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ABSTRACT
This paper concerns reinforcement learning (RL) of the document

ranking models for information retrieval (IR). One branch of the

RL approaches to ranking formalize the process of ranking with

Markov decision process (MDP) and determine the model param-

eters with policy gradient. Though preliminary success has been

shown, these approaches are still far from achieving their full poten-

tials. Existing policy gradient methods directly utilize the absolute

performance scores (returns) of the sampled document lists in its

gradient estimations, which may cause two limitations: 1) fail to

re�ect the relative goodness of documents within the same query,

which usually is close to the nature of IR ranking; 2) generate high

variance gradient estimations, resulting in slow learning speed and

low ranking accuracy. To deal with the issues, we propose a novel

policy gradient algorithm in which the gradients are determined

using pairwise comparisons of two document lists sampled within the
same query. The algorithm, referred to as Pairwise Policy Gradient

(PPG), repeatedly samples pairs of document lists, estimates the

gradients with pairwise comparisons, and �nally updates the model

parameters. Theoretical analysis shows that PPGmakes an unbiased

and low variance gradient estimations. Experimental results have

demonstrated performance gains over the state-of-the-art baselines

in search result diversi�cation and text retrieval.

CCS CONCEPTS
• Information systems → Learning to rank; • Computing
methodologies → Reinforcement learning.
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1 INTRODUCTION
Learning to rank, a family of machine learning techniques where

the training objective is to provide the right ranking order of doc-

uments for a given query, has played a vital role in the �eld of

information retrieval (IR) [18, 20]. In recent years, reinforcement

learning (RL) [31] techniques have been applied to the task and a

number of RL models have been developed [10, 12, 14, 22, 26, 39–

41, 43, 44, 46], referred to as “reinforcement learning to rank” in

this paper. One branch of the research formulates the process of

constructing a document list for a query as sequential decision

making and models it with Markov decision process (MDP). For

example, in [35], the document ranking in search result diversi�ca-

tion is modeled as an MDP in which each time step corresponds

to a ranking position and each action corresponds to choosing a

document for the position. Given a set of labeled training data,

policy gradient [31] is utilized to learn the MDP parameters.

Despite the apparent successes, there remain limitations in these

methods. Speci�cally, at each of its training iteration, the policy

gradient algorithm (e.g., REINFORCE [31]) �rst samples a document

list as its training instance. Then, the gradient is estimated according

to the list, weighted by the absolute performance score of the list

(i.e., returns). In this way, if the performance score is high, the

model parameters are updated with a high probability of repeating

the document selection in the future visits to similar state.

When being applied to document ranking in IR, estimating gra-

dients in this way has two limitations. First, it ignores the relative

ordering nature of IR ranking. It has been widely observed that

predicting relative orders of documents is close to the nature of

ranking. This observation has motivated the success of pairwise

learning to rank, and clearly shows that ranking cares more about

the relative goodness of a document compared to others, rather than

its absolute relevance score. Moreover, in IR ranking the compar-

isons should only be conducted between the documents within the

same query. Existing policy gradient algorithms, however, sample

one document list per iteration and thus only focus on the absolute

scores of the chosen actions (selection of documents). The relative

orders of the documents within each query are not considered.

Second, it estimates the gradients with high variance. From

the viewpoint of RL, directly leveraging the absolute performance

scores (also called returns) as the gradient weights leads to high

variance gradient estimations. A popular solution in traditional

RL is comparing each absolute performance score to a state base-

line, resulting in a relative performance score as the weight. In IR

ranking, however, estimating a reasonable baseline function is very

di�cult, due to the extremely huge and separated state space.
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In this paper, we aim to develop a new policy gradient algorithm

that can fully take the relative ordering nature of IR ranking into

consideration and estimate gradients with low variance. Inspired

by pairwise learning to rank, we propose to develop a novel pol-

icy gradient algorithm using intra-query pairwise comparisons,

referred to as Pairwise Policy Gradient (PPG). PPG utilizes MDPs

as its ranking models. In its learning procedure, PPG repeats the

process of sampling a pair of document lists starting from the same

state (and thus within the same query), comparing these two lists

in terms of their performance scores and gradient directions, and

�nally update the MDP parameters with the comparison results.

Theoretical analysis shows that the gradients calculated in PPG

are unbiased estimations and have low variance (under some condi-

tions), assuring it has good theoretical convergence properties and

can produce fast learning. We also show that the proposed PPG is

a natural generalization of REINFORCE, and it can be considered

as a variation of REINFORCE with baseline.

PPG o�ers several advantages: ease in the implementation, theo-

retical soundness, e�ciency in training, and high accuracy in the

ranking. Empirically, we have implemented PPG for two IR rank-

ing tasks: search result diversi�cation and text retrieval, through

con�guring the MDP states, actions, rewards, state transitions, and

policies accordingly. In our experiments, we found that PPG out-

performed all of the state-of-the-art baselines in terms of popularly

used evaluation measures (e.g., α-NDCG[7] in search result diver-

si�cation and NDCG [15] in text retrieval) in both of the ranking

tasks, indicating the e�ectiveness of PPG for document ranking. Em-

pirical analysis showed that PPG converged faster and had lower

estimation variance than REINFORCE, veri�ed the conclusions

drawn in the theoretical analysis.

2 RELATEDWORK
Existing learning to rank studies can be categorized into pointwise

approaches[8, 23], pairwise approaches [1, 3, 16], and listwise ap-

proaches [2, 4, 36]. Speci�cally, the pairwise methods consider the

preference pairs composed of two documents with di�erent rele-

vance levels under the same query and construct classi�er. However,

the non-di�erentiable ranking metrics make it hard to optimize the

evaluation measures directly.

In recent years, reinforcement learning has been applied in the

IR ranking.Radlinski et al. [27] proposed two online learning bandit

algorithms to learn a diverse ranking of the documents based on

users clicking behaviors. Yue and Joachims [39] formalized the in-

teractively optimizing of information retrieval systems as a dueling

bandit problem, called Dueling Bandit Gradient Descent (DBGD).

In [13], DBGD was further improved so that the click data can be

used to judge the user preference of the document rankings. In [17],

a cascading bandits model is proposed to identify the K most at-

tractive document for users.MDP has also shown its e�ectiveness

in learning to rank. In [40], the process of document ranking is

formalized with MDP and solved with the classic policy gradient

algorithm of REINFORCE. Similar MDP con�gurations are used to

model the sequential document selection process in search result di-

versi�cation [11, 35] and multi-page search [41]. The query change

model [37] formalizes the problem of session search as anMDP. The

win-win search framework models session search as a dual-agent

stochastic game, on the basis of partially observed Markov decision

process (POMDP) [22]. In [42], a log-based document re-ranking

algorithm is proposed, also based on POMDP. DRM [24] makes use

of deep RL to deal with the complex ranking problems in which

both the user preferred document order and display position order

for result presentation is considered.

RL has also been widely used for the IR tasks beyond document

ranking. For example, Shi et al. [30] use reinforcement learning for

commodity search. Li et al. [19] model collaborative �ltering with

bandit. Shani et al. [29] design an MDP-based recommendation

model for taking both the long-term e�ects of each recommenda-

tion and the expected value of each recommendation into account.

Lu and Yang [21] propose POMDP-Rec, a neural-optimized POMDP

algorithm, for building a collaborative �ltering recommender sys-

tem. In [44], the recommendation is modeled with MDP and deep

Q-learning is used to conduct the optimization. In [32], the process

of ranking is modeled with generative adversarial networks (GANs)

and solved with reinforcement learning, called IRGAN. IRGAN can

be used for both document ranking and item recommendation.

3 REINFORCEMENT LEARNING TO RANK
Given N labeled training queries {(Q(n),X (n),Y (n))}Nn=1, where

X (n) = {d
(n)
1
, · · · ,d

(n)
Mn
} and Y (n) = {y

(n)
1
, · · · ,y

(n)
Mn
} are the sets

of candidate documents and labels associated with query Q(n),
respectively. The ranking models aim at constructing a document

list by putting the relevant documents to the top of the list.

3.1 MDP formulation of ranking
MDP is a powerful mathematical model used to describe an inter-

action system between the environment and the agent. The MDP

model has been used to model the process of document ranking.

Formally, the MDP formulation of the document ranking considers

the construction of a document list as sequential decision making.

In the MDP, each time step t (t = 0, 1, · · · ) corresponds to a position

in the document list. Speci�cally, the action at ∈ A(st ) denotes
to select the document dm(at ) from the candidates and move it

to the rank t + 1, and the policy π (a |s;θ ) de�nes a probabilistic

distribution over the available candidate documents. A(st ),m(at ),
and θ denote the set of available actions, index of the document

corresponding to at , and the model parameters, respectively.

Construction of a document list with the MDP can be described

as: given a user query Q and the set of retrieved M documents

X = {d1, · · · ,dM }, the MDP state is initialized as s0 = S(Q,X ),
where S is the state initialization function. At each of the time

steps t = 0, · · · ,M − 1, the agent observes the state st , calculates
the policy π (·|st ;θ ), and chooses an action at which selects the

document dm(at ) from the document set and places it to the rank

t+1. The user feedbacks the rewardR(st ,at ) tomeasure the selected

document. Moving to the next time step t + 1, the state becomes

st+1 = T(st ,at ), where T is the state transition function. The

process is repeated until all of theM documents are ranked.

3.2 Learning with policy gradient
RL methods are widely used to determine the MDP model param-

eters θ (may consist of the parameters in the functions of policy
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π , state initialization S, and the state transition T etc.). With the

labeled queries, the MDP environment can emit an immediate nu-

merical reward rt+1 = R(st ,at )
1
for each issued action at . With

the rewards, the policy gradient algorithms such as REINFORCE

can be employed to learn the parameters θ . Speci�cally, the policy
gradient algorithms employ stochastic gradient ascent iterations

for conducting the optimization. At each iteration, a document

list (episode) τ = (S0,A0,R1, · · · , SM−1,AM−1,RM ) ∼ π (·|·;θ ) is
sampled, where St ,At , and Rt+1 are the observed state, the chosen

action, and the received reward, respectively. Then, at each t , the
gradient of the parameters θ is estimated as:

∆θ = Gt∇ logπ (At |St ;θ ), (1)

whereGt is the long-term return starting from t :Gt =
∑M−t
k=1 γk−1Rt+k ,

where γ ∈ (0, 1] is the discount factor.

3.3 Example applications: search result
diversi�cation and text retrieval

The MDP formulation of ranking has been applied to the ranking

tasks of search result diversi�cation and text retrieval and promising

results have been presented [35, 40]. The con�gurations of the

MDPs, including the de�nitions of time step, state, state transition,

reward, policy, and the gradient of policy, are shown in Table 1.

Please refer to [35, 40] for more details.

3.4 Problem Analysis
Though signi�cant progresses have been achieved, the MDP formu-

lation of document ranking still has limitations. More speci�cally,

the gradient in Equation (1) consists of two terms: the gradient

∇ logπ (At |St ;θ ) which points to the direction that most increases

the probability of repeating the action At on future visits to the

state St , and the long term return Gt which lets the parameters

move most in the directions that favor actions that yield the highest

return.

When being directly applied in IR ranking, the gradient setting

has two limitations: (1) fails to consider the intra-query relative

ordering nature of IR ranking, and (2) estimates the gradients with

high variance.

3.4.1 The intra-query relative ordering nature. The aim of docu-

ment ranking in IR is to come up with optimal orderings of doc-

uments retrieved by queries. Compared with traditional machine

learning tasks such as classi�cation or regression, document rank-

ing is unique in that: (1) ranking does not care much about the exact

relevance score that each document gets, but cares more about the

relative goodness of a document compared to others; (2) the ex-

istence of queries poses a further restriction on the comparisons:

only the documents retrieved by the same query can be compared

with each other. The cross-query comparisons are not meaningful

because the two documents will not appear in the same list. Existing

policy gradient approaches, however, fail to capture both of these

two important properties in IR ranking.

(1) At each rank position t , the gradient weightGt in Equation (1)

is calculated as the absolute goodness of the chosen document

dm(At ), calculated based on a sampled document list. The goodness

1
The reward can be calculated, for example, on the basis of IR evaluation measures of

DCG, α -DCG, S-recall etc.

q1 d11 d12 d13 d14 d15

q2 d22d21 d23 d24 d25

DCG@5 = 1

DCG@5 = 1.95

Figure 1: DCG@5 of the optimal document list for a di�cult
query q1 and a suboptimal document list for an easy query
q2. The shaded icons denote the relevant documents.

of choosing other documents at the same position t (and at the same

state) is not taken into consideration. Thus, with these gradients and

weights, the policy gradient still cares about the absolute document

scores, not the relative document orders.

(2) When being applied to document ranking [35, 40], the �nal

gradients are the linear combinations of the gradient directions

at all positions of all sampled document lists. The combination

weights (Gt ’s) are usually set as the absolute performance scores

based on DCG or α-DCG, without considering which query they

come from. In another word, all of the queries are equally treated.

However, it have been observed in IR that there exists high vari-

ance in performance among the queries [6]. Some queries are in

nature more di�cult than others. The reasons could be, for exam-

ple, the query may have very few relevant documents available

in its candidates, or there exists a big semantic gap between the

query and the relevant documents. The performance of the optimal

ranking for a di�cult query may be lower than the performance

of a suboptimal ranking for an easy query, as the examples shown

in Figure 1. Since the easy queries always generate document lists

with high-performance scores while policy gradient treats them

equally, the trained ranking model may be biased to easy queries.

3.4.2 High variance gradient estimation. In policy gradient, it has

been widely observed that directly using returns as the gradient

weights leads to high variance gradient estimation [31]. As the

solutions for traditional RL tasks, policy gradient with baseline

and actor-critic have been proposed for reducing the estimation

variance. In these methods, the absolute return of each action is

compared to the baseline of the state. Thus, the weights become

relative returns. Intuitively, in some states, all actions have high

values and high baselines are needed to di�erentiate the higher

valued actions from the less highly valued ones; in other states all

actions have low values and low baselines are appropriate. Usually,

the baseline is estimated using the historically estimated episodes.

In IR ranking, however, it is very di�cult (if not impossible) to

estimate reasonable baselines because the state space is huge and

separated. In the MDPmodel for ranking, the ranked document lists

are usually involved in the state. Suppose that a query is associated

withM documents (on averageM ≈ 150 in OHSUMED), the number

of possible document lists per query is M!. The size of the state

space makes it impossible to sample enough data to estimate the

baseline values. Moreover, in training N di�erent training queries

are provided. Since each query retrieves its own set of documents for

ranking, the whole state space is separated into N disjoint subsets.

The document lists sampled in one query cannot be used to learn

the baselines in another query.
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Table 1: MDP con�gurations for search result diversi�cation and text retrieval.

MDP con�guration search result diversi�cation [35] text retrieval [40]

state at time t : st st = [Zt , Xt , ht ], where Zt is ranked doc list, ht is latent vector st = [t, Xt ]
initial state s0 s0 = S(Q, X ) = [∅, X , σ (Vqq)], where q is query embedding s0 = S(Q, X ) = [0, X ], where X contains all docs

state transition T(st , at ) T(st , at ) = [Zt ∪ {dm(at ) }, Xt \ {dm(at ) }, σ (Vxm(at ) +Wht )], T(st , at ) = [t + 1, Xt \ {dm(at ) }]
where xm(at ) is doc embedding, and V, W are parameters

reward R(st , at ) R(st , at ) = α -DCG[t+1]−α -DCG[t], where α -DCG[0] = 0 R(st , at ) =

{
2
ym(at ) − 1 t = 0

(2
ym(at ) − 1)/log

2
(t + 1) t > 0

policy π (at |st ; θ ) π (at |st ) =
exp

{
xTm(at )

Uht
}

∑
a∈A(st ) exp

{
xTm(a)Uht

} , π (at |st ; θ ) =
exp

{
θT ϕ(Q,dm(at ))

}
∑
a∈A(st ) exp

{
θT ϕ(Q,dm(a))

} ,
where U is the parameter matrix where ϕ(Q, dm(at )) is ranking feature vector

Gradient ∇ log π (a |s) refer to [35] for details ϕ(Q, dm(at )) −
∑
a∈A(st ) π (a |st ; θ )ϕ(Q, dm(a))

4 OUR APPROACH: PPG
To deal with the issues and inspired by the intra-query preference

pair generation mechanism in pairwise learning to rank, in this

section we propose to combine the intra-query pairwise compar-

isons with conventional policy gradient algorithm of REINFORCE,

achieving a new algorithm tailored for document ranking, referred

to as pairwise policy gradient (PPG).

4.1 Policy gradient with pairwise comparison
4.1.1 Gradient representation with pairwise comparisons. First, we
show theoretically that the gradient of the ranking objective can

be represented in the form of pairwise comparisons. Formally, the

goal of the learning algorithm is to maximize the expected long

term return (performance of the list) from the beginning:

J (θ ) = vπ (s0) = Eτ∼π [G0], (2)

where vπ (s0) is the expected return starting from t = 0, τ =
{s0,a0, r1, · · · , sM−1,aM−1, rM } (corresponds to the document list

of {dm(a0), · · · ,dm(aM−1)}) is the episode sampled according to cur-

rent policy π , andG0 is the long-term return of the episode starting

from time step t = 0: G0 =
∑M
k=1 γ

k−1rk .
The policy gradient method calculate the gradient based on

the Policy Gradient Theorem which can be represented as ([31],

Chapter 13.2):

∇J (θ ) ∝
∑
s

µ(s)
∑
a

qπ (s,a) · ∇π (a |s;θ ) (3)

where µ(s) is on-policy distribution over the state s under π , qπ (·, ·)
is the Q-function whose value is the discounted total reward ex-

pected after performing the action in the state and then following

π , and ∇π (·|·;θ ) is the partial derivatives of π (·|·;θ ) w.r.t. θ .
In retrieval scenario, the search engine constructs the ranking

list given a query, which can re�ect the preference of each docu-

ment. Just as the equation 3 shown, the traditional policy gradient

methods measure the sampled action by the absolute accumulative

rewards gained in future. However, the distributions of the candi-

date documents various over di�erent queries. The absolute reward

may lead to unfairness to di�erent queries.

Inspired by the pairwise ranking methods, which optimize the

rank model based on the preference document pairs. We consider

the search engine samples two action at once to construct the

"preference pair". We modify the policy gradient method to utilize

the di�erence of rewards gained by these two document to optimize

the rank model and prove that the gradient of J (θ ) can be expressed

in the form of pairwise comparisons, as shown in Theorem 4.1.

Theorem 4.1. The gradient of J (θ ) in Equation (2) can be repre-
sented as

∇J (θ ) ∝
∑
s

µ(s)
∑
a

∑
b

(qπ (s,a) − qπ (s,b))

· (π (b |s;θ )∇π (a |s;θ ) − π (a |s;θ )∇π (b |s;θ )) ,

In Theorem 4.1, the gradient of the policy is represented in the

form of pairwise comparisons between actions a and b. The proof
of Theorem 4.1 can be found in Section A.1.

4.1.2 Gradient estimation with Monte Carlo sampling. Theorem 4.1

gives a new analytic expression for ∇J (θ ). Following the practices

in deriving the REINFORCE algorithm, we estimate ∇J (θ ) with
Monte Carlo sampling.

Firstly, the search engine interacts with the user based on current

policy π (a |s,θ ), then the sampled state satis�es St ∼ µ(s)

∇J (θ ) ∝ Eπ

[∑
a

∑
b

(qπ (St ,a) − qπ (St ,b))

· (π (b |St ;θ )∇π (a |St ;θ ) − π (a |St ;θ )∇π (b |St ;θ ))

]
Then we utilize the multipliers π (at |St ,θ ) and π (bt |St ,θ ), and

sample the action At and Bt follow the current policy. Thus

∇J (θ ) ∝ Eπ

[∑
a

∑
b

π (a |St ;θ )π (b |St ;θ ) · (qπ (St ,a) − qπ (St ,b))

·
(∇π (a |St ;θ )
π (a |St ;θ )

−
∇π (b |St ;θ )

π (b |St ;θ )

) ]
= Eπ

[ (
qπ (St ,At ) − qπ (St ,Bt )

)
·
(
∇ logπ (At |St ;θ ) − ∇ logπ (Bt |St ;θ )

) ]
,

(4)
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Algorithm 1 Pairwise Policy Gradient (PPG)

INPUT: Training set D = {(Q (n), X (n), Y (n))}Nn=1, learning rate η, dis-
count factor γ , and reward function R

1: Initialize θ ← random values

2: repeat
3: ∆θ ← 0
4: for all (Q, X , Y ) ∈ D do
5: Initial state S = S(Q, X ){Init state with Q }

6: for t = 0 to M − 1 do
7: τA =

{
S, At , RAt+1, S

A
t+1, · · · , S

A
M−1, AM−1, R

A
M

}
∼ π (θ )

8: GA ←
∑M−t
k=1 γ k−1RAt+k {long term return of τA}

9: τ B =
{
S, Bt , RBt+1, S

B
t+1, · · · , S

B
M−1, BM−1, R

B
M

}
∼ π (θ )

10: GB ←
∑M−t
k=1 γ k−1RBt+k {long term return of τ B }

11: ∆θ ← ∆θ + (GA − GB ) ·
(
∇ log π (At |St ; θ ) −

∇ log π (Bt |St ; θ )
)
{according to Equation (5)}

12: S ←
{
SAt+1 GA ≥ GB

SBt+1 otherwise

13: end for
14: end for
15: θ ← θ + η∆θ
16: until converge
17: return θ

where the state-action value function qπ (St ,At ) is the expected
discount reward:

qπ (St ,At ) = E[R
A
t + γR

A
t+1 + · · · + γ

(T−t )RAT |St ,At ]

= E[GA
t |St ,At ].

qπ (St ,Bt ) can be calculated in a similar way. In Equation (4), the

�rst equation holds because the overall gradient is a sum over states

weighted by how often the states occur under the target policy π .
Thus we can get rid of µ(s) because the state will be encountered in
these proportions following the π ; the second equation introduces

a weighting π (a |St ;θ )π (b |St ;θ ) without changing the equality by

multiplying and dividing it; and the third equation replaces a by

action At and b by action Bt , both sampled following the policy

π (·|St ;θ ).

4.1.3 Learning with stochastic gradient ascent. Using the gradient

in Equation (4) to instantiate the generic stochastic gradient ascent,

we get the gradient at each position t :

∆θ = (GA
t −G

B
t )

(
∇ logπ (At |St ;θ ) − ∇ logπ (Bt |St ;θ )

)
. (5)

The equation indicates that the gradient of the policy parameters

can be estimated with pairwise comparisons: given a query and

starting from St , the algorithm samples two episodes τA and τB .
The unbiased gradient of the policy, then, can be calculated based

on the pairwise comparisons between the two lists.

Algorithm 1 shows the proposed pairwise policy gradient (PPG)

algorithm. The process of sampling the episodes and choosing the

next states in Algorithm 1 is illustrated in Figure 2. We can see

that PPG successfully introduces intra-query pairwise comparisons

into policy gradient and captures the intra-query relative ordering

nature of document ranking. Note that the two lists in a pair start

from the same state (under a query), which assures only intra-query

comparisons are allowed in PPG.

The time complexity of the PPG training algorithm is of O(TNM
(M + 1)), where T is the number of training iterations, N is the

S0

SA1 SA2 … SAM-1

RA1 RA2

SB1 SB2 … SBM-1

RB1 RB2

SA2 … SAM-1

SB2 … SBM-1

RAM

RBM

G0A

G1B

G1A

…

…

t = 0

t = 1

t = 2

RA2 RAM

RB2 RBM

!"

!#

!"

!#

G0B

Figure 2: Illustration of the sampling process in PPG. The
highlighted arrows and circles shows the chosen actions and
the resulting next states. Given the initial state S0 and rank-
ing position t = 0, PPG samples two episodes τA and τB ,
and conducts the intra-query pairwise comparison. Then,
at t = 1, the system follows the winner episode one step
(τB in the example because GA

0
< GB

0
) and moves to a new

state SB
1
. Again, starting from SB

1
, PPG samples two new

episodes for another comparison. The process continues un-
til t = M − 1. Note that for an M-size candidate set, PPG will
sample 2M + 2(M − 1) + · · · + 2 = M · (M + 1) times.

number of queries in training data, andM is the average number

of labeled documents per query.

4.2 Discussions
4.2.1 Bias and variance of the gradients. Theorem 4.1 shows the

form of the gradient ∇J (θ ) and Equation (4) derives an unbiased

Monte Carlo sampling. Therefore Algorithm 1 makes an unbiased

estimation of ∇J (θ ), guaranteeing that it will converge asymptoti-

cally to an optimum.

Moreover, the intra-query pairwise comparisons have the ability

to estimate the gradients with low variance (under some conditions),

as shown in the following Theorem 4.2.

Theorem 4.2. Given state s ∼ µπ where µπ is is on-policy distri-
bution under π , and given two actions a ∼ π (·|s ;θ ) and b ∼ π (·|s ;θ ).
Considering the following two representations of the gradient:

g1 = (qπ (s,a) − qπ (s,b)) · (∇ logπ (a |s;θ ) − ∇ logπ (b |s;θ )) ,

g2 =qπ (s,a) · ∇ logπ (a |s;θ ) + qπ (s,b) · ∇ logπ (b |s;θ ).

The variances of g1 and g2 satisfy

Var(g1) ≤ Var(g2),

if qπ (·, ·) ≥ 0 and

Eµπ ,π

[
(q(s,a) − q(s,b))·(
q(s,b)‖∇ logπ (a |s;θ )‖2 − q(s,a)‖∇ logπ (b |s;θ )‖2

) ]
≥ 0,

where Var(g) = tr(cov(g, g)) is the trace of the covariance matrix,
and ‘tr’ and ‘cov’ denote trace and covariance, respectively.
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Proof of the theorem is given in Section A.2. Note that g1 is

the gradient used in PPG and g2 equals to the gradient used in

REINFORCE
2
.

Theorem 4.2 indicates that PPG has the ability to reduce vari-

ance in gradient estimation when the conditions being satisi�ed. In

stochastic optimization, the estimation with low variance usually

leads to fast in learning and accurate in ranking.

The �rst condition qπ (·, ·) ≥ 0 can be satis�ed naturally in IR,

because the commonly used IR evaluation measures such as DCG

and α-DCG are nonnegative and increases monotonically with the

ranking positions. The second condition can be explained as follows:

under the π and µπ , the state-action value and the norm of gradient

(multiplied by another state-action value) are positively correlated.

4.2.2 Relation with pairwise learning to rank. PPG is inspired by the

intra-query pairwise comparison mechanism in pairwise learning

to rank. In that sense, they share a number of common advan-

tages such as capturing the relative ordering nature of ranking and

avoiding cross-query comparisons. However, PPG also has several

striking di�erences from pairwise learning to rank.

First, the criterion for “preference” are di�erent. In pairwise

learning to rank, a document is preferred because it has a higher

relevance label. In PPG, however, an action (choosing a document)

is preferred because selecting the document at current state will

get higher long term return. In this sense, PPG looks at the future

e�ects and current state when evaluating a document, which is a

more reasonable criteria to get optimal rankings.

Second, the times for generating the pairs are di�erent. In pair-

wise learning to rank, the algorithms generate all of the pairs before

the learning starts. PPG, on the other hand, generate the pairs at

each of the training iterations with an “online” manner. Therefore,

it is possible for PPG to dynamically generate the most valuable

pairs at each of the training iterations.

4.2.3 Relation with REINFORCE and REINFORCE with baseline.
PPG is derived under the policy gradient framework and it is a

nature generalization of REINFORCE. Comparing the estimated

gradients by PPG (Equation (5) and line 11 of Algorithm 1) and that

of by REINFORCE (Equation (1)), we can see that PPG automatically

degenerates to REINFORCE by setting τA (or τB ) to an empty

episode. For example, by setting τB to empty, the gradient of PPG

becomes the gradient of REINFORCE:

∆θ =(GA
t −G

B
t )(∇ logπ (At |St ;θ ) − ∇ logπ (Bt |St ;θ ))

=(GA
t − 0)(∇ logπ (At |St ;θ ) − 0) = G

A
t ∇ logπ (At |St ;θ ).

PPG can also be considered as a variation of REINFORCE with

baseline. REINFORCE with baseline compares the action value Gt
to the baseline value of St and its gradient can be written as:

∆θ = (Gt − b(St ))∇ logπ (At |St ;θ ),

where b(St ) is the base line function that does not vary with action.

From this viewpoint, the gradient of PPG can be decomposed as

2
Note that for making fair comparisons, both g1 and g2 are based on two sampled

actions a and b . g2 is an estimation of the original REINFORCE gradient qπ (s, a) ·
∇ log π (a |s ; θ ) based on two sampled actions.

the sum of two gradients with baselines:

∆θ =(GA
t −G

B
t ) (∇ logπ (At |St ;θ ) − ∇ logπ (Bt |St ;θ ))

=(GA
t −G

B
t )∇ logπ (At |St ;θ ) + (G

B
t −G

A
t )∇ logπ (Bt |St ;θ ).

The �rst term (GA
t −G

B
t )∇ logπ (At |St ;θ ) is the gradient estimated

based on τA, using GB
t as the baseline; and second term (GB

t −

GA
t )∇ logπ (Bt |St ;θ ) is the gradient estimated based on τB , using

GA
t as the baseline. Since policy gradient with baseline can reduce

the variance, it is intuitive that PPG can also produce low variance

estimations.

5 EXPERIMENTS
We conducted experiments to test the performances of PPG. The

source code of PPG can be found at https://github.com/wzeng316/

PPG-Rank.

5.1 Experiments on search result diversi�cation
We tested the performances of PPG on the ranking task for search

result diversi�cation. Speci�cally, following the practices in [35],

the experiments were conducted on the combination of four TREC

benchmark datasets (TREC Web Track 2009 ∼ 2012). The dataset

consists of 200 queries and in total about 45,000 labeled documents.

Each query includes several subtopics identi�ed by the TREC an-

notators. The document relevance labels are made at the subtopic

level and the labels are binary. The candidate documents were re-

trieved from the ClueWeb09 Category B data collection, which is

comprised of 50 million English web documents. Porter stemming,

tokenization, and stop-words removal were applied to the docu-

ments as preprocessing. The queries were randomly split into �ve

folds and we conducted 5-fold cross-validation experiments. The

results reported were the averages over the �ve trials.

We compared the proposed PPG with state-of-the-art baselines

in search result diversi�cation, including the heuristic methods of

MMR [5], xQuAD [28], and PM-2 [9]; and the learning methods

of SVM-DIV [38], R-LTR [45], PAMM [33], NTN-DIV [34], and

MDP-DIV [35].

In MDP-DIV and PPG, the reward is calculated based on α-DCG
and the discount factor γ = 1. The evaluation metrics include

α-NDCG, S-recall, and ERR-IA, at the positions of 5 and 10.

Table 2 reports the ranking accuracies of PPG and all of the base-

line methods. Boldface indicates the highest scores in all runs. From

the results, we can see that PPG outperformed all baselines in terms

of all evaluation metrics, demostrating the e�ectiveness of PPG in

the task of search result diversi�cation. We conducted signi�cant

tests (t-test) on the improvements of PPG over the best baseline

MDP-DIV. The results showed that most of the improvements were

signi�cant (p-value < 0.05 and denoted with ‘∗’).

5.2 Experiments on text retrieval
We also conducted experiments on the task of text retrieval. The

experiments were conducted on three traditional learning to rank

benchmark datasets: OHUSMED, MQ2008 [25], and MSLR-Web10K.

Each dataset consists of queries, corresponding retrieved documents

and human judged labels, and the statistics over the three dataset
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Table 2: Performance comparison on TREC web track datasets

Method α-NDCG@5 α-NDCG@10 S-rescall@5 S-rescall@10 ERR-IA@5 ERR-IA@10

MMR 0.2753 0.2979 0.4388 0.5151 0.2005 0.2309

xQuAD 0.3165 0.3941 0.4933 0.6043 0.2314 0.2890

PM-2 0.3047 0.3730 0.4910 0.6012 0.2298 0.2814

SVM-DIV 0.3030 0.3730 0.4910 0.6012 0.2298 0.2814

R-LTR 0.3498 0.4132 0.5397 0.6511 0.2521 0.3011

PAMM 0.3712 0.4327 0.5561 0.6612 0.2619 0.3029

NTN-DIV 0.3962 0.4577 0.5817 0.6872 0.2773 0.3285

MDP-DIV 0.4493 0.4924 0.5718 0.6826 0.3485 0.3712

PPG 0.4799∗ 0.5122∗ 0.6099∗ 0.6928 0.3727∗ 0.3914∗

Table 3: Statistics of L2R datasets

Method #Query #LabeledDoc #Feature # LabelLevel

OHSUMED 106 16,140 45 3

MQ2008 784 9,360 46 3

MSLR-Web10K 10,000 1,200,192 136 5

Table 4: Performance comparison on LETOR OHSUMED.

Method NDCG@1 NDCG@3 NDCG@5 NDCG@10

RankSVM 0.4958 0.4958 0.4958 0.4140

RankNet 0.4785 0.4516 0.4464 0.4367

ListNet 0.5326 0.4732 0.4432 0.4410

AdaRank 0.4790 0.3730 0.4673 0.4496

MDPRank 0.5743 0.5045 0.4784 0.4558

PPG 0.5771 0.5218 0.4911 0.4664

are shown in Table 3. In all of the experiments, we conducted 5-

fold cross-validation experiments on these datasets. The results

reported were the average over the �ve folds. For OHUSMED and

MQ2008 dataset, we used the provided standard features and the

linear score function. Speci�cally, for MSLR-Web10K dataset, we

normalize each provided feature by the mean/standard deviation.

We compared the proposed PPG to the traditional learning to

rank baselines, including RankSVM [16], RankNet [2], ListNet [4],

AdaRank [36], and MDPRank [40].

In both MDPRank and PPG, the rewards are calculated based on

DCG and the discount factor γ = 1. As for evaluation measures,

NDCG at the positions of 1, 3, 5 and 10 were used for evaluation.

Table 4, Table 5, and Table 6 report the performances of PPG and

the baselines on OHSUMED, MQ2008 and MSLR-Web10K, respec-

tively. Boldface indicates the highest scores among all runs. From

the results, we can see that PPG outperformed all the baselines,

including the traditional learning to rank methods and reinforce-

ment learning-based method, on both datasets in terms of all of the

evaluation measures. The results showed the e�ectiveness of PPG

for the task of text retrieval.

Table 5: Performance comparison on LETOR MQ2008.

Method NDCG@1 NDCG@3 NDCG@5 NDCG@10

RankSVM 0.3626 0.4286 0.4695 0.2279

RankNet 0.3202 0.3984 0.4408 0.2094

ListNet 0.3754 0.4324 0.4747 0.2303

AdaRank 0.3826 0.4420 0.4821 0.2307

MDPRank 0.3827 0.4420 0.4881 0.2327

PPG 0.3877 0.4511 0.4910 0.2455

Table 6: Performance comparison on MSLR-WEB10K.

Method NDCG@1 NDCG@3 NDCG@5 NDCG@10

RankSVM 0.3447 0.3589 0.3687 0.3881

RankNet 0.3768 0.3862 0.3942 0.4105

ListNet 0.3878 0.3879 0.3969 0.4135

AdaRank 0.3437 0.3272 0.3337 0.3475

MDPRank 0.4182 0.4052 0.4082 0.4189

PPG 0.4230 0.4104 0.4144 0.4254

5.3 Analysis of the experimental results
In this section, we conducted experiments to investigate how PPG

works and outperformed the baselines, using the results on the �rst

fold of the combined TREC Web Track data as example.

5.3.1 Convergence. Theorem 4.1 and Theorem 4.2 show that PPG

makes unbiased and low variance estimations, guaranteeing to con-

verge to an optimum fast. We conducted experiments to verify the

theoretical conclusions. Speci�cally, we compared the convergence

curves of PPGwith the baseline method of MDP-DIV andMDPRank

(using REINFORCE in its learning).

Figure 3 illustrates the learning curves where the x-axis is num-

ber of training epochs and y-axis is the average rewards received.

The curves in Figure 3 show that PPG converged much faster than

MDPRank and MDP-DIV. Moreover, PPG converged to a better op-

timum. The results veri�ed that: (1) the unbiased estimations made

PPG to converge to an optimum; (2) the low variance estimations

made PPG to converge fast.

Session 3B: Learning to Rank  SIGIR ’20, July 25–30, 2020, Virtual Event, China

515



Figure 3: Learning curves of PPG and MDP-DIV.

Figure 4: Variance curves of PPG and MDP-DIV.

5.3.2 Reducing the variance. Theorem 4.2 shows that PPG can

produce low variance estimations, under some conditions. We con-

ducted experiments to directly compare the variances of the es-

timations by PPG and MDP-DIV. Speci�cally, we trained diverse

ranking models with PPG and MDP-DIV. At each iteration, the

gradient vectors calculated on all of the sampled document lists

were recorded and the variance (trace of the covariance matrix)

was calculated. Figure 4 illustrated the variance curves by PPG and

MDP-DIV.We can see that the variance curve by PPG is much lower

than that of by MDP-DIV at all of the training epochs. The results

veri�ed the conclusion drawn in Theorem 4.2 on real applications.

It also indicated that the conditions in Theorem 4.2 is reasonable

and can be well satis�ed in real applications.

5.3.3 Improving di�icult queries. The analysis in Section 3.4 shows

that the document ranking models trained by REINFORCE may be

biased to easy queries, because of the high variance in performance

among queries. We conducted experiments to show whether the

bias can be alleviated in PPG.

Speci�cally, we made statistics on the number of relevant docu-

ments per query in the training data. The queries are clustered into

di�erent groups based on percentage of relevant documents among

the candidates. Intuitively, more number of relevant documents

makes the query easier. Figure 5 shows the distribution of the query

groups. In the �gure, for example, ‘0% ∼ 20%’ is the group of queries

Figure 5: Distribution of training queries w.r.t. di�erent per-
centages of relevant documents.

Figure 6: Performance comparison in terms of α-NDCG@10
for di�erent query groups.

whose percentage of relevance documents per query are between

0% and 20%. We can see that the numbers of relevant documents per

query really vary from query to query, indicating the high variance

in performance among the queries in real data.

Next we evaluated the accuracies of PPG and MDP-DIV in terms

of NDCG@10 for each of the query group. The results are reported

in Figure 6. We found that the average NDCG@10 of PPG over

the groups is higher than MDP-DIV (except the �fth group). Fur-

thermore, it is interesting to see that PPG performs particularly

better than MDP-DIV for queries with small numbers of relevant

documents (e.g., 0% ∼ 20%, 20% ∼ 40%, 40% ∼ 60%, and 60% ∼ 80%).

The results indicate that PPG successfully avoids creating a model

biased toward easy queries.

6 CONCLUSION
In this paper, we proposed a novel reinforcement learning algorithm

tailored for document ranking in IR, called Pairwise Policy Gradient

(PPG). In its learning, PPG estimates the gradients based on the intra-

query comparisons between pairs of sampled document lists. PPG

addressed the two issues in conventional policy gradient: ignoring

intra-query relative ordering nature of IR ranking and generating

high variance gradient estimations. Theoretical analysis showed

that PPG makes unbiased and low variance estimations, leading

Session 3B: Learning to Rank  SIGIR ’20, July 25–30, 2020, Virtual Event, China

516



to a correct and fast learning. Experimental results showed that

PPG outperformed the state-of-the-art baselines on search result

diversi�cation and text retrieval. Empirical analysis also showed

that PPG converged fast to an optimum and really reduced the

estimation variances.
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A PROOF OF THE THEOREMS
A.1 Proof of Theorem 4.1

Proof. According to policy gradient theorem([31], Chapter 13.2),

∇J (θ ) ∝
∑
s

µ(s)
∑
a

qπ (s,a) · ∇π (a |s;w),

where a is the action. Calculating it by sampling two times

∇J (θ ) ∝
∑
s

µ(s)

(∑
a

qπ (s,a) · ∇π (a |s;θ ) +
∑
b

qπ (s,b) · ∇π (b |s;θ )

)
.

Note that

∑
a v(s)∇π (a |s;θ ) = v(s)∇

∑
a π (a |s;θ ) = v(s)∇1 = 0,

where v(s) =
∑
a qπ (s,a)π (a |s;θ ) =

∑
b qπ (s,b)π (b |s;θ ) is value

function. The term can be added to ∇J without changing its value:

∇J (θ ) ∝
∑
s

µ(s)

(∑
a

qπ (s,a) · ∇π (a |s;θ )

−
∑
b

qπ (s,b)π (b |s;θ ) ·
∑
a
∇π (a |s;θ )

−
∑
a

qπ (s,a)π (a |s;θ ) ·
∑
b

∇π (b |s;θ ) +
∑
b

qπ (s,b) · ∇π (b |s;θ )

)
.

Since the policy is a distribution over the actions, we have

∑
b π (b |s ;θ ) =∑

a π (a |s;θ ) = 1, and the gradient can be written as:

∇J (θ ) ∝
∑
s

µ(s)

(∑
a

∑
b

qπ (s,a)π (b |s;θ )∇π (a |s;θ )

−
∑
a

∑
b

qπ (s,a)π (a |s;θ )∇π (b |s;θ )

−
∑
a

∑
b

qπ (s,b)π (b |s;θ )∇π (a |s;θ )

+
∑
a

∑
b

qπ (s,b)π (a |s;θ )∇π (b |s;θ )

)
=

∑
s

µ(s)
∑
a

∑
b

(
qπ (s,a) − qπ (s,b)

)
·
(
π (b |s;θ )∇π (a |s;θ ) − π (a |s;θ )∇π (b |s;θ )

)
�

A.2 Proof of Theorem 4.2
Proof. The di�erence of these two variance is

Var(g1) − Var(g2) =tr(cov(g1, g1)) − tr(cov(g2))

=Eµπ ,π
[
‖g1 − Eµπ ,π [g1]‖

2
]

− Eµπ ,π
[
‖g2 − Eµπ ,π [g2]‖

2
]

=Eµπ ,π
[
‖g1‖2

]
− Eµπ ,π

[
‖g2‖2

]
=Eµπ ,π

[
‖g1‖2 − ‖g2‖2

]
The third equation stands because Eµπ ,π [g1] = Eµπ ,π [g2]. Note
that according to Theorem 4.1 and the policy gradient theorem

(Chapter 13.2 of [31]), both g1 and g2 are unbiased estimation. Ac-

cording to the de�nitions of g1 and g2, and denoting qa = qπ (s,a),
qb = qπ (s,b), πa = π (a |s;θ ), and πb = π (b |s;θ ) for simplicity:

‖g1‖2 − ‖g2‖2 =‖(qa − qb ) ·
(
∇ logπa − ∇ logπb

)
‖2

− ‖qa · ∇ logπa + qb · ∇ logπb ‖
2

=q2a ‖∇ logπb ‖
2 − 2q2a [∇ logπa ]

T ∇ logπb + q
2

b ‖∇ logπa ‖
2

− 2q2b [∇ logπa ]
T ∇ logπb − 2qaqb ‖∇ logπa ‖

2

− 2qaqb ‖∇ logπb ‖
2 + 2qaqb [∇ logπa ]

T ∇ logπb .

For any a ∼ π (·|s;θ ),

Eµπ ,π [∇ logπa ] =Eµπ ,π

[
∇πa
πa

]
= Eµπ

[∑
a

πa
∇πa
πa

]
=Eµπ

[∑
a
∇πa

]
= Eµπ

[
∇

∑
a

πa

]
= Eµπ [∇1] = 0.

and a and b are independent random variables, it is easy to know

Eµπ ,πq
2

a [∇ logπa ]
T ∇ logπb =[Eµπ ,πq

2

a∇ logπa ]
T Eµπ ,π∇ logπb

=[Eµπ ,πq
2

a∇ logπa ]
T 0 = 0,

and similarly

Eµπ ,πq
2

b [∇ logπa ]
T ∇ logπb =0.

Therefore,

Var(g1)−Var(g2) = Eµπ ,π [‖g1‖
2 − ‖g2‖2]

= Eµπ ,π

[
−2(q2a + q

2

b )[∇ logπa ]
T ∇ logπb

]
+ Eµπ ,π [q

2

b ‖∇ logπa ‖
2 + q2a ‖∇ logπb ‖

2 − 2qaqb ‖∇ logπa ‖
2

− 2qaqb ‖∇ logπb ‖
2 + 2qaqb [∇ logπa ]

T ∇ logπb ]

= Eµπ ,π [q
2

b ‖∇ logπa ‖
2 + q2a ‖∇ logπb ‖

2 − 2qaqb ‖∇ logπa ‖
2

− 2qaqb ‖∇ logπb ‖
2 + 2qaqb [∇ logπa ]

T ∇ logπb ]

= Eµπ ,π (qa − qb )(qa ‖∇ logπb ‖
2 − qb ‖∇ logπa ‖

2)

− Eµπ ,πqaqb ‖∇ logπa − ∇ logπb ‖
2

≤ Eµπ ,π (qa − qb )(qa ‖∇ logπb ‖
2 − qb ‖∇ logπa ‖

2),

where the last inequation stands because qa ≥ 0,qb ≥ 0 and

‖∇ logπa − ∇ logπb ‖
2 ≥ 0. Thus, we have

Var(g1) ≤ Var(g2),

if Eµπ ,π
[
(qa − qb )(qb ‖∇ logπa ‖

2 − qa ‖∇ logπb ‖
2)

]
≥ 0.

�

Session 3B: Learning to Rank  SIGIR ’20, July 25–30, 2020, Virtual Event, China

517



REFERENCES
[1] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamil-

ton, and Greg Hullender. 2005. Learning to Rank Using Gradient Descent. In

Proceedings of the 22nd International Conference on Machine Learning (ICML ’05).
89–96.

[2] Chris J.C. Burges. 2010. From RankNet to LambdaRank to LambdaMART: An
Overview. Technical Report.

[3] Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang, and Hsiao-Wuen Hon.

2006. Adapting Ranking SVM to Document Retrieval. In Proceedings of the 29th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’06). 186–193.

[4] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to

Rank: From Pairwise Approach to Listwise Approach. In Proceedings of the 24th
International Conference on Machine Learning (ICML ’07). 129–136.

[5] Jaime Carbonell and Jade Goldstein. 1998. The Use of MMR, Diversity-based

Reranking for Reordering Documents and Producing Summaries. In Proceedings of
the 21st Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’98). 335–336.

[6] David Carmel and Elad Yom-Tov. 2010. Estimating the Query Di�culty for

Information Retrieval. Synthesis Lectures on Information Concepts, Retrieval, and
Services 2, 1 (2010), 1–89.

[7] Charles L.A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vechtomova,

Azin Ashkan, Stefan Büttcher, and IanMacKinnon. 2008. Novelty and Diversity in

Information Retrieval Evaluation. In Proceedings of the 31st Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’08). ACM, New York, NY, USA, 659–666.

[8] Koby Crammer and Yoram Singer. 2002. Pranking with Ranking. In Advances
in Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, and
Z. Ghahramani (Eds.). MIT Press, 641–647.

[9] Van Dang and W. Bruce Croft. 2012. Diversity by Proportionality: An Election-

based Approach to Search Result Diversi�cation. In Proceedings of the 35th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’12). ACM, New York, NY, USA, 65–74.

[10] Jun Feng, Heng Li, Minlie Huang, Shichen Liu, Wenwu Ou, Zhirong Wang,

and Xiaoyan Zhu. 2018. Learning to Collaborate: Multi-Scenario Ranking via

Multi-Agent Reinforcement Learning. In Proceedings of the 2018 World Wide Web
Conference (WWW ’18). 1939–1948.

[11] Yue Feng, Jun Xu, Yanyan Lan, Jiafeng Guo, Wei Zeng, and Xueqi Cheng. 2018.

From Greedy Selection to Exploratory Decision-Making: Diverse Ranking with

Policy-Value Networks. In The 41st International ACM SIGIR Conference on Re-
search &#38; Development in Information Retrieval (SIGIR ’18). 125–134.

[12] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2013. Balancing ex-

ploration and exploitation in listwise and pairwise online learning to rank for

information retrieval. Information Retrieval 16, 1 (01 Feb 2013), 63–90.
[13] Katja Hofmann, Shimon Whiteson, and Maarten Rijke. 2013. Balancing Explo-

ration and Exploitation in Listwise and Pairwise Online Learning to Rank for

Information Retrieval. Inf. Retr. 16, 1 (Feb. 2013), 63–90.
[14] Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, and Yinghui Xu. 2018. Reinforce-

ment Learning to Rank in E-Commerce Search Engine: Formalization, Analysis,

and Application. In Proceedings of the 24th SIGKDD (KDD ’18). 368–377.
[15] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-based Evaluation

of IR Techniques. ACM Trans. Inf. Syst. 20, 4 (Oct. 2002), 422–446.
[16] Thorsten Joachims. 2002. Optimizing Search Engines Using Clickthrough Data.

In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’02). 133–142.

[17] Branislav Kveton, Csaba Szepesvári, Zheng Wen, and Azin Ashkan. 2015. Cas-

cading Bandits: Learning to Rank in the Cascade Model. CoRR abs/1502.02763

(2015).

[18] Hang Li. 2014. Learning to Rank for Information Retrieval and Natural Language

Processing, Second Edition. Synthesis Lectures on Human Language Technologies
7, 3 (2014), 1–121.

[19] Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. 2016. Collaborative

Filtering Bandits. In Proceedings of the 39th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’16). 539–548.

[20] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Found. Trends Inf.
Retr. 3, 3 (March 2009), 225–331.

[21] Zhongqi Lu and Qiang Yang. 2016. Partially Observable Markov Decision Process

for Recommender Systems. CoRR abs/1608.07793 (2016).

[22] Jiyun Luo, Sicong Zhang, and Hui Yang. 2014. Win-win Search: Dual-agent

Stochastic Game in Session Search. In Proceedings of the 37th International ACM
SIGIR Conference on Research &#38; Development in Information Retrieval (SIGIR
’14). ACM, New York, NY, USA, 587–596.

[23] Ramesh Nallapati. 2004. Discriminative Models for Information Retrieval. In

Proceedings of the 27th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’04). 64–71.

[24] Harrie Oosterhuis andMaarten de Rijke. 2018. Ranking for Relevance and Display

Preferences in Complex Presentation Layouts. In The 41st International ACM

SIGIR Conference on Research &#38; Development in Information Retrieval (SIGIR
’18). 845–854.

[25] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010. LETOR: A Benchmark Collection

for Research on Learning to Rank for Information Retrieval. Inf. Retr. 13, 4 (Aug.
2010), 346–374.

[26] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning Diverse

Rankings with Multi-armed Bandits. In Proceedings of the 25th International
Conference on Machine Learning (ICML ’08). 784–791.

[27] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning Diverse

Rankings with Multi-armed Bandits. In Proceedings of the 25th International
Conference on Machine Learning (ICML ’08). ACM, New York, NY, USA, 784–791.

[28] Rodrygo L.T. Santos, Craig Macdonald, and Iadh Ounis. 2010. Exploiting Query

Reformulations for Web Search Result Diversi�cation. In Proceedings of the 19th
International Conference on World Wide Web (WWW ’10). 881–890.

[29] Guy Shani, David Heckerman, and Ronen I. Brafman. 2005. An MDP-Based

Recommender System. J. Mach. Learn. Res. 6 (Dec. 2005), 1265–1295.
[30] Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, and Anxiang Zeng. 2018.

Virtual-Taobao: Virtualizing Real-world Online Retail Environment for Reinforce-

ment Learning. CoRR abs/1805.10000 (2018).

[31] Richard S. Sutton and Andrew G. Barto. 2016. Reinforcement Learning: An Intro-
duction (2nd ed.). MIT Press.

[32] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang,

Peng Zhang, and Dell Zhang. 2017. IRGAN: A Minimax Game for Unifying

Generative and Discriminative Information Retrieval Models. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’17). 515–524.

[33] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2015. Learning

Maximal Marginal Relevance Model via Directly Optimizing Diversity Evaluation

Measures. In Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’15). 113–122.

[34] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2016. Modeling

Document Novelty with Neural Tensor Network for Search Result Diversi�cation.

In Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’16). 395–404.

[35] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, Wei Zeng, and Xueqi Cheng. 2017.

Adapting Markov Decision Process for Search Result Diversi�cation. In Proceed-
ings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’17). 535–544.

[36] Jun Xu and Hang Li. 2007. AdaRank: A Boosting Algorithm for Information

Retrieval. In Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’07). 391–398.

[37] Hui Yang, Dongyi Guan, and Sicong Zhang. 2015. The Query Change Model:

Modeling Session Search As a Markov Decision Process. ACM Trans. Inf. Syst. 33,
4, Article 20 (May 2015), 33 pages.

[38] Yisong Yue and Thorsten Joachims. 2008. Predicting Diverse Subsets Using

Structural SVMs. In Proceedings of the 25th International Conference on Machine
Learning (ICML ’08). ACM, New York, NY, USA, 1224–1231.

[39] Yisong Yue and Thorsten Joachims. 2009. Interactively Optimizing Information

Retrieval Systems As a Dueling Bandits Problem. In Proceedings of the 26th Annual
International Conference on Machine Learning (ICML ’09). 1201–1208.

[40] Wei Zeng, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2017. Reinforce-

ment Learning to Rank with Markov Decision Process. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’17). 945–948.

[41] Wei Zeng, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2018. Multi Page

Search with Reinforcement Learning to Rank. In Proceedings of the 2018 ACM
SIGIR International Conference on Theory of Information Retrieval (ICTIR ’18).
175–178.

[42] Sicong Zhang, Jiyun Luo, and Hui Yang. 2014. A POMDP Model for Content-

free Document Re-ranking. In Proceedings of the 37th International ACM SIGIR
Conference on Research &#38; Development in Information Retrieval (SIGIR ’14).
ACM, New York, NY, USA, 1139–1142.

[43] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang

Tang. 2018. Deep Reinforcement Learning for Page-wise Recommendations. In

Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18).
ACM, New York, NY, USA, 95–103. https://doi.org/10.1145/3240323.3240374

[44] Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin.

2018. Recommendations with Negative Feedback via Pairwise Deep Reinforce-

ment Learning. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery &#38; Data Mining (KDD ’18). 1040–1048.

[45] Yadong Zhu, Yanyan Lan, Jiafeng Guo, Xueqi Cheng, and Shuzi Niu. 2014. Learn-

ing for Search Result Diversi�cation. In Proceedings of the 37th International ACM
SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’14).
ACM, New York, NY, USA, 293–302.

[46] Lixin Zou, Long Xia Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin.

2019. Reinforcement Learning to Optimize Long-term User Engagement in Rec-

ommender Systems. In Proceedings of the 25th annual ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’19).

Session 3B: Learning to Rank  SIGIR ’20, July 25–30, 2020, Virtual Event, China

518

https://doi.org/10.1145/3240323.3240374

	Abstract
	1 Introduction
	2 Related Work
	3 Reinforcement learning to rank
	3.1 MDP formulation of ranking
	3.2 Learning with policy gradient
	3.3 Example applications: search result diversification and text retrieval
	3.4 Problem Analysis

	4 Our approach: PPG
	4.1 Policy gradient with pairwise comparison
	4.2 Discussions

	5 Experiments
	5.1 Experiments on search result diversification
	5.2 Experiments on text retrieval
	5.3 Analysis of the experimental results

	6 Conclusion
	A Proof of the theorems
	A.1 Proof of Theorem 4.1
	A.2 Proof of Theorem 4.2

	References



