Conference on Information and Knowledge
Management. CIKM ’16. Indianapolis, IN, USA: ACM. 165–174.

Van Gysel, C., M. de Rijke, and E. Kanoulas (2017). “Structural regu-
larities in text-based entity vector spaces”. In: Proceedings of the
ACM SIGIR International Conference on Theory of Information
Retrieval. ICTIR ’17. Amsterdam, The Netherlands: ACM. 3–10.

http://www.sciencedirect.com/science/article/pii/S0306457319302389
http://www.sciencedirect.com/science/article/pii/S0306457319302389
https://www.aclweb.org/anthology/D18-1479
https://www.aclweb.org/anthology/D18-1479

References 279

Van Gysel, C., M. de Rijke, and E. Kanoulas (2018). “Mix ’N match: In-
tegrating text matching and product substitutability within product
search”. In: Proceedings of the 27th ACM International Conference
on Information and Knowledge Management. CIKM ’18. Torino,
Italy: ACM. 1373–1382.

Van Gysel, C., M. de Rijke, and M. Worring (2016b). “Unsupervised,
efficient and semantic expertise retrieval”. In: Proceedings of the 25th
International Conference on World Wide Web. WWW ’16. Montral,
Qubec, Canada. 1069–1079.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin (2017). “Attention is all you
need”. In: Advances in Neural Information Processing Systems 30.
Curran Associates, Inc. 5998–6008. url: http://papers.nips.cc/
paper/7181-attention-is-all-you-need.pdf.

Vincent, P., H. Larochelle, Y. Bengio, and P.-A. Manzagol (2008).
“Extracting and composing robust features with denoising autoen-
coders”. In: Proceedings of the 25th International Conference on
Machine Learning. ICML ’08. Helsinki, Finland: ACM. 1096–1103.

Wan, S., Y. Lan, J. Guo, J. Xu, L. Pang, and X. Cheng (2016a). “A deep
architecture for semantic matching with multiple positional sentence
representations”. In: Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence. AAAI’16. Phoenix, AZ: AAAI Press. 2835–
2841. url: http://dl.acm.org/citation.cfm?id=3016100.3016298.

Wan, S., Y. Lan, J. Xu, J. Guo, L. Pang, and X. Cheng (2016b).
“Match-SRNN: Modeling the recursive matching structure with spa-
tial RNN”. In: Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence. IJCAI’16. New York, NY, USA:
AAAI Press. 2922–2928. url: http://dl.acm.org/citation.cfm?id=3
060832.3061030.

Wang, B., Y. Yang, X. Xu, A. Hanjalic, and H. T. Shen (2017a).
“Adversarial cross-modal retrieval”. In: Proceedings of the 25th ACM
International Conference on Multimedia. MM ’17. Mountain View,
CA, USA: ACM. 154–162.

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://dl.acm.org/citation.cfm?id=3016100.3016298
http://dl.acm.org/citation.cfm?id=3060832.3061030
http://dl.acm.org/citation.cfm?id=3060832.3061030

280 References

Wang, H., F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie, and M. Guo
(2018a). “RippleNet: Propagating user preferences on the knowledge
graph for recommender systems”. In: Proceedings of the 27th ACM
International Conference on Information and Knowledge Manage-
ment. New York, NY, USA: Association for Computing Machinery.
417–426.

Wang, J., A. P. de Vries, and M. J. T. Reinders (2006). “Unifying user-
based and item-based collaborative filtering approaches by similarity
fusion”. In: Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’06. Seattle, Washington, DC, USA: ACM. 501–
508.

Wang, L., Y. Li, J. Huang, and S. Lazebnik (2018b). “Learning two-
branch neural networks for image-text matching tasks”. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence: 1–1.

Wang, L., Y. Li, and S. Lazebnik (2016). “Learning deep structure-
preserving image-text embeddings”. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Vol. 00. 5005–
5013. url: doi.ieeecomputersociety.org/10.1109/CVPR.2016.541.

Wang, X., X. He, Y. Cao, M. Liu, and T. Chua (2019a). “KGAT: Knowl-
edge graph attention network for recommendation”. In: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August
4–8, 2019. 950–958.

Wang, X., X. He, F. Feng, L. Nie, and T. Chua (2018c). “TEM: Tree-
enhanced embedding model for explainable recommendation”. In:
Proceedings of the 2018 World Wide Web Conference on World Wide
Web. 1543–1552.

Wang, X., X. He, L. Nie, and T.-S. Chua (2017b). “Item silk road:
Recommending items from information domains to social users”.
In: Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR ’17.
Shinjuku, Tokyo, Japan: ACM. 185–194.

doi.ieeecomputersociety.org/10.1109/CVPR.2016.541

References 281

Wang, X., X. He, M. Wang, F. Feng, and T.-S. Chua (2019b). “Neural
graph collaborative filtering”. In: Proceedings of the 42nd Inter-
national ACM SIGIR Conference on Research and Development
in Information Retrieval. SIGIR’19. Paris, France: Association for
Computing Machinery. 165–174.

Wang, X., D. Wang, C. Xu, X. He, Y. Cao, and T. Chua (2019c).
“Explainable reasoning over knowledge graphs for recommendation”.
In: The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019. 5329–5336. url: https://aaai .org/ojs/index .php/
AAAI/article/view/4470.

Wang, X., Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y.-F. Wang, W. Y.
Wang, and L. Zhang (2019d). “Reinforced cross-modal matching and
self-supervised imitation learning for vision-language navigation”. In:
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Wang, Z., W. Hamza, and R. Florian (2017c). “Bilateral multi-perspective
matching for natural language sentences”. In: Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelli-
gence, IJCAI-17. 4144–4150.

Wang, Z., G. Xu, H. Li, and M. Zhang (2011). “A fast and accurate
method for approximate string search”. In: Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies – Volume 1. HLT ’11. Portland,
OR, USA: Association for Computational Linguistics. 52–61. url:
http://dl.acm.org/citation.cfm?id=2002472.2002480.

Wei, X. and W. B. Croft (2006). “LDA-based document models for ad-
hoc retrieval”. In: Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’06. Seattle, Washington, DC, USA: ACM. 178–
185.

Wei, Y., X. Wang, L. Nie, X. He, R. Hong, and T.-S. Chua (2019).
“MMGCN: Multi-modal graph convolution network for personalized
recommendation of micro-video”. In: Proceedings of the 27th ACM
International Conference on Multimedia. MM ’19. Nice, France:
ACM. 1437–1445.

https://aaai.org/ojs/index.php/AAAI/article/view/4470
https://aaai.org/ojs/index.php/AAAI/article/view/4470
http://dl.acm.org/citation.cfm?id=2002472.2002480

282 References

Wu, B., X. He, Z. Sun, L. Chen, and Y. Ye (2019a). “ATM: An at-
tentive translation model for next-item recommendation”. IEEE
Transactions on Industrial Informatics: 1–1.

Wu, C.-Y., A. Ahmed, A. Beutel, A. J. Smola, and H. Jing (2017).
“Recurrent recommender networks”. In: Proceedings of the Tenth
ACM International Conference on Web Search and Data Mining.
New York, NY, USA. 495–503.

Wu, L., P. Sun, Y. Fu, R. Hong, X. Wang, and M. Wang (2019b). “A
neural influence diffusion model for social recommendation”. In:
Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2019,
Paris, France, July 21–25, 2019. 235–244.

Wu, Q., H. Wang, Q. Gu, and H. Wang (2016a). “Contextual bandits
in a collaborative environment”. In: Proceedings of the 39th Inter-
national ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR ’16. Pisa, Italy. 529–538.

Wu, S., Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan (2019c). “Session-
based recommendation with graph neural networks”. In: The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, Hon-
olulu, HI, USA, 2019. 346–353.

Wu, W., H. Li, and J. Xu (2013a). “Learning query and document
similarities from click-through bipartite graph with metadata”. In:
Proceedings of the Sixth ACM International Conference on Web
Search and Data Mining. WSDM ’13. Rome, Italy: ACM. 687–696.

Wu, W., Z. Lu, and H. Li (2013b). “Learning bilinear model for matching
queries and documents”. Journal of Machine Learning Research.
14(1): 2519–2548. url: http://dl.acm.org/citation.cfm?id=2567709.
2567742.

Wu, Y., C. DuBois, A. X. Zheng, and M. Ester (2016b). “Collabora-
tive denoising auto-encoders for top-N recommender systems”. In:
Proceedings of the Ninth ACM International Conference on Web
Search and Data Mining. WSDM ’16. San Francisco, CA, USA:
ACM. 153–162.

http://dl.acm.org/citation.cfm?id=2567709.2567742
http://dl.acm.org/citation.cfm?id=2567709.2567742

References 283

Xiao, J., H. Ye, X. He, H. Zhang, F. Wu, and T.-S. Chua (2017).
“Attentional factorization machines: Learning the weight of feature
interactions via attention networks”. In: Proceedings of the 26th
International Joint Conference on Artificial Intelligence. IJCAI’17.
Melbourne, Australia: AAAI Press. 3119–3125. url: http://dl.acm.
org/citation.cfm?id=3172077.3172324.

Xin, X., B. Chen, X. He, D. Wang, Y. Ding, and J. Jose (2019a). “CFM:
Convolutional factorization machines for context-aware recommen-
dation”. In: Proceedings of the 26th International Joint Conference
on Artificial Intelligence. IJCAI’19. International Joint Conferences
on Artificial Intelligence Organization. 3119–3125. url: https://
doi.org/10.24963/ijcai.2019/545.

Xin, X., X. He, Y. Zhang, Y. Zhang, and J. M. Jose (2019b). “Rela-
tional collaborative filtering: Modeling multiple item relations for
recommendation”. In: Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2019, Paris, France, July 21–25, 2019. 125–134.

Xiong, C., Z. Dai, J. Callan, Z. Liu, and R. Power (2017). “End-to-
end neural ad-hoc ranking with kernel pooling”. In: Proceedings of
the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR ’17. Shinjuku, Tokyo,
Japan: ACM. 55–64.

Xue, F., X. He, X. Wang, J. Xu, K. Liu, and R. Hong (2019). “Deep
item-based collaborative filtering for top-N recommendation”. ACM
Transactions on Information Systems. 37(3).

Xue, H.-J., X. Dai, J. Zhang, S. Huang, and J. Chen (2017). “Deep ma-
trix factorization models for recommender systems”. In: Proceedings
of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17. 3203–3209.

Yan, F. and K. Mikolajczyk (2015). “Deep correlation for matching
images and text”. In: 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 3441–3450.

http://dl.acm.org/citation.cfm?id=3172077.3172324
http://dl.acm.org/citation.cfm?id=3172077.3172324
https://doi.org/10.24963/ijcai.2019/545
https://doi.org/10.24963/ijcai.2019/545

284 References

Yang, L., Q. Ai, J. Guo, and W. B. Croft (2016). “aNMM: Ranking
short answer texts with attention-based neural matching model”.
In: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management. CIKM ’16. Indianapolis,
IN, USA: ACM. 287–296.

Yang, P., H. Fang, and J. Lin (2018). “Anserini: Reproducible ranking
baselines using lucene”. J. Data and Information Quality. 10(4):
16:1–16:20.

Yang, R., J. Zhang, X. Gao, F. Ji, and H. Chen (2019a). “Simple and ef-
fective text matching with richer alignment features”. In: Proceedings
of the 57th Annual Meeting of the Association for Computational Lin-
guistics. Florence, Italy: Association for Computational Linguistics.
4699–4709. url: https://www.aclweb.org/anthology/P19-1465.

Yang, W., H. Zhang, and J. Lin (2019b). “Simple applications of BERT
for ad hoc document retrieval”. CoRR. abs/1903.10972. arXiv: 1903
.10972.

Yang, Y., S. W.-T. Yih, and C. Meek (2015). “WikiQA: A challenge
dataset for open-domain question answering”. In: Proceedings of
the 2015 Conference on Empirical Methods in Natural Language
Processing. ACL – Association for Computational Linguistics. url:
https://www.microsoft.com/en-us/research/publication/wikiqa-a
-challenge-dataset-for-open-domain-question-answering/.

Yang, Z., Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le (2019c). “XLNet: Generalized autoregressive pretraining
for language understanding”. In: Advances in Neural Information
Processing Systems 32. Curran Associates, Inc. 5753–5763. url:
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressiv
e-pretraining-for-language-understanding.pdf.

Yi, X. and J. Allan (2009). “A comparative study of utilizing topic mod-
els for information retrieval”. In: Proceedings of the 31th European
Conference on IR Research on Advances in Information Retrieval.
ECIR ’09. Toulouse, France: Springer-Verlag. 29–41.

https://www.aclweb.org/anthology/P19-1465
http://arxiv.org/abs/1903.10972
http://arxiv.org/abs/1903.10972
https://www.microsoft.com/en-us/research/publication/wikiqa-a-challenge-dataset-for-open-domain-question-answering/
https://www.microsoft.com/en-us/research/publication/wikiqa-a-challenge-dataset-for-open-domain-question-answering/
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf

References 285

Yin, W. and H. Schütze (2015). “MultiGranCNN: An architecture for
general matching of text chunks on multiple levels of granularity”.
In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1: Long Papers).
Beijing, China: Association for Computational Linguistics. 63–73.
url: https://www.aclweb.org/anthology/P15-1007.

Yin, W., H. Schütze, B. Xiang, and B. Zhou (2016). “ABCNN: Attention-
based convolutional neural network for modeling sentence pairs”.
Transactions of the Association for Computational Linguistics. 4:
259–272.

Ying, R., R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J.
Leskovec (2018). “Graph convolutional neural networks for web-scale
recommender systems”. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.
KDD ’18. London, UK: ACM. 974–983.

Yuan, F., X. He, H. Jiang, G. Guo, J. Xiong, Z. Xu, and Y. Xiong (2020).
“Future data helps training: Modeling future contexts for session-
based recommendation”. In: Proceedings of the Web Conference 2020.
WWW ’20. Taipei, Taiwan: Association for Computing Machinery.
303–313.

Yuan, F., A. Karatzoglou, I. Arapakis, J. M. Jose, and X. He (2019).
“A simple convolutional generative network for next item recommen-
dation”. In: Proceedings of the Twelfth ACM International Confer-
ence on Web Search and Data Mining. WSDM ’19. Melbourne VIC,
Australia: Association for Computing Machinery. 582–590.

Zamani, H. and W. B. Croft (2016). “Estimating embedding vectors for
queries”. In: Proceedings of the 2016 ACM International Conference
on the Theory of Information Retrieval. ICTIR ’16. Newark, DE,
USA: Association for Computing Machinery. 123–132.

Zamani, H. and W. B. Croft (2017). “Relevance-based word embedding”.
In: Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR ’17.
Shinjuku, Tokyo, Japan: Association for Computing Machinery. 505–
514.

https://www.aclweb.org/anthology/P15-1007

286 References

Zamani, H. and W. B. Croft (2018a). “Joint modeling and optimization
of search and recommendation”. In: Proceedings of the First Biennial
Conference on Design of Experimental Search & Information Re-
trieval Systems. DESIRES ’18. Bertinoro, Italy: CEUR-WS. 36–41.
url: http://ceur-ws.org/Vol-2167/paper2.pdf.

Zamani, H. and W. B. Croft (2018b). “On the theory of weak supervision
for information retrieval”. In: Proceedings of the 2018 ACM SIGIR
International Conference on Theory of Information Retrieval. ICTIR
’18. Tianjin, China: Association for Computing Machinery. 147–154.

Zamani, H. and W. B. Croft (2020). “Learning a joint search and rec-
ommendation model from user-item interactions”. In: Proceedings
of the 13th International Conference on Web Search and Data Min-
ing. WSDM ’20. Houston, TX, USA: Association for Computing
Machinery. 717–725.

Zamani, H., W. B. Croft, and J. S. Culpepper (2018a). “Neural query per-
formance prediction using weak supervision from multiple signals”.
In: The 41st International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR ’18. Ann Arbor, MI,
USA: Association for Computing Machinery. 105–114.

Zamani, H., J. Dadashkarimi, A. Shakery, and W. B. Croft (2016).
“Pseudo-relevance feedback based on matrix factorization”. In: Pro-
ceedings of the 25th ACM International on Conference on Informa-
tion and Knowledge Management. CIKM ’16. Indianapolis, IN, USA:
ACM. 1483–1492.

Zamani, H., M. Dehghani, W. B. Croft, E. Learned-Miller, and J. Kamps
(2018b). “From neural re-ranking to neural ranking: Learning a
sparse representation for inverted indexing”. In: Proceedings of the
27th ACM International Conference on Information and Knowledge
Management. CIKM ’18. Torino, Italy: Association for Computing
Machinery. 497–506.

Zamani, H., B. Mitra, X. Song, N. Craswell, and S. Tiwary (2018c).
“Neural ranking models with multiple document fields”. In: Proceed-
ings of the Eleventh ACM International Conference on Web Search
and Data Mining. WSDM ’18. Marina Del Rey, CA, USA: ACM.
700–708.

http://ceur-ws.org/Vol-2167/paper2.pdf

References 287

Zhang, S., L. Yao, A. Sun, and Y. Tay (2019). “Deep learning based
recommender system: A survey and new perspectives”. ACM Com-
puting Surveys. 52(1): Article 5.

Zhang, X., H. Xie, H. Li, and J. C. S. Lui (2020). “Conversational
contextual bandit: Algorithm and application”. In: Proceedings of
the Web Conference 2020. WWW ’20. Taipei, Taiwan: Association
for Computing Machinery. 662–672.

Zhang, Y., Q. Ai, X. Chen, and W. B. Croft (2017). “Joint repre-
sentation learning for top-N recommendation with heterogeneous
information sources”. In: Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management. CIKM ’17.
Singapore, Singapore: ACM. 1449–1458.

Zhang, Y., X. Chen, Q. Ai, L. Yang, and W. B. Croft (2018). “Towards
conversational search and recommendation: System ask, user re-
spond”. In: Proceedings of the 27th ACM International Conference
on Information and Knowledge Management. CIKM ’18. Torino,
Italy: ACM. 177–186.

Zhao, W. X., G. He, K. Yang, H. Dou, J. Huang, S. Ouyang, and J.
Wen (2019). “KB4Rec: A data set for linking knowledge bases with
recommender systems”. Data Intelligence. 1(2): 121–136.

Zheng, L., C. Lu, F. Jiang, J. Zhang, and P. S. Yu (2018a). “Spectral
collaborative filtering”. In: Proceedings of the 12th ACM Conference
on Recommender Systems, RecSys 2018, Vancouver, BC, Canada,
October 2–7, 2018. 311–319.

Zheng, L., V. Noroozi, and P. S. Yu (2017). “Joint deep modeling of
users and items using reviews for recommendation”. In: Proceedings
of the Tenth ACM International Conference on Web Search and
Data Mining. WSDM ’17. Cambridge, UK: ACM. 425–434.

Zheng, Y., Z. Fan, Y. Liu, C. Luo, M. Zhang, and S. Ma (2018b).
“Sogou-QCL: A new dataset with click relevance label”. In: The 41st
International ACM SIGIR Conference on Research & Development
in Information Retrieval. SIGIR ’18. Ann Arbor, MI, USA: ACM.
1117–1120.

288 References

Zhou, G., X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
and K. Gai (2018). “Deep interest network for click-through rate
prediction”. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. KDD ’18.
London, UK: Association for Computing Machinery. 1059–1068.

Zhu, M., A. Ahuja, W. Wei, and C. K. Reddy (2019). “A hierarchical
attention retrieval model for healthcare question answering”. In:
The World Wide Web Conference. WWW ’19. San Francisco, CA,
USA: Association for Computing Machinery. 2472–2482.

	Introduction
	Search and Recommendation
	Unifying Search and Recommendation from Matching Viewpoint
	Mismatching Challenge in Search
	Mismatching Challenge in Recommendation
	Recent Advances
	About This Survey

	Traditional Matching Models
	Learning to Match
	Matching Models in Search and Recommendation
	Latent Space Models in Search
	Latent Space Models in Recommendation
	Further Reading

	Deep Learning for Matching
	Overview of Deep Learning
	Overview of Deep Learning for Matching

	Deep Matching Models in Search
	Matching Based on Representation Learning
	Matching Based on Matching Function Learning
	Discussions and Further Reading

	Deep Matching Models in Recommendation
	Matching Based on Representation Learning
	Matching Based on Matching Function Learning
	Further Reading

	Conclusion and Future Directions
	Summary of the Survey
	Matching in Other Tasks
	Open Questions and Future Directions

	Acknowledgements
	References

