Dynamic External Hashing: The Limit of Buffering

Zhewei Wei

Ke Yi

Qin Zhang

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong, China

{wzxac, yike, ginzhang}@cse.ust.hk

ABSTRACT

Hash tables are one of the most fundamental data structures
in computer science, in both theory and practice. They are
especially useful in external memory, where their query per-
formance approaches the ideal cost of just one disk access.
Knuth [16] gave an elegant analysis showing that with some
simple collision resolution strategies such as linear probing
or chaining, the expected average number of disk I/Os of
a lookup is merely 1 + 1/200’)7 where each I/O can read
and/or write a disk block containing b items. Inserting a
new item into the hash table also costs 1 4 1/2%®) 1/0Os,
which is again almost the best one can do if the hash ta-
ble is entirely stored on disk. However, this requirement
is unrealistic since any algorithm operating on an external
hash table must have some internal memory (at least (1)
blocks) to work with. The availability of a small internal
memory buffer can dramatically reduce the amortized inser-
tion cost to o(1) I/Os for many external memory data struc-
tures. In this paper we study the inherent query-insertion
tradeoff of external hash tables in the presence of a mem-
ory buffer. In particular, we show that for any constant
¢ > 1, if the expected average successful query cost is tar-
geted at 14+ O(1/b°) I/Os, then it is not possible to support
insertions in less than 1 — O(l/b%) I/Os amortized, which
means that the memory buffer is essentially useless. While
if the query cost is relaxed to 1+ O(1/b°) 1/Os for any con-
stant ¢ < 1, there is a simple dynamic hash table with o(1)
insertion cost.

Categories and Subject Descriptors

F.2.3 [Analysis of algorithms and problem complex-
ity]: Tradeoffs between complexity measures; E.2 [Data
storage]: hash-table representations

*Work of this paper was supported by Hong Kong Direct Alloca-
tion Grant (DAG 07/08). Qin Zhang was in addition supported
by Hong Kong CERG Grant 613507.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPAA’09, August 11-13, 2009, Calgary, Alberta, Canada.

Copyright 2009 ACM 978-1-60558-606-9/09/08 ...$10.00.

253

General Terms
Theory

Keywords

Dynamic hash table, lower bound, successful query

1. INTRODUCTION

Hash tables are the most efficient way of searching for a
particular item in a large database. They are arguably one of
the most fundamental data structures in computer science,
due to their simplicity of implementation, excellent perfor-
mance in practice, and many nice theoretical properties. A
hash table supports the following dictionary operations:

Insertion: Insert a pair of (key, data) into the table;

Deletion: Delete the (key, data) pair for a given key;
Successful query: For a queried key that is present in
the table, retrieve the data associated with it;

Unsuccessful query: For a queried key that is not present
in the table, return “not found”.

A hash table supports all of the operations above in ex-
pected constant time. It works especially well in external
memory, where the storage is divided into disk blocks, each
containing up to b items. Thus collisions happen only when
there are more than b items hashed to the same location.
Large blocks help to push the performance of external hash
tables to the limit: Using some common collision resolu-
tion strategies such as linear probing or chaining, Knuth
[16] showed that, under the ideal random hash function as-
sumption, the expected average cost of a successful query
is merely 1+ 1/2%" disk accesses (or I/Os), provided that
the load factor' « is less than a constant smaller than 1.
The expectation is with respect to the random choice of the
hash function, while the average is with respect to the uni-
form choice of the queried item. An unsuccessful lookup also
costs 1+ 1/2%®) 1/Os, but with a smaller constant in the
big-Omega (i.e., slower). Knuth [16] gave an elegant analysis
deriving the exact formula for the query cost, as a function
of a and b. As typical values of b range from a few hundreds
to a thousand, the query cost is extremely close to just one
1/0.

Inserting an item into the hash table also costs 14 1/2Q(b)
I/Os: We simply insert the new item into the block where it

IThe load factor is defined to be ratio between the minimum
number of blocks required to store n data records, [n/b], and the
actual number of blocks used by the hash table.



is supposed to go. If one wants to maintain the load factor
we can periodically rebuild the hash table using schemes like
extensible hashing [11] or linear hashing [17], but this only
adds an extra cost of O(1/b) I/Os amortized. Jensen and
Pagh [15] demonstrate how to maintain the load factor at
a= 1—O(1/b%) while still supporting queries in 1+O(1/b%)
I/Os and updates in 1 + O(l/b%) I/Os. Indeed, one cannot
hope for lower than 1 I/O for an insertion, if the hash table
must reside on disk entirely and there is no space in main
memory for buffering. However, this assumption is unre-
alistic, since any algorithm operating on an external data
structure has to have at least a constant number of blocks
of internal memory to work with. So we must include a
main memory of size m in our setting to model the problem
more accurately. In fact, this is exactly what the standard
external memory model [1] depicts: The system has a disk
of infinite size partitioned into blocks of size b, and a main
memory of size m > b. Computation can only happen in
main memory, which accesses the disk via I/Os. Each I/O
can read and/or write a disk block storing up to b items, and
the complexity is measured by the number of I/Os performed
by the algorithm. Note that the model parameters m and b
are considered asymptotic quantities. The presence of a no-
cost main memory could change the problem dramatically,
since it can be used as a buffer space to batch up insertions
and write them to disk periodically, fully utilizing the paral-
lelism within one I/O and reducing the amortized insertion
cost. The abundant research in the area of I/O-efficient data
structures has witnessed this phenomenon numerous times,
where the insertion cost can be typically brought down to
close to O(1/b) 1/0s. Examples include the simplest struc-
tures like stacks and queues, to more advanced ones such as
the buffer tree [2] and priority queues [3,10]. Many of these
results hold as long as the buffer has just a constant number
of blocks; some require a larger buffer of ©(b) blocks (known
as the tall cache assumption). Please see the book by Vitter
[19] for a complete account of the power of buffering.

Therefore the natural question is, can we (or not) lower
the insertion cost of a dynamic hash table by buffering with-
out sacrificing its near-perfect query performance? Jensen
and Pagh [15] recently conjectured that the insertion cost
must be ©(1) I/Os if the query cost is required to be O(1)
I/Os.

Our results. In this paper, we partially confirm the con-
jecture of Jensen and Pagh [15]. Specifically we obtain the
following results. Consider any dynamic hash table that sup-
ports insertions in expected amortized ¢, I/Os and answers
a successful query in expected t, 1/Os on average. We show
that if t;, < 14+0(1/b°) for any constant ¢ > 1, then we must
have t, > 1 — O(l/b%). This is only an additive term
of 1/ away from how the standard hash table is sup-
porting insertions, which means that buffering is essentially
useless in this case. However, if the query cost is relaxed to
ty < 14 O(1/b°) for any constant 0 < ¢ < 1, we present
a simple dynamic hash table that supports insertions in
tu = O(b°"") = o(1) I/Os (for block sizes b = Q(log'/¢ 2)).
For this case we also present a matching lower bound of
w = Q(0°71). Finally for the case t; = 1+ 0(1/b), we show
a tight bound of ¢, = ©(1). Our results are pictorially illus-
trated in Figure 1, from which we see that we now have an
almost complete understanding of the entire query-insertion

254

tradeoff, and t; = 1 + ©(1/b) seems to be the sharp bound-
ary separating effective and ineffective buffering. We prove
our lower bounds for the three cases above using a unified
framework in Section 2 and 3. The upper bound for the first
case is simply the standard hash table following [16]; we give
the upper bounds for the other two cases in Section 4.

Insertion

upper bounds

lower bounds

14 1/290)

¥

1 —O(1/ble=1)/6)

17— 14+ 601/6°), ¢ > I / P 1+0Q/b), c<1— (Suery
1+ 06(1/b)

Figure 1. The query-insertion tradeoff.

Let [u] be the universe of the keys. In Section 2, we prove
that for any deterministic hash table, if we insert a total
of n keys independently uniformly at random, there is a
lower bound on the expected amortized cost per insertion,
under the condition that at any time, the hash table must be
able to answer a successful query with the desired expected
average query bound. In Section 3 we show how this lower
bound extends to randomized hash tables.

When proving our lower bounds we make the only require-
ment that items (i.e., the (key, data) pairs) must be treated
as atomic elements, i.e., they can only be moved or copied
between memory and disk in their entirety, and when an-
swering a query, the query algorithm must visit the block
(in memory or on disk) that actually contains the item or
one of its copies. Such an indivisibility assumption is made
in most external memory lower bounds, such as sorting, per-
muting [1], and all the range searching problems [4, 14, 21].
We assume that each machine word consists of log u bits and
each item occupies one machine word (it does not affect our
results if an item occupies any constant number of words).
A block has b words and the memory stores up to m words.
Finally, we comment that our lower bounds do not depend
on the size of the hash table, which implies that the hash
table cannot do better by consuming more disk space.

In this paper we only consider the tradeoff between suc-
cessful query and insertion, since among the four types of
dictionary operations, they are the two most important and
common operations. In large databases, usually people do
not do deletions at all due to the cheap storage, but just
periodically rebuild the entire index [13]. For queries, the
successful ones are much more common in many applica-
tions, since people use hash tables mainly for the purpose of
retrieving the data associated with a key, not just testing if
a key is present; better data structures exist for the latter
purpose, such as Bloom filters [6]. We leave it as future work
to consider other possible tradeoffs, for instance the trade-



off between max{successful query, unsuccessful query} and
insertions, or between queries and max{insertion, deletion}.

Related results. Hash tables are widely used in practice
due to their simplicity and excellent performance. Knuth’s
analysis [16] applies to the basic version where the hash table
uses an ideal random hash function and ¢, is the expected
average cost. Afterward, a lot of works have been done
to give better theoretical guarantees, for instance removing
the ideal hash function assumption [8], making ¢, worst-case
[9,12, 18], etc. Lower bounds have been sparse because in in-
ternal memory, the update time cannot be lower than (1),
which is already achieved by the standard hash table. Only
with some strong requirements, e.g., when the algorithm
is deterministic and ¢, is worst-case, can one obtain some
nontrivial lower bounds on the update time [9]. Our lower
bounds, on the other hand, hold for randomized algorithms
and do not need t, to be worst-case.

As commented earlier, in external memory there is a triv-
ial lower bound of 1 1/O for either a query or an update, if
all the changes to the hash table must be committed to disk
after each update. However, the vast amount of works in the
area of external memory algorithms have never made such a
requirement. And indeed for many problems, the availabil-
ity of a small internal memory buffer can significantly reduce
the amortized update cost without affecting the query cost
[2,3,10,19]. Unfortunately, little is known on the inherent
limit of what buffering can do. The only nontrivial lower
bounds on the update cost of any external data structure
with a memory buffer are a paper by Fagerberg and Brodal
[7] on the predecessor problem and a recent result of Yi [21]
on the range reporting problem. But the techniques used are
inapplicable to our problem. To the best of our knowledge,
no nontrivial lower bound on external hashing of any kind
is known.

2. LOWER BOUNDS

In this section, we prove a lower bound for any determin-
istic hash table under a total of n independent and random
insertions, for some sufficiently large n. We will derive a
lower bound on ¢, the expected amortized number of 1/Os
for an insertion, while assuming that the hash table is able
to answer a successful query in t; I/Os on average in ex-
pectation after the first ¢ items have been inserted, for all
i=1,...,n. We assume that all the keys are different, which
happens with probability 1 — O(1/n) as long as u > n® by
the birthday paradox. Under this setting we obtain the fol-
lowing tradeoffs between ¢, and t,,.

THEOREM 1. For any constant ¢ > 0, suppose we insert
a sequence of n > (m logu - b2c) random items into an
initially empty hash table. If the total cost of these insertions
is expected n - t, 1/0s, and the hash table is able to answer
a successful query in expected average tq I/Os at any time,
then the following tradeoffs hold:

1. If tqg < 14 O(1/b°) for any ¢ > 1, then t, > 1 —
0(/bT);
2. If ty <1+ O(1/b), then t, > Q(1);

3. Iftg < 14 0(1/6°) for any 0 < ¢ < 1, then t, >
Qb h).

255

The abstraction. To abstractly model a dynamic hash ta-
ble, we ignore any of its auxiliary structures but only focus
on the layout of items. Consider any snapshot of the hash ta-
ble when we have inserted k items. We divide these k items
into three zones. The memory zone M is a set of at most m
items that are kept in memory. It takes no I/O to query any
item in M. All items not in M must reside on disk. Denote
all the blocks on disk by Bi, Ba, ..., Bgq. Each B; is a set of
at most b items, and it is possible that one item appears in
more than one B;. Let f: U — {1,...,d} be any function
computable within memory, and we divide the disk-resident
items into two zones with respect to f and the set of blocks
Bi,...,Bq. The fast zone F' contains all items = such that
Z € Bj(,): These are the items that are accessible with just
one I/O. We allocate all the remaining items into the slow
zone S: These items need at least two I/Os to locate. Note
that under random inputs, the sets M, F, S, B1,..., By are
all random sets, which the hash table will adaptively choose
after seeing each random insertion. Changing M is free, but
changing any B; will cost 1 I/0O.

Any query algorithm on the hash table can be modeled as
described, since the only way to find a queried item in one
I/0 is to compute the index of a block containing x with
only the information in memory. If the memory-resident
computation gives an incorrect address or anything else, at
least 2 I/Os will be necessary. Because any such f must
be computable within memory, and the memory has mlogu
bits, the hash table can employ a family F of at most 2™ 08 %
distinct f’s. Note that the current f adopted by the hash
table is dependent upon the already inserted items, but the
family F has to be fixed beforehand.

Suppose the hash table answers a successful query with
an expected average cost of t; = 1+ 9 I/Os, where 6 = 1/b°
for some constant ¢ > 0. Consider the snapshot of the hash
table when k items have been inserted. Then we must have
E[|F|+2-|S|]/k < 1+4. Since |F| + |S| = k — |M] and
E[|M]|] < m, we have

E[|S|] < m + 6k. (1)

We also have the following high-probability version of (1).

LEMMA 1. Let ¢ > 1/b1™V/% and let k > ¢n. At the
snapshot when k items have been inserted, with probability
at least 1 —2¢, |S| < m + %k.

PROOF. On this snapshot the hash table answers a query
in expected average 149 I/Os. We claim that with probabil-
ity at most 2¢, the average query cost is more than 14 §/¢.
Otherwise, since in any case the average query cost is at
least 1 — m/k (assuming all items not in memory need just
one 1/0), we would have an expected average cost of at least

(1—2¢)(1 —m/k) +26- (1+35/¢) > 1+,

provided that = > %, which is valid since we assume that

= > b**log u. The lemma then follows from the same argu-
ment used to derive (1). [

Basic idea of the lower bound proof. For the first ¢n
items, we ignore the cost of their insertions. Consider any
f:U—={l,....d}. Fori=1,....d, let oy = |f*(3)|/u,
and we call (au, ..., aq) the characteristic vector of f. Note
that >~ a; = 1. For any one of the first ¢n items, since
it is randomly chosen from U, f will direct it to B; with



probability a;. Intuitively, if «; is large, too many items will
be directed to B;. Since B; contains at most b items, the
extra items will have to be pushed to the slow zone. If there
are too many large a;’s, S will be large enough to violate
the query requirement. Thus, the hash table should use
an f that distributes items relatively evenly to the blocks.
However, if f evenly distributes the first ¢n items, it is also
likely to distribute newly inserted items evenly, leading to a
high insertion cost. Below we formalize this intuition.

For the first tradeoff of Theorem 1, we set § = 1/b°. We
also pick the following set of parameters ¢ = 1/17(“1)/47 p=
20/ s = n/blet/2 We will use different values
for these parameters when proving the other two trade-
offs. Given an f with characteristic vector (aa,...,aq),
let DY = {i | a; > p} be the collection of block indices
with large a;’s. We say that the indices in D¥ form the
bad indexr area and others form the good index area. Let
Af = > cpr @i- Note that there are at most \s/p indices
in the bad index area. We call an f with Ay > ¢ a bad func-
tion; otherwise it is a good function. The following lemma
shows that with high probability, the hash table has to use
a good function f from F.

LEMMA 2. At the snapshot when k items are inserted for
any k > on, the function f used by the hash table is a good
function with probability at least 1 — 2¢ — 1/2Q(b).

Proor. Consider any bad function f from F. Let X;
be the indicator variable of the event that the j-th inserted
item is mapped to the bad index area, j = 1,...,k. Then
X = 2?21 X is the total number of items mapped to the
bad index area of f. We have E[X] = Ask. By the Chernoff
bound, we have

¢2n

18
)

(1/3)2)\£k

Pr {X<§)\fk} <e 2 <e

$3n
namely with probability at least 1 — e 18 | we have X >

2Xsk. Since the family F contains at most 2™'°#* bad
functions, by a union bound we know that with probability

2
at least 1 — 218 . ¢~ " >1—1/2%®) (by the parameters
chosen and the assumption that n > Q(mb* logu)), for all
the bad functions in F, we have X > %)\fk.

Consequently, since the bad index area can only accom-
modate b-Af/p items in the fast zone, at least ZAsk—bAs/p
cannot be in the fast zone. The memory zone can accept at
most m items, so the number of items in the slow zone is at

least

0

—k.

¢

This happens with probability at least 1— 1/29“7), due to the
fact that f is a bad function. On the other hand, Lemma 1
states that |S| < m + 2k holds with probability at least

1 — 2¢, thus by a union bound the hash table has to use a
good function with probability at least 1 —2¢ — 1/29“7). O

2
S| > §)‘fk_b)‘f/p_m> m+

A bin-ball game. Lemma 2 enables us to consider only
those good functions f after the initial ¢n insertions. To
show that any good function will incur a large insertion cost,
we first consider the following bin-ball game, which captures
the essence of performing insertions using a good function.

256

In an (s, p,t) bin-ball game, we throw s balls into 7 (for any
r > 1/p) bins independently at random, and the probability
that any ball goes to any particular bin is no more than
p. At the end of the game, an adversary removes ¢ balls
from the bins such that the remaining s — ¢ balls hit the
least number of bins. The cost of the game is defined as the
number of nonempty bins occupied by the s — t remaining
balls.

We have the following two results with respect to such a
game, depending on the relationships among s, p, and t.

LEMMA 3. Ifsp < %, then for any p > 0, with probability

at least 1 — e~ "5 , the cost of an (s,p,t) bin-ball game is at
least (1 — p)(1 — sp)s — t.

PRrROOF. Imagine that we throw the s balls one by one. Let
X be the indicator variable denoting the event that the j-th
ball is thrown into an empty bin. The number of nonempty
bins in the end is thus X = 2221 X;. These X;’s are not
independent, but no matter what has happened previously
for the first j — 1 balls, we always have Pr[X; = 0] < sp.
This is because at any time, at most s bins are nonempty.
Let Y; (1 < j < s) be a set of independent variables such

that
Y= {

Let Y = ijl Y;. Each Y; is stochastically dominated by

Xi, so Y is stochastically dominated by X. We have E[Y] =
(1 — sp)s and we can apply the Chernoff bound on Y:

0, with probability sp;
1, otherwise.

_n2(-sp)s n=s

PriY <(1—p)(1—sp)s]<e 2 <e 3.

2
Therefore with probability at least 1 — ef%, we have X >
(1 — u)(1 — sp)s. Finally, since removing t balls will reduce
the number of nonempty bins by at most ¢, the cost of the
bin-ball game is at least (1 — p)(1— sp)s — ¢ with probability
u?s
O

at least 1 —e” 3 .

LEMMA 4. Ifs/2 >t and s/2 > 1/p, then with probability
at least 1 — 1/29(8), the cost of an (s,p,t) bin-ball game is
at least 1/(20p).

PROOF. In this case, the adversary will remove at most
s/2 balls in the end. Thus we show that with very small
probability, there exist a subset of s/2 balls all of which are
thrown into a subset of at most 1/(20p) bins. Before the
analysis, we merge bins such that the probability that any
ball goes to any particular bin is between p/2 and p, and
consequently, the number of of bins would be between 1/p
to 2/p. Note that such an operation will only make the cost
of the bin-ball game smaller. Now this probability is at most

(7)) ) ) =

s/2
2/]) ) < 1/29(3)7

s\ (1/20)
: 2(1/(20@) <s/2>< 1/p

O

1/(20p)

>

i=1

hence the lemma.

Now we are ready to prove the main theorem.



Proof of Theorem 1.

PrOOF. We begin with the first tradeoff. Recall that we
use the following parameters: § = 1/b°, ¢ = 1/6(671)/47
p =20t/ s = n/pletD/2 For the first ¢n items, we
do not count their insertion costs. We divide the rest of the
insertions into rounds, with each round containing s items.
We now bound the expected cost of each round.

Focus on a particular round, and let f be the function used
by the hash table at the end of this round. We only consider
the set R of items inserted in this round that are mapped to
the good index area of f, i.e., R = {z | f(x) € D'}; other
items are assumed to have been inserted for free. Consider
the block with index f(z) for a particular z. If x is in the
fast zone, the block By (,) must contain z. Thus, the number
of distinct indices f(z) for x € RN F is an obvious lower
bound on the I/O cost of this round. Denote this number
by Z = |{f(z) | z € RN F}|. Below we will show that Z is
large with high probability.

We first argue that at the end of this round, each of the
following three events happens with high probability.

o &1 |S| <dn/p+m;
e &: fis a good function;

e &3: For all good functions f € F and their corre-
sponding slow zones S and memory zones M, Z >
(1 —0(¢))s —t, where t = |S| + |M]|.

By Lemma 1, £ happens with probability at least 1 — 2¢.
By Lemma 2, £ happens with probability at least 1 — 2¢ —
1/2Q(b). It remains to show that &3 also happens with high
probability.

We prove so by first claiming that for a particular good
function f € F, with probability at least 1 — 672(?237 Z is at
least the cost of a ((1 —2¢)s, #, t) bin-ball game. This is
because of the following reasons:

1. Since f is a good function, by the Chernoff bound, with
probability at least 1 — 6724}257 more than (1 — 2¢)s
newly inserted items will fall into the good index area
of f,ie., |R| > (1—2¢)s.

2. The probability of any item being mapped to any index
in the good index area, conditioned on that it goes to

the good index area, is no more than 17”” .

3. Only t items in R are not in the fast zone F', excluding
them from R corresponds to discarding ¢ balls at the
end of the bin-ball game.

Thus by Lemma 3 (setting u = ¢), with probability at
,¢2~(1;2¢)s —242s
—e

least 1 — e , we have
z 2 -9 (1-0-20s L0 ) 02000
> 1-0)(1-0-209s 20 ) - 2005 -
> (1-0(¢)s—t.
Thus by applying a union bound on all good functions in

. s _¢2a-2¢)s
F, &€ happens with probability at least 1 — (e 3

672¢2s) . 2mlogu - 1 -
Q(mb*logu)).

279 (by the assumption n >

257

Now we lower bound the expected insertion cost of one
round. By a union bound, with probability at least 1 —
O(¢)— 1/2Q(b), all of &1, &2, and &3 happen at the end of the
round. By & and &3, we have Z > (1 — O (¢)) s — t. Since
now ¢t = |S| + M| < dn/¢ + 2m = O (¢s) by &1, we have
Z > (1 =0 (¢))s. Thus the expected cost of one round will
be at least

(1-0(@)s-(1-0(6)=1/2°") = (1-0(9)) s

Finally, since there are (1 — ¢)n/s rounds, the expected
amortized cost per insertion is at least

(1-0()s-(1=¢)n/s-1/n=1-0 (1/1,%1).

For the second tradeoff, we choose the following set of
parameters: ¢ = 1/k,p = 2rb/n,s n/(k*b) and § =
1/(k*b) (for some constant x large enough). We can check
that Lemma 2 still holds with these parameters, and then
go through the proof above. We omit the tedious details.
Plugging the new parameters into the derivations we obtain
a lower bound ¢, > Q(1).

For the third tradeoff, we choose the following set of pa-
rameters: ¢ = 1/8,p = 16b/n,s = 32n/b° and 6 = 1/b°.
We can still check the validity of Lemma 2, and go through
the whole proof. The only difference is that we need to use
Lemma 4 in place of Lemma 3, the reason being that for our
new set of parameters, we have sp = w(1) thus Lemma 3
does not apply. By using Lemma 4 we can lower bound the
expected insertion cost of each round by Q ((1 — 2¢)/(20p)),
so the expected amortized insertion cost is at least

Q (12_0;2;75) (1= ¢)n/s-1/n = Q0 Y),

as claimed. [

3. LOWER BOUNDS FOR RANDOMIZED
HASH TABLES

In this section we show how to extend our lower bound
to randomized hash tables. We follow the framework of Yao
[20]. A randomized hash table can be viewed as a prob-
ability distribution P4 over the set A of all deterministic
hash tables. We still consider the tradeoff between the ex-
pected average cost of a successful query t, and the expected
amortized insertion cost t,,. Now the expectation is with re-
spect to the probability distribution P4. More precisely, let
Q(A, I,t) denote the average query cost over all items in the
deterministic hash table A € A, on input sequence I at snap-
shot ¢, and U(A, I') denote the I/O cost per item of inserting
all items in I using A, then the expected average query cost
and expected amortized insertion cost of a randomized hash
table P4 can be expressed as tq = max max Ep,[Q(A,1,1)]

and t, = max Ep,[U(A,I)], respectively. For randomized

hash tables we have the following tradeoffs:

THEOREM 2. For any randomized hash table, suppose we
insert a sequence of n > € (m logu - b2c) items into it. If
the total cost of these insertions is expected at most n - t,
I/0s under any input, and the hash table is able to answer
a successful query in expected average tq 1/Os at any time,
then the following tradeoffs hold:



1. If t¢ < 14 0O(1/b°) for any ¢ > 1, then t, > 1 —
O(/b5);

2. Ifty < 1+ O(1/b), then t, > Q(1);

3 Iftq < 14+ O(1/b°) for any 0 < ¢ < 1, then t, >
Q).
PrOOF. For the first tradeoff, we set the parameters as
follows: ¢ = 1/6(671)/67p = 2petD/6 g = n/b(c+2)/3. As-
suming the query cost

m?xmtaprA QA 1,1)] <1+ 0(1/b°)

for any ¢ > 1, we will derive a lower bound for the insertion
cost max Ep,[Q(A,I)]. Let Pr denote the uniform distri-
bution over the set Z of all input sequences of length n.
Considering £ Y7 | Ep, p,[Q(A, I,t)], we have the follow-
ing bound:

LS B QAT = -3 Bey [BryfQ(A, T 1]

% Z Ep, [1+O(1/b%)]

t=1
1+ 0(1/6%).
Consider any ¢t > ¢n. Since Q(A,1,t) > 1 —m/¢n for all

A and I, it follows that with probability at least 1 — ¢, the
(deterministic) hash table A chosen according to P4 satisfies

<

<

RN 1
Lo EleA L0140 (5.

by the parameters chosen above and for n large enough. We
will prove that for these hash tables, the insertion cost is
large. Fixing such a hash table A, it is easy to show that A

satisfies Ep, [Q(A, I,1)] <1+0 ( ) on at least (1—2¢)n

snapshots. Call these snapshots good snapshots. We can
check that Lemma 1 and Lemma 2 still hold on any good
snapshot. Ignoring the first ¢n insertions, we divide the
remaining (1 — ¢)n insertions into rounds, with each round
containing exactly s good snapshots and also ending with a
good one. Focusing on a particular round, we only consider
the insertion cost of the s items inserted right before the
good snapshots. Since the ending snapshot of the round is
good, using the same argument as in Theorem 1 we can prove
that the cost inserting the s items is at least (1 —O(¢))s. So
the total insertion cost of each round is at least (1 —O(¢))s.
Since there are (1 — 2¢)n/s rounds, the expected amortized
cost per insertion of A is Ep, [U(A,I)] > (1 —O(¢))s- (1 —
2¢)n/s-1/n =1—0(¢). For the randomized hash table Py,
since with probability > 1 — ¢, A is one for which the above
analysis goes through, we can bound the expected amortized
insertion cost as follows:

1
¢2bc

maxEp [U(AD)] = Bre, [U(A D)
> (1-¢)(1-0(¢))
> 1-0(1/b75).

For the second and third tradeoffs, we choose the same
parameters as in the proof of Theorem 1, and a similar ar-
gument will yield the desired results. [

258

4. UPPER BOUNDS

In this section, we present some upper bounds on the
query-insertion tradeoff of external hash tables, showing that
all three lower bound tradeoffs of Theorem 1 are essentially
tight. The first tradeoff is matched by the standard exter-
nal hash table, up to an additive term of 1/b9(1). Below we
give matching (up to constant factors) upper bounds for the
other two tradeoffs.

Specifically, we present a simple dynamic hash table that,
for any constant 0 < ¢ < 1, supports insertions in ¢, =
oW + W) I/Os amortized, while being able to an-
swer a query in expected ¢t = 14+ O(1/b°) 1/Os on average.
This means that our lower bound is tight for all block sizes
b = Q(logt/c ). In the following we first state a folklore
result by applying the logarithmic method [5] to a standard
hash table [16], then we show how to improve the query cost
to 1+ O(1/b°) while keeping the insertion cost low.

Applying the logarithmic method. Fix a parameter v >
2. We maintain a series of hash tables Ho, H1,.... The
hash table Hj has ~* - 7 buckets and stores up to %fykm
items, so that its load factor is always at most % We use
some standard method to resolve collisions, such as chaining.
The first hash table Ho always resides in memory while the
rest stay on disk.

When a new item is inserted, it always goes to the memory-
resident Ho. When Hp is full (i.e., having %m items), we
migrate all items stored in Ho to Hi. If Hi is not empty,
we simply merge the corresponding buckets. Note that each
bucket in Ho corresponds to v consecutive buckets in H;,
and we can easily distribute the items to their new buckets
in ‘H1 by scanning the two tables in parallel, costing O(y- ")
1/0s. This operation takes place inductively: Whenever Hy,
is full, we migrate its items to Hyy1, costing O(y* . )
I/Os. Then standard analysis shows that for n insertions,
the total cost is O(%* log =) I/Os, or O(7 log =) amortized
I/0Os per insertion. However, for a query we need to examine
all the O(log,, ;) hash tables.

LEMMA 5. For any parameter v > 2, there is a dynamic
hash table that supports an insertion in amortized O(F log =)
I/0s and a successful query in expected O(log., =) I/Os.

m

Improving the query cost. Next we show how to improve
the average cost of a successful query to 1+O(1/b6) 1/Os for
any constant 0 < ¢ < 1, while keeping the insertion cost low.
The idea is to try to put the majority of the items into one
single big hash table. In the standard logarithmic method
described above, the last table may seem a good candidate,
but sometimes it may only contain a constant fraction of all
items. Below we show how to bootstrap the structure above
to obtain a better query bound.

Fix a parameter 2 < g < b. For the first m items inserted,
we dump them in a hash table H on disk. Then run the
algorithm of Lemma 5 for the next m/J items. After that
we merge these m/f3 items into H. We keep doing so until
the size of H has reached 2m, and then we start the next
round. Generally, in the i-th round, the size of H goes from
2771m to 2'm, and we apply the algorithm of Lemma 5 for
every Qiflm/ﬂ items. It is clear that H always has at least

a fraction of 1 — % of all the items inserted so far, while



the series of hash tables used in the logarithmic method
maintain at least a separation factor of 2 in the sizes between
successive tables. Thus, the expected average query cost is
at most

(1+1/2Q(”)) <1- <1 - %) +%

<2.%+3&+...>)

=1+0(1/B).

Next we analyze the amortized insertion cost. Since the
number of items doubles every round, it is (asymptotically)

sufficient to analyze the last round. In the last round, H

is scanned [ times, and we charge O(3/b) I/Os to each of

the n items. The algorithm of Lemma 5 is invoked ( times,
but every invocation handles O(n/3) different items, so the
amortized cost per item is still O(F log =) 1/Os. Thus the
total amortized cost per insertion is O(+(8+~log Z)) 1/Os.
Then setting 8 = b° and v = 2 yields the desired results.

THEOREM 3. For any constant 0 < ¢ < 1, there is a dy-

namic hash table that supports an insertion in amortized

ot + W) I/Os and a successful query in expected
average 1 + O(1/b°) I/Os.

S.

FINAL REMARKS

It is clear that the hash table of Theorem 3 is optimized
for the average cost of successful queries, but has a rather
poor performance on unsuccessful queries. The conjecture
in [15] is that buffering should be entirely useless if both
query costs are to be O(1).

Nevertheless, even for successful queries the problem is
still not completely understood. There is a gap between our

upper and lower bound for smaller block sizes b = O(logl/ c)

and it will be interesting to see how small the blocks can be
so as to still allow for effective buffering. Note that when
b = O(1), the external memory model essentially becomes
RAM, and buffering certainly will not help in this case.

References

1]

2]

8]

[4]

A. Aggarwal and J. S. Vitter. The input/output com-
plexity of sorting and related problems. Communica-
tions of the ACM, 31(9):1116-1127, 1988.

L. Arge. The buffer tree: A technique for design-
ing batched external data structures. Algorithmica,
37(1):1-24, 2003.

L. Arge, M. Bender, E. Demaine, B. Holland-Minkley,
and J. I. Munro. Cache-oblivious priority-queue and
graph algorithms. In Proc. ACM Symposium on The-
ory of Computation, pages 268-276, 2002.

L. Arge, V. Samoladas, and K. Yi. Optimal external
memory planar point enclosure. Algorithmica, 54(3),
20009.

259

[5]
(6]

(7]

J. L. Bentley. Decomposable searching problems. Infor-
mation Processing Letters, 8(5):244-251, 1979.

B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. In Communications of the ACM, vol-
ume 13, pages 422-426, 1970.

G. S. Brodal and R. Fagerberg. Lower bounds for ex-
ternal memory dictionaries. In Proc. ACM-SIAM Sym-
posium on Discrete Algorithms, pages 546-554, 2003.
J. Carter and M. Wegman. Universal classes of hash
functions. Journal of Computer and System Sciences,
18:143-154, 1979.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer
auf der Heide, H. Rohnert, and R. E. Tarjan. Dynamic
perfect hashing: upper and lower bounds. SIAM Jour-
nal on Computing, 23:738-761, 1994.

R. Fadel, K. V. Jakobsen, J. Katajainen, and
J. Teuhola. Heaps and heapsort on secondary storage.
Theoretical Computer Science, 220(2):345-362, 1999.
R. Fagin, J. Nievergelt, N. Pippenger, and H. Strong.
Extendible hashing—a fast access method for dy-
namic files. ACM Transactions on Database Systems,
4(3):315-344, 1979.

M. L. Fredman, J. Komlos, and E. Szemeredi. Storing a
sparse table with O(1) worst case access time. Journal
of the ACM, 31(3):538-544, 1984.

H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database Systems: The Complete Book. Prentice Hall,
2008.

J. M. Hellerstein, E. Koutsoupias, D. Miranker, C. H.
Papadimitriou, and V. Samoladas. On a model of in-
dexability and its bounds for range queries. Journal of
the ACM, 49(1):35-55, 2002.

M. S. Jensen and R. Pagh. Optimality in external mem-
ory hashing. Algorithmica, 52(3):403-411, 2008.

D. E. Knuth. Sorting and Searching, volume 3 of The
Art of Computer Programming. Addison-Wesley, Read-
ing, MA, 1973.

W. Litwin. Linear hashing: a new tool for file and table
addressing. In Proc. International Conference on Very
Large Databases, pages 212-223, 1980.

R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51:122—144, 2004.

J. S. Vitter. Algorithms and Data Structures for Exter-
nal Memory. Now Publishers, 2008.

A. C. Yao. Probabilistic computations: Towards a uni-
fied measure of complexity. In Proc. IEEE Symposium
on Foundations of Computer Science, 1977.

K. Yi. Dynamic indexability and lower bounds for dy-
namic one-dimensional range query indexes. In Proc.
ACM Symposium on Principles of Database Systems,
20009.



